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We model radicalization in a society consisting of two
competing religious, ethnic or political groups. Each of the
‘sects’ is divided into moderate and radical factions, with intra-
group transitions occurring either spontaneously or through
indoctrination. We also include the possibility of one group
violently attacking the other. The intra-group transition rates
of one group are modelled to explicitly depend on the actions
and characteristics of the other, including violent episodes,
effectively coupling the dynamics of the two sects. We use a
game theoretic framework and assume that radical factions
may tune ‘strategic’ parameters to optimize given utility
functions aimed at maximizing their ranks while minimizing
the damage inflicted by their rivals. Constraints include
limited overall resources that must be optimally allocated
between indoctrination and external attacks on the other group.
Various scenarios are considered, from symmetric sects whose
behaviours mirror each other, to totally asymmetric ones
where one sect may have a larger population or a superior
resource availability. We discuss under what conditions sects
preferentially employ indoctrination or violence, and how
allowing sects to readjust their strategies allows for small,
violent sects to grow into large, indoctrinated communities.

1. Introduction
The past few decades have seen a remarkable change in the
motivations leading to armed conflicts worldwide, in how
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and by whom populations are being mobilized, and in the ways violence unfolds in societies [1].
The character of present warfare is increasingly civil, internal and sectarian as opposed to the more
international, external wars fought until the mid-twentieth century. The latter were mostly driven by
economic, imperialistic and expansionistic intents—such as the two world wars—or by nationalistic
and ideological motives—such as the quest for independence of former colonies, or the attempt to
forcefully establish capitalism over communism. Contemporary conflicts on the other hand are marked
by ethnic, cultural or religious undertones that were not a source of full fledged rivalry or hostility
between groups until triggered by specific political or military events. Examples include the Balkan
and Rwandan civil wars, the secessionist conflict in Chechnya, the Darfur war, the Lebanese civil war
and religious conflicts in Northern Ireland. In more recent years, the Middle East has experienced a
dramatic surge in tension between the Sunni and Shia denominations of Islam, particularly in Iraq
and Syria [2,3] (table 1).

While each of these past or present conflicts must be placed in its own historical context and carries
its unique raison d’être, a few common threads can be found. Most arise as small, local conflicts, often
building on denominational or cultural divisions that had been simmering for years but that had
been reined in by a legitimate or de facto authority: occupying forces, the government or a dictator.
The collapse or fall of the latter, especially in societies with less concern for human rights, has often
led to chaotic free-for-all states, marked by widespread abuse, violence against civilians and terror.
Dormant identity divisions have resurged as a need and a way to protect one’s own. Emerging
sectarian groups are often led by fanatics, rebels or irregular militiamen that, within a failed nation
state, are able to expand their reach and influence without restraint, such as in the case of the Islamic
State [4]. Divisions and hostility are often deepened by the continued use of propaganda and identity
arguments, whether constructed or factual, to recruit militants and sympathizers and to present the
‘other’ as an enemy or a scapegoat. Against this backdrop, and often exacerbated by poverty and
lack of education and opportunity, the radicalization of communities drives individuals that had once
lived side by side in relative harmony towards segregation and to the ever increasing glorification
of violence.

Being able to understand how individuals and societies become radicalized [5–7] is an important
step in trying to prevent extremism in volatile, unstable societies that are not yet completely polarized,
and for the development of possible, effective anti-radicalization strategies in those that are. The goal of
this paper is to develop a mathematical model to study the radicalization of sectarian communities. We
aim to incorporate several sociologically relevant factors: active indoctrination by established radicals,
psychological responses to attacks and possible de-radicalization efforts.

Within the general context of political or religious radicalization, previous population models
grouped individuals depending on level of zeal [8,9], allowing individuals to become more or less
fanatic depending on their interactions with others. Network models [10–13] and applications to
specific cases such as the radicalization of Basques by the ETA terrorist organization [14] have also
been studied. Models targeted to specifically describe the Middle East include the study of public
support towards occupying forces in Iraq via population-based [15] or lattice-type models [16,17] where
sites are populated with civilians and insurgent agents in proportions derived from ethnic maps of
Baghdad [18]. Attacks, migrations and safety issues are included, as well as policing strategies to mitigate
violence.

In our work, we consider two opposing populations, each containing a more and a less radical
component that respond to and/or cause attacks and/or disseminates propaganda. As we shall describe
in the next section, the model we present has a more dynamic and adversarial character than the mostly
‘opinion’ models introduced so far, as we include the possibility of moderates radicalizing not only in
response to internal indoctrination, but also in direct response to the offensive actions carried out by the
opposing party. Indeed, we allow the radical component of one group to take advantage of the actions
of the other for their own proselytizing efforts. Several parameters will be introduced, for example, to
describe the willingness of one faction to carry out attacks on the other, or the degree of de-radicalization.
Each of these parameters will embody given tactical possibilities or societal reactions, so that different
regimes can be associated with different types of sects and antagonism between them. Parameters can
also change due to the intervention of policing forces, the international community or pacifying groups,
so that our equations can describe a variety of situations. We use utility functions that radicals seek to
optimize by selecting relevant ‘strategies’ as they interact with each other. Using game-theoretic ideas,
we study how societal dynamics unfold depending on the choices made. The insights gained by our
work may be useful in understanding why radical groups behave as they do, why certain archetypal
rivalries persist and may help identify ways to disrupt mounting cycles of violence.
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Table 1. Parameter list for sects i = A,B.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ni total faction population
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λi spontaneous radicalization rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μi spontaneous de-radicalization rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pi indoctrination rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ki attack rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ωi maximum radical activity rate
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. The model
For concreteness, we frame our model in terms of religious extremism, although the discussion that
follows can be readily applied to any political or nationalistic ideology that causes ‘violent’ rivalries. We
consider a total population of individuals that can adhere to belief A or B, and be radical or moderate
within each group. Here, radicals are defined by their willingness to ‘attack’ members of the opposite
group, via direct physical violence, the dissemination of incendiary comments or the desecration of
religious symbols, for example. At time t, the population is thus divided into rA(t) radicals of faith A,
rB(t) radicals of faith B, nA(t) moderates of faith A and nB(t) moderates of faith B. We also assume the
total population for factions A and B to be set at NA and NB, respectively, so that rA(t) + nA(t) = NA
and rB(t) + nB(t) = NB. These conditions can be relaxed, but we use them as a starting point. The entire
population is denoted by N = NA + NB. Given the fixed sect population assumption, we only need to
study the dynamics of the rA and rB radicals.

Let us focus on sect A, and consider radicalization and de-radicalization within this sect. Our first
assumption is that these processes are modulated by a collective ‘sensitivity’ parameter sA: as sA
increases so does radicalization, while de-radicalization decreases. This quantity may be viewed as a
state of alertness, or as the propensity of members of sect A to radicalize; for example, sA will be low in
situations of calm but may increase under hostilities perpetrated by members of sect B.

Radicalization will take two forms: either as a spontaneous process or after personal discussions,
social media or mass indoctrination campaigns that expose an individual to already radicalized ones.
Such pathways to radicalization are well established and have been reported in the sociology, psychology
and political science literature [7,19–22]. On the other hand, de-radicalization is assumed to occur as an
internal process only: we assume there are no active attempts by non-radicals to change the minds of the
radicals. Social science studies report that de-radicalization may be due to ideological disengagement
stemming from the perception of lesser threats, ageing out, or possible exit programmes crafted by non-
governmental or international organizations [23,24]. Since age-dependency or third-party interventions
are outside the scope of this work, for simplicity we assume de-radicalization to depend solely on the
sensitivity level of the population. We can thus write an expression for the time evolution of the number
of radicals rA as follows:

ṙA = nA

[
λAsA + pAsA

rA

NA

]
− μAf (sA)rA. (2.1)

The first term on the right-hand side of equation (2.1) represents spontaneous radicalization described
by the intrinsic rate λA and modulated by the sensitivity parameter sA. The second term represents
radicalization in response to indoctrination from the rA/NA fraction of active radicals at rate pA, and
similarly modulated by sA. Finally, we assume de-radicalization occurs at an intrinsic rate μA modulated
by a sensitivity-dependent function f (sA) that decreases with sA so that a highly sensitive population is
more unlikely to de-radicalize. The dynamics of the rB(t) radicals are described in the same way, with all
labels A replaced with B in equation (2.1), and where rates λB, pB, μB and the population NB, may differ
from their A counterparts. Our complete model thus consists of two coupled equations for rA, rB where
the two factions may or may not be symmetrically balanced in their strengths and responses.

Note that we have not yet specified the form of sA. If this quantity is selected to be a numerical value
independent of the dynamics of sect B, the two factions are effectively uncoupled and the dynamics
of rA(t) are completely determined by equation (2.1) once the initial condition and the form for f (sA)
are set. Interactions arise only when the sensitivity of sect A depends on the actions of sect B members
and/or vice versa. Within the scenario of a functional dependence of sA on rB and/or of sB on rA, we
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assume that members of a given sect adjust their responses to indoctrination and their spontaneous
radicalization and de-radicalization depending on the actions taken by the other sect. For example, we
can model ‘attacks’ from one sect to the other and assume that the sensitivity of the victim sect will
depend on the intensity or frequency of these attacks. In the next sections we will look first at the simple
case of non-interacting sects, where sA is a numerical value independent of sect B, and the more complex
case of interacting sects, where the notion of attacks will be quantified and functional forms for sA(rB)
and sB(rA) will be introduced. We will determine steady states, stability and bifurcations. Furthermore,
we will identify parameters that can be adjusted either by radicals or by external forces, such as the
intensity of indoctrination or the frequency of attacks, and study how changes in these parameters affect
the dynamics and societal outcomes through the aid of objective functions to be optimized.

3. Non-interacting sects
As a starting point and benchmark for more complex scenarios, we first consider non-interacting sects
where sA is a constant on [0, 1]. Here, the radicalization of sect A individuals does not depend on the
dynamics or actions of sect B members. This is plausible if the latter are incapacitated or choose not to
engage with sect A members. For mathematical simplicity we set

f (sA) = 1 − sA. (3.1)

Under these assumptions, the model in equation (2.1) reduces to a simple ODE for rA:

ṙA = (NA − rA)
[
λAsA + pAsA

rA

NA

]
− μA(1 − sA)rA. (3.2)

Note that the choice sA = 0 leads to a vanishing radical population rA(t → ∞) = 0, while setting sA = 1
leads to a society saturated with radicals rA(t → ∞) = NA regardless of initial conditions, assuming
λA and μA are non-zero; we will assume λA, μA > 0 from here onward, unless specifically noted
otherwise. For 0 < sA < 1, we non-dimensionalize equation (3.2) by rescaling time via t′ ≡ μA(1 − sA)t
and by considering fractional populations so that r′

ANA ≡ rA and n′
ANA ≡ nA. We also redefine p′

A ≡
pAsA/μA(1 − sA), λ′

A ≡ λAsA/μA(1 − sA). Using these substitutions and dropping prime indices and sect
labels for simplicity, equation (3.2) can be rewritten as:

ṙ = −pr2 + gr + λ, (3.3)

where

g = p − λ − 1. (3.4)

The above equation can be solved exactly, as it is in the form of a Riccati equation. Specifically, if at
t = 0 there are r(0) = δ radicals, equation (3.3) has solution

r(t) = r1(δ − r2) − r2(δ − r1) e−p(r1−r2)t

(δ − r2) − (δ − r1) e−p(r1−r2)t
, (3.5)

where

r1,2 =
g ±

√
g2 + 4λp

2p
(3.6)

and the labels 1, 2 apply to the plus and minus signs, respectively. Note that, in order to be physically
acceptable, the above solutions must satisfy the constraint 0 ≤ r ≤ 1, since the renormalized r is now
a fractional population. It can be shown that for λ, p > 0, r1,2 are such that 0 < r1 < 1 and r2 < 0. Since
r1 > r2, at steady state the exponential terms in equation (3.5) vanish and r(t → ∞) = r1, independently
of the initial condition δ. We thus find that a radical population will always emerge, even if δ = 0, as
long as λ, p > 0. For p = 0, at steady state r(t → ∞) = λ/(λ + 1), while for λ = 0, r(t → ∞) = r1 = 1 − 1/p
if p > 1, else r(t → ∞) = 0. Therefore, the only case where no radicalization occurs is for λ = 0, p ≤ 1. In
dimensional units, this is λ = 0, and ps < μ(1 − s); that is, radicals will always emerge unless there is no
spontaneous radicalization and de-radicalization is always stronger than radical persuasion. In this case,
the presence of radicals is short-lived at best. For all other dimensional parameters λ, p, μ, radical groups
will emerge and persist. Furthermore, since r1 increases with p, the number of radicals at steady state
will also increase with p. Hence, for non interacting sects, if radicals aim to increase their ranks, the best
‘strategy’ is to choose the largest indoctrination rate p possible.
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4. Interacting sects
We now consider the case where sects interact with each other through interdependent sensitivity
functions sA(t) and sB(t). As described above, we assume that the propensity of sect A members to
radicalize depends on acts of aggression coming from sect B, such as military raids, the dissemination of
incendiary materials, or the desecration of religious symbols. We assume these ‘attacks’ are performed or
instigated solely by the rB(t) radicals within sect B. Our basic modelling assumption is that the higher the
incidence of these aggressions from the opposite faction, the higher the propensity for individuals to self-
radicalize and to respond to internal fanatic propaganda. In this context, sensitivity is an ‘external’ drive,
as it modulates radicalization within a group in response to the actions or characteristics of the other.

To formalize our mathematical definition of sA(t), we introduce kB, the rate of radical attacks against
sect A performed by each radical member of sect B, so that sA(t) is proportional to kBrB(t). We assume
that due to finite preparation times, logistic difficulties, and/or limited resources, kB cannot exceed a
maximum threshold ωB. Correspondingly, sect A radicals attack sect B members at rate kA per radical
with an upper limit set at ωA. To complete our definition of sA(t), we posit that the effects on sA(t) of
attacks by sect B are mitigated by the attack capabilities of sect A itself, expressed as the entire population
NA being mobilized and counter-attacking at maximal rate ωA. We thus assume sA(t) is also inversely
proportional to ωANA and write

sA(t) ≡ kBrB(t)
ωANA

= ωBNB

ωANA

kBrB(t)
ωBNB

≡ x
kBrB(t)
ωBNB

. (4.1)

As expressed by equation (4.1), the externally driven sensitivity sA(t) is given as the ratio between
the number of attacks per unit time the rB(t) radicals actually impart on sect A members, and the
hypothetical maximal attack rate members of sect A could inflict on members of sect B in retaliation
or in defence. In this context, sensitivity is a measure of the relative aggression capabilities of the two
groups. The last product on the right-hand side of equation (4.1) recasts sA(t) in a slightly different
manner: the dimensionless term kBrB(t)/ωBNB is the ratio between the total attack rate of sect B members
and their own maximal aggression rate given by ωBNB. It is a term controlled solely by the dynamics
and parameters of members of sect B. The dimensionless quantity x ≡ ωBNB/ωANA measures the
aggressive capability of sect B per unit time with respect to sect A. It is the ratio between the respective
maximal aggression rates of the two sects if attacks were carried out by their entire populations.
This representation of sA(t) will prove to be useful in analysing our model and will provide a better
interpretative context in the following sections.

So far the model contains several rates to describe the actions taken per unit time by members of a
given sect: for sect A these are λA, μA, pA and kA, representing, respectively, the intrinsic radicalization
and de-radicalization rates and the indoctrination and attack rates; similarly for sect B. We now assume
that the first two, λA and μA, are inherent to sect A, and cannot be changed at will either by radicals
or non-radicals. At most, they can be modulated by the sensitivity as described earlier. On the other
hand, we assume that radicals can select their attack and indoctrination rates kA and pA to optimize
their intent, which may be, for example, to maximize the number of radicals or to inflict the highest
damage to members of the opposite sect. Resource constraints, however, pose a limit on these activities,
so that if indoctrination is favoured, attacking becomes less of a priority and vice versa. In this respect
ωA represents the total amount of resources available per unit time to radicals of sect A to carry out their
activities. We thus pose

kA + pA ≤ ωA, (4.2)

so that the maximal attack rate kA = ωA can be attained only if there is no active indoctrination and
pA = 0. In principle, equation (4.2) could include a relative weight to measure how resource expenditure
for indoctrination compares to that for attack activities. This would allow us to explore cases where
indoctrination may be more or less resource intensive than attacking the opposite sect. However, it
can be shown that once introduced, this relative weight can be subsumed in the non-dimensional
parametrization that we illustrate later, so we omit it for simplicity. We shall refer to the combination of
(pA, kA) values under the constraint in equation (4.2) as the ‘strategy’ of sect A, and similarly for sect B.

The definition for sB(t) is the same as equation (4.1) with the A and B subscripts switched, so that

sB(t) ≡ kArA(t)
ωBNB

= 1
x

kArA(t)
ωANA

. (4.3)
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For simplicity and without loss of generality, we will later assume that sect A has a maximal

aggression rate ωANA that is at least as large as that of sect B, so that

x = ωBNB

ωANA
≤ 1. (4.4)

This assumption also implies that the stronger sect A is inherently less sensitive to radicalization than
the weaker sect B [25,26]. Indeed, equations (4.1), (4.3) and (4.4) imply that 0 ≤ sA ≤ x while 0 ≤ sB ≤ 1/x.
Similarly, we assume that kB obeys the analogue to equation (4.2), where all A subscripts are switched
to B. We complete our model by proposing a simple form for f (si), for i = A,B,

f (si) = 1 − xsi, (4.5)

which allows f to be decreasing and non-negative, since xsi ≤ 1 for i = A,B. Our model is now completely
specified by equations (2.1), (4.1) and (4.5), and the corresponding equations for sect B, which we now
non-dimensionalize for simplicity. Similarly to above, we define r′

i = ri/Ni for both sects i = A,B and
rescale t by the de-radicalization time scale of sect A so that t′ = μAt. We also define k′

i = ki/ωi, λ′
i = λi/μA,

p′
i = pi/μA, ω′

i = ωi/μA, for i = A,B and μ′
B = μB/μA. Using these definitions, and dropping the prime

symbol for simplicity, we find

ṙA = xkBrB(1 − rA)(λA + pArA) − rA + x2kBrArB (4.6)

and

ṙB = kArA

x
(1 − rB)(λB + pBrB) − μBrB + μBkArBrA, (4.7)

coupled with the dimensionless resource constraint

ki + pi

ωi
≤ 1 for i = A,B. (4.8)

We will refer to equation (4.8) with the strict equal sign as the constraint line.

4.1. Fully symmetric, non-constrained sects
We first consider the case of two completely symmetric sects where all parameters and initial conditions
for the two factions coincide, such that rA(t) = rB(t) = r(t) for all t and x = 1. We can drop all sect subscripts
from our notation in this case and write

ṙ = −pkr(r2 − Br + C), (4.9)

where

B = p − λ + 1
p

and C = 1 − λk
pk

. (4.10)

We first analyse these equations without the constraint in equation (4.8); later we will introduce the
constraint and determine regions of validity. Equation (4.9) allows for the ‘pacified’ solution r = 0, where
no radicals arise in either sect. Alternatively, radical populations will be described by the roots of the
quadratic term in equation (4.9), where solutions must satisfy the condition 0 ≤ r ≤ 1, as r is a fractional
population. Given an initial radicalization r(t = 0) = δ, exact solutions are given by

r�12
(r − r1)r2

(r − r2)r1
= δ�12

(δ − r1)r2

(δ − r2)r1
e−pkCt�12 , (4.11)

where

r1,2 = B ±
√

B2 − 4C
2

, (4.12)

�12 ≡ r1 − r2 =
√

B2 − 4C. (4.13)

We have labelled r1,2 so that the plus sign corresponds to r1 and the minus sign to r2. Together
with r = 0, r = r1,2 are the zeros of the right-hand side of equation (4.9), representing possible steady
states of the system. Instead of analysing equation (4.11), we consider the stability of the possible steady
state solutions arising from equation (4.9). In particular, whether the r = 0, r = r1,2 solutions are physical
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and/or stable at steady state depends on the values of the chosen parameters. A straightforward analysis
allows us to distinguish four regimes in terms of k and p. Let

K(p) = 4p
p2 + (1 − λ)2 + 2p(1 + λ)

. (4.14)

We find

— If k <K(p), then r1,2 are complex and unphysical, leaving r = 0 as the only steady state. Here,
sects are not aggressive enough to entice a stable radical population. Radicalization efforts fail
and at equilibrium the unique stable state is r = 0.

— If K(p) ≤ k < 1/λ and p < |1 − λ| then r1,2 are real, but are not in the range of physically allowed
values. Here, attacks between sects are vigorous, enhancing both spontaneous and persuasive
radicalization on both sides, and decreasing de-radicalization. However, attacks alone are not
sufficient to maintain radicalization, and indoctrination levels are too low to compensate. At
steady state, r = 0 for all initial conditions.

— If K(p) ≤ k < 1/λ and p ≥ |1 − λ| then r1,2 are real, and are both in the range of physically
allowed values. Attacks between sects are vigorous, enhancing both spontaneous and persuasive
radicalization on both sides, and indoctrination is significant. De-radicalization efforts may or
may not be enough to halt the process and the presence of radical factions at steady state will
depend on initial conditions. For small enough radical factions 0 ≤ δ < r2, radicalization is not
sustainable as t → ∞ and r(t → ∞) = req = 0. A finite steady state radical population will arise at
r(t → ∞) = req = r1 only if initial radicalization is large enough, with r2 < δ ≤ 1.

— If k ≥ 1/λ, both r1,2 roots are real with r2 < 0 and 0 < r1 ≤ 1. Sects are aggressively attacking each
other and are highly prone to radicalization, so that regardless of the indoctrination activity p
of the already radicalized fraction, a radical population will emerge and persist. Note that if we
impose k ≤ 1, this scenario can arise only if λ ≥ 1, which in dimensional form is λ ≥ μ; i.e. the
intrinsic rate of spontaneous radicalization must be higher than that of de-radicalization. The
unique stable state for the fraction of radicals is r(t → ∞) = req = r1 for all initial conditions.

The same behavioural regimes can be identified by working directly with equation (4.11) and by
considering different long time trends as a function of C, r1,2. We can thus conclude that an active
radical population will persist for t → ∞ if the radicals are either (i) very violent, in which case
indoctrination levels are immaterial; or (ii) moderately violent while employing enough propaganda.
All other conditions lead to no radical populations at steady state.

4.2. Fully symmetric, constrained sects
We now consider the two fully symmetric sects being subjected to limited resources and analyse the
above results under the (p, k) constraint in equation (4.8). We illustrate our results in figure 1 and consider
two cases: λ > 1 in figure 1a and λ ≤ 1 in figure 1b. In both cases, the constraint line k = 1 − p/ω given by
equation (4.8) is depicted as a red dashed line, while the solid black curve is the function k =K(p) given
by equation (4.14) for p ≥ |1 − λ| and min(1, 1/λ) for p < |1 − λ|.

For λ > 1, the curve k =K(p) attains its maximum at (λ − 1, 1/λ), and the black curve of figure 1a
intersects the constraint line k = 1 − p/ω only once, at p = pmax. For ω ≥ λ this intersection occurs at pmax ≥
λ − 1, vice versa for ω < λ at pmax < λ − 1. In figure 1a, we assume ω > λ. We can now use the results from
§4.1 to determine behaviours in (p, k) space subject to the constraint. For 1/λ ≤ k ≤ 1 − p/ω radical groups
will emerge at steady state, regardless of initial conditions. This region is blue-shaded in figure 1a. For
K(p) ≤ k ≤ min(1/λ, 1 − p/ω), radical groups will also persist at steady state, but only if initial conditions
are chosen so that r(t = 0) = δ with r2 < δ ≤ 1 with r2 defined in equation (3.6). This region is red-shaded
in figure 1a and exists only if the k =K(p) curve and the k = 1 − p/ω constraint intersect for values of
pmax ≥ λ − 1, that is for ω > λ as shown in figure 1a. Thus, if the initial radical population is large enough,
a sustained radical population will arise at steady state for all values of 0 ≤ p ≤ pmax, as depicted by
the union of the blue- and red-shaded areas in figure 1a. Our analysis leads to the conclusion that for
symmetric sects characterized by large intrinsic radicalization rates λ and subject to the constraint in
equation (4.8), non-zero radical populations may persist at steady state if p ≤ pmax and reciprocal attacks
as determined by k are large enough. For k > 1/λ and p < ω(1 − k), radical sects will emerge regardless of
initial conditions; for k ≤ 1/λ, only if initial conditions are favourable. If indoctrination rates p > pmax are
too large at the expense of k, no sustained levels of radicals may emerge.
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Figure 1. General feasible strategies (p, k) (shaded regions) that lead to sustained radical populations for (a)λ > 1 and (b)λ < 1. Blue
shading represents regions where any initial condition will lead to sustained radicalization; red shading indicates regions where only
large enough initial radical populations lead to sustained radicalization. In both panels, the dashed red line is the constraint line defined
by equation (4.8), while the solid black curve is K(p) for p≥ |1 − λ| and the lesser of 1 and 1/λ for p< |1 − λ|. Note that in scenario
(a), there are always feasible strategies that lead to a non-zero radical population, namely those in which k > 1/λ, regardless ofω. In
scenario (b), feasible strategies arise only ifω is sufficiently large for a givenλ.

For λ ≤ 1, the curve k =K(p) attains its maximum at (1 − λ, 1). The black curve in figure 1b defined
as K(p) for p ≥ 1 − λ and as min(1, 1/λ) for p < 1 − λ, will intersect the non-dimensional constraint line
k = 1 − p/ω at (p, k) = (0, 1). However, this intersection will lead to vanishing radical populations at
steady state, as discussed in the previous sub-section. For values of p > 1 − λ the curve k =K(p) will
cross the constraint line k = 1 − p/ω either zero, one or two times, depending on the magnitude of ω

for a given λ. If there are no intersections, following the results derived in the previous sub-section,
no radical populations will persist at steady state, regardless of initial conditions, since k <K(p) for all
values of (p, k) subject to the constraint in equation (4.8). If there are two intersections, which we label
(pmin, kmin) and (pmax, kmax), all values of (p, k) chosen between them such that K(p) ≤ k ≤ 1 − p/ω lead to
finite radical populations at steady state, but only under the proper initial conditions. This scenario is
shown in figure 1b, where the red-shaded region contains all (p, k) values associated with the emergence
of two intersections. The transition between the zero intersection and two intersection cases occurs when
the chosen ω and λ values lead to a single intersection between k =K(p) and k = 1 − p/ω. To find these
values we impose K(p) = 1 − p/ω and K′(p) = −1/ω. These equations yield a critical value ωc(λ) such
that for ω ≥ ωc(λ) two intersections may be found, while for ω < ωc(λ) none arise. Importantly, ωc(λ) is
an increasing function of λ, and ωc(0) = 4 while ωc(1) = (11 + 5

√
5)/2. Thus, if ω < 4, there will never be

any intersections between the constraint line and k =K(p) for any λ < 1 and no radical population can be
sustained at steady state. On the other hand, values of ω ≥ (11 + 5

√
5)/2 will result in two intersections

for any λ < 1 so that long-term radical populations may persist given a large enough initial radical
population and proper (p, k) choices. We can thus conclude that for moderate self-radicalization rates λ,
a large radical population will be sustained only if enough resources ω are available, if there is an initial,
nucleating group of enough radicals, and if indoctrination and attack rates are judiciously balanced.

We now turn to identifying the optimal strategy (p, k) that radical groups should adopt. So far, we have
tacitly assumed that the goal of the two radical factions is to simply perpetuate their existence at steady
state so that any (p, k) points within the shaded regions of figure 1a and b could be employed, conditioned
on starting with the proper initial conditions. We denote those shaded areas as feasible sets. However,
radical groups may have much more nuanced goals. Let us now introduce an objective function that
radical populations seek to optimize, by identifying the best (p, k) values. We propose a relatively simple
objective function, given in dimensionless parameters for radicals in sect A by

UA(pA, kA; pB, kB) = req
A − NB

NA
kBreq

B . (4.15)

Similarly, UB(pB, kB; pA, kA) for radicals of sect B is given by exchanging the labels A and B in
equation (4.15). The above choice for UA implies that radicals seek to expand their ranks, through the req

A
term, while minimizing attacks from their rival group, represented by kBreq

B and modulated by the ratio
of their respective populations NB/NA. For example, if sect B has a larger population that sect A, the
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objective of sect A radicals is skewed towards preventing attacks, while if sect B has a lower population
that sect A, the objective of the sect A radicals is biased toward maximizing radicalization in sect A.
Because of the interdependent sect dynamics, the two terms in equation (4.15) are related to each other
in a non-trivial way. For example, an increase in the population of sect A radicals will be accompanied
by an increase in the number of attacks against sect B members. This will in turn spur the growth of a
larger radical population within sect B, who will now engage in more hostile activities against sect A. Of
course, this is counter to the objective of sect A radicals. Hence, determining what the optimal (pA, kA)
strategy is, is not necessarily straightforward.

For the symmetric case we are considering in this sub-section, the objective function for both sects
reduces to

U(p, k) = (1 − k)req. (4.16)

Despite its simple form, much can be understood by maximizing equation (4.16). First, we note that,
for a fixed value of k < 1, maximizing U(p, k) over p is equivalent to maximizing req = r1 in equation (4.12)
over p. However, r1 is an increasing function of p for any k < 1, leading the optimal p to be chosen as large
as possible, which is along the constraint line equation (4.8). We can thus recast our optimization problem
in one dimension along the constraint line k = 1 − p/ω, using either p or k as an independent variable; we
choose p for this task. Equation (4.16) can thus be rewritten as:

U(p) = p + 1 − λ

2ω
+

√
p
ω2

(
1

K(p)
− 1

1 − p/ω

)
. (4.17)

At any point within the feasible sets shown in the shaded areas of figure 1a,b, U(p) is well defined.
In order to determine whether a maximum exists, note that U′(p) will diverge at any endpoints of
the feasible sets where the constraint line intersects the k =K(p) curve, due to the square root term.
Additionally, if these endpoints are approached from below (increasing p) the derivative will diverge
to −∞, while if approached from above (decreasing p) the derivative will diverge to +∞. For λ > 1, the
feasible set is 0 ≤ p ≤ pmax. Here, U′(p = 0) = 1 and U′(p → p−

max) = −∞. Since the derivative is continuous
in between these endpoints, there will be at least one value 0 < p∗ < pmax between them where U′(p∗) = 0
and U(p∗) attains a maximum. In this case, the optimal strategy is given by the values (p∗, 1 − p∗/ω)
on the constraint line. Similarly, for λ ≤ 1 since the feasible set (if it exists) lies in a pmin ≤ p ≤ pmax

range, U′(p → p+
min) = +∞ and U′(p → p−

max) = −∞. Once more, due to the continuity of U′(p) between
these endpoints, there will be at least one value pmin < p∗ < pmax for which U′(p∗) is zero and U(p∗) is a
maximum. The end result of this analysis is that, for the objective function proposed in equation (4.16),
the optimal strategy for radicals is not to use the largest feasible p nor the largest feasible k, but
rather intermediate values that use all the resources ω and where enough attacks and propaganda
are employed.

The above arguments for the existence of an optimal strategy on the interior of the feasible set fail if
the initial conditions do not allow the radical population to evolve towards req = r1; for example, if the
optimal (p, k) values determined above fall in the red-shaded domains of the feasible sets, and the initial
conditions are such that r(t = 0) = δ < r2, then at steady state req = 0. For λ > 1, however, radicals can take
the following ‘two step’ approach to maximize their objective function. First, they may select k > 1/λ

and a corresponding p such that this temporary strategy falls within the blue-shaded area of figure 1a.
Since in this regime r(t → ∞) = r1 > r2, once the radical population reaches a larger than r2 threshold,
the strategy can be switched to the optimal one. From figure 1a, it is clear that this temporary strategy
is characterized by a higher k and lower p than the optimal one. Hence, for λ > 1, a radical group that
starts with few members and that wishes to optimize objective function equation (4.15) should utilize
relatively high violence k and low indoctrination p rates; later, as the group approaches its equilibrium
size, it should progress towards more intense indoctrination and less violence. For λ ≤ 1, however, if the
initial size of the radical group δ is smaller than the smallest r2 in the feasible set, no strategies for the
emergence of radical populations at steady state exist.

4.3. Strategy asymmetric sects
We now consider partially symmetric sects with equal intrinsic parameters λ, μ, ω, equal total population
Ni, and equal initial conditions rA(t = 0) = rB(t = 0) = δ. Radical factions, however, are now allowed to
choose their (pi, ki), i =A,B strategies independently of each other, and possibly asymmetrically. We
further assume that the chosen initial conditions lead to a non-zero req at steady state for both groups,
if the overall parameter set allows for a req 
= 0 to emerge. Finally, we assume that the utility function
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of each sect is still given by equation (4.15). The major motivation behind studying this particular case
is to place our model within a game-theoretic scenario, whereby players (radical factions) choose their
strategies independently of each other. By doing so, we can attempt to identify the Nash equilibria (NE)
of the ‘game’, defined as combinations of strategies (pA, kA) and (pB, kB) whereby neither sect can increase
its utility by unilaterally changing to a different strategy. That is, if (pNE

A , kNE
A ) and (pNE

B , kNE
B ) together

represent a Nash equilbrium, then for all other possible strategies (pA, kA), UA(pA, kA; pNE
B , kNE

B ) ≤
UA(pNE

A , kNE
A ; pNE

B , kNE
B ), and the same is true for sect B’s utility.

To determine the Nash equilibria of this game, we first note that equilibrium radicalization levels are
given by the intersections of the two nullclines defined by equations (4.6) and (4.7)

rB = rA

kB[λ + rA(pA + 1 − λ) − pAr2
A]

and rA = rB

kA[λ + rB(pB + 1 − λ) − pBr2
B]

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.18)

where we have kept the distinction (pi, ki) between i = A,B sects.
We begin by considering the possibility of symmetric Nash equilibria whereby the two sects play

the same strategy (pi, ki) = (p, k) for i = A,B, leading to the non-zero equilibrium radical population rA =
rB = req as given by equation (4.12). A necessary, but not sufficient, condition for any Nash equilibria
is that the strategy chosen by each sect leads to a local maximum in its utility function, such that an
infinitesimal unilateral strategy change would not lead to utility increase. Without loss of generality, we
focus on sect A. To determine the effects of unilateral changes in its strategy on UA(pA, kA; pB, kB) we
differentiate equation (4.15) with respect to pA and kA using equation (4.18) where pB and kB are kept
constant. Once the derivatives are taken we calculate them at pA = pB = p and kA = kB = k. We find

∂UA

∂pA
= kr2

1(1 − r1)(1 − k + β)
β(β + 2)

and
∂UA

∂kA
= r1(1 − k − βk)

kβ(β + 2)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.19)

where β is defined as
β = pkr1

√
B2 − 4C, (4.20)

with B, C given in equation (4.10), and r1 in equation (3.6). Note that β ≥ 0 and that since r1 ≤ 1 and k ≤ 1,
∂UA/∂pA ≥ 0; hence, any symmetric Nash equilibria must have maximal p, if all other parameters are
fixed, and lie along the constraint line kA = 1 − pA/ω in equation (4.8). Utilizing the constraint we can
evaluate the total derivative of UA with respect to pA as

dUA

dpA
= ∂UA

∂pA
+ ∂UA

∂kA

dkA

dpA
(4.21)

and, once calculated, express the right-hand side above as a function of pA = p and kA = 1 − p/ω. Using
equation (4.19) we find

dUA

dpA
= 1

2 + β

dU(p)
dp

+ h(p)
2 + β

. (4.22)

Here dU(p)/dp is the derivative of equation (4.17), and h(p) is defined as:

h(p) ≡ (1 − p/ω)r2
1(p)[1 − r1(p)]. (4.23)

Note that in equation (4.23), r1(p) is written only in terms of p due to the constraint in equation (4.8),
and that 0 ≤ h(p) ≤ 1. To find symmetric Nash equilbria in the current context, where we allow
radical factions to independently choose their strategies (pi, 1 − pi/ω) for i = A,B and only later impose
symmetry, we set dUA(pA)/dpA = 0; in the symmetry-enforced case discussed in §4.2, where strategies
are forced to be symmetric throughout the optimization phase, the condition for optimality was to set
dU(p)/dp = 0. The two are related via equation (4.22).

Since dU(p)/dp = 0 at the symmetry-enforced optimum value 0 < p∗ < pmax discussed earlier, and
since h(p∗) > 0, necessarily dUA/dpA > 0 at (p∗, 1 − p∗/ω). We can thus conclude that the optimal strategy
in the symmetry-enforced case, where both radical factions choose strategy (p∗, 1 − p∗/ω), cannot also be
a symmetric Nash equilibrium in the case where the two sects are free to choose their own strategy.
In fact, following the above analysis, we have shown that if the two radical groups were playing the
symmetry-enforced optimum at p∗, each group would be tempted to increase its p, and therefore decrease
its k due to the constraint in equation (4.8). Thus our game theoretic analysis shows that sects that
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Figure 2. Numerically determined Nash equilibria (NE) for i = A,B asymmetric sects whose defining parameters and initial conditions
are the same. All (pi , ki) strategies satisfy the constraint defined by equation (4.8) and may be chosen independently by the two
sects. Dashed black curves represent the symmetry-enforced optimum strategy discussed in §4.2; solid black curves correspond to the
symmetric Nash equilibria; long-dashed blue and dash-dot red curves correspond to the asymmetric Nash equillibria for the two sects.
Note that the latter asymmetric Nash equillibria emerge only for large enough values of λ. (a,c) The Nash equilibria attack rate kNEi for
i = A,B; the corresponding indoctrination ratesmaybederived from the constraintpi = ω(1 − ki). (b,d) The relative equilibrium radical
population reqi for i = A,B. In (a,b)ω = 16 and in (c,d)ω = 160.

carry symmetric intrinsic parameters, but that are free to choose indoctrination and attack strategies
independently of each other, will be less violent than if they were colluding to enforce symmetric strategic
choices.

We may still ask if there exists the possibility of a symmetric Nash equilibrium at p∗ < pNE < pmax,
for which dUA/dpA must vanish so that U′(pNE) = −h(pNE). As discussed in the previous section U′(p)
decreases continuously from 0 to −∞ for p∗ < p < pmax, while −h(p) is continuous and bound between
−1 and 0. Therefore, U′(p) and −h(p) must cross at least once for p∗ < pNE < pmax, thus yielding at least
one potential symmetric Nash equilibrium at pNE. Multiple, symmetric Nash equilibria could arise if the
curves intersected more than once. While the argument above proves that there must exist one or more
symmetric strategies that are at least potentially Nash equilibria, it does not conclusively show that they
are so, as (pNE, 1 − pNE/ω) would have to be global maxima of UA(pA, 1 − pA/ω; pNE, 1 − pNE/ω), as a
function of pA with all other parameters fixed, and not merely local maxima. It also does not address
the potential for Nash equilibria that are asymmetric in strategies, where (pNE

A , kNE
A ) 
= (pNE

B , kNE
B ). To

explore these factors, we turn to numerical investigations. Here, we make the assumption that any Nash
equilibria of the game will occur along the constraint curves of the two sects, as is true for symmetric
Nash equilibria. We further assume that initial conditions always allow for a non-zero equilibrium
radicalization value, if parameters allow for it. We proceed by determining for each radical faction the
best response curve to the other’s strategy, and find the intersections of these best response curves, which
are Nash equilibria. Note that this method provides only pure Nash equilibria, in which each sect plays a
definite strategy, and does not include mixed strategy Nash equilibria that would allow radical factions
to play probabilistic combinations of strategies.

We present our results in figure 2 where the Nash equilibria values for ki and the corresponding values
of req

i are determined as a function of λ for i = A,B. These results, obtained for symmetric sects free to play
their own strategies (pi, ki = 1 − pi/ω), are compared and contrasted with those obtained in §4.2 where
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the (p∗, 1 − p∗/ω) strategies were constrained to be symmetric. We examine the case of small and large
overall resource rates ω = 16 and ω = 160, respectively. As can be seen from all panels of figure 2, and
as predicted, we do find symmetric Nash equilibrium that exhibit higher indoctrination rates pNE, lower
attack rates kNE = 1 − pNE/ω and lower radical population ratios r1(pNE) compared with those evaluated
at the symmetric optimum p∗. In figure 2a,c, we also find that kNE decreases from a finite value as λ → 0
towards zero as λ → ∞. At the same time, figure 2b,c reveal that the symmetric Nash equilibrium r1(pNE)
is an increasing function of λ. Also note that for lower λ values, only the symmetric Nash equilibrium
(pNE, kNE) exists, while higher λ values display an additional single asymmetric Nash equilibrium in
which one sect is extremely violent, with high k values, and the other’s attack rate approaches zero.
Owing to symmetry, which sect plays which role is arbitrary. Note, though, that the very violent sect is
also characterized by a very small radical population, while the moderately violent sect is marked by a
larger radical population, whose numbers may even exceed those found in the symmetric optimal case
p∗. We thus find that for large values of spontaneous radicalization λ, a radical group may achieve a
Nash equilibrium with their rival group either through a small radical faction engaging in very violent
activities, or through a large number of radicals performing only moderately violent aggressive acts
towards the other sect as long as the other sect adopts the alternate role. Finally, we find that higher
resource rates ω lead to lower levels of violence but higher radicalization at the Nash equilibra, as can be
seen by comparing figure 2c,d versus 2a,b.

4.4. Fully asymmetric sects
We now study the dynamics of equations (4.6) and (4.7) for arbitrary parameters. While a full analytical
treatment is infeasible, we can find all equilibrium points by determining the intersections of the
nullclines

rB = rA

xkB[λA + rA(pA + x − λA) − pAr2
A]

rA = xμBrB

kA[λB + rB(pB + μBx − λB) − pBr2
B]

.

Upon substitution and after discarding the trivial solution rA = rB = 0, we find the following quartic
equation for rA

c4r4
A + c3r3

A + c2r2
A + c1rA + c0 = 0 (4.24)

where
c4 = λBp2

A,

c3 = −2λBpA(pA + x − λA) − pA

xkB
(pB + μBx − λB),

c2 = −2λBλApA + λB(pA + x − λA)2

+ 1
xkB

(pB + μBx − λB)(pA + x − λA) − pB

x2k2
B

+ pAμB

kAkB
,

c1 = 2λBλA(pA + x − λA) + λA

xkB
(pB + μBx − λB)

− μB

kAkB
(pA + x − λA),

c0 = λBλ2
A − λAμB

kAkB
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.25)

Equation (4.24) has at most four non-trivial solutions that can be found explicitly using the quartic
formula. Not all of them are physically acceptable since we must impose 0 ≤ ri ≤ 1 for i = A,B. By
constructing a trapping region and applying the Poincaré–Bendixson Theorem [27], we can, however,
find parameters that will guarantee the existence of at least one non-trivial, physically acceptable,
equilibrium point for the two competing sects. The boundary of [0, 1] × [0, 1] in (rA, rB) space almost
works as a trapping region, with the exception of the corner at the origin. To construct our trapping
region, we must then show that the [0, 1] × [0, 1] box from which the origin is excised will still trap
trajectories. In particular, we must show that the vector field along the boundary of our trapping
region points into the trapping region itself so that any trajectory that starts within our trapping region
will never leave it. It is simple to show that if rA = 1 then ṙA < 0 and if rA = 0, rB 
= 0 then ṙA > 0. If
rA = rB = 1, then both ṙA < 0 and ṙB < 0 hold. Similarly, if rA = 0 and rB = 1, then ṙA > 0 and ṙB < 0. Similar
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relationships hold upon exchanging the A,B labels. We now show that for certain parameter values, the
equilibrium at the origin can be made unstable. We linearize equations (4.6) and (4.7) near the origin to
determine its stability. The Jacobian matrix J at (0, 0) is given by

J =
[

−1 xλAkB
λBkA/x −μB

]
(4.26)

and has at least one stable eigendirection, since its trace is negative. The origin will be an unstable saddle
point if the determinant, the product of the eigenvalues, is negative, a condition that is satisfied for
λAλBkAkB > μB. A simple matrix calculation shows that the stable eigendirection lies in the second and
fourth quadrant, out of our trapping region. Hence, the condition λAλBkAkB > μB is enough to guarantee
that trajectories close to the origin in the first quadrant are repelled away from it. Since they are also
trapped in the (0, 1] × (0, 1] region, at least one physically relevant equilibrium must exist. The constraint
λAλBkAkB > μB is the asymmetric analogue to the condition k > 1/λ from §4.1. Specifically, if both attack
and spontaneous radicalization rates are high enough, a non-zero radical population will persist for all
time, regardless of initial condition.

Though completely understanding all facets of the problem for general asymmetric parameters would
be impractical, we can focus on a few key parameters that might shed light on some of the fundamental
behaviours of the system in the general case. In particular, we consider sects that have different levels
of ‘strength’, measured by N (strength in numbers) and ω (strength in resources). Hence, we will
compare and contrast sects with large and small Ni, and large and small ωi, for i = A,B while keeping the
spontaneous radicalization and de-radicalization rates the same, so that λA = λB = λ and μB = 1 in the
dimensionless equations (4.6) and (4.7). We begin by numerically determining the pure Nash equilibria of
the system using the same approach as described above. We select specific parameter values that allowed
for both symmetric and asymmetric Nash equilibria to arise in §4.3: ω = 16 and λ = 10.

First, we explore how the Nash equilibria of the system change when sects have the same resources
ωA = ωB = ω but different sizes NA > NB, so that x < 1 in equation (4.4). Our results are shown in
figure 3a where we plot the Nash equilibria attack rates ki, for i = A,B corresponding to a given size
asymmetry NA/NB − 1 > 0. The corresponding values of pi can be obtained through the constraint line
in equation (4.8). As can be seen from figure 3a if the size asymmetry is small, three separate Nash
equilibria exist: one near the symmetric Nash equilibria (dash-dotted lines), and two near the possible
asymmetric Nash equilibria (dashed and solid lines) discussed previously. For asymmetries approaching
10% in size, however, the Nash equilibria that corresponded to the symmetric case approaches one of the
asymmetric Nash equilibria and they annihilate, leaving only a single pure Nash equilibria in which
the radical faction of the larger sect A is more engaged in violent attacks than radicals from the smaller
sect B. Upon evaluating the corresponding radical populations ri for i = A,B at the Nash equilibria we
find that rA � rB. These results are a direct consequence of the large size asymmetry and the definition
of the utility functions Ui, for i = A,B. The larger sect A will be mostly concerned with maximizing rA,
while the focus of sect B will be to minimize the violence from sect A radicals. Since the only way for
sect B to reduce attacks from A is to decrease rA by minimizing its own attacks, sect B’s optimal strategy
is to choose low kB values, as our numerical Nash equilibria estimates show. On the other hand, rA will
increase with increasing rB, which can be spurred by sect A radicals employing a large attack rate kA.
Our current analysis leads to the conclusion that larger sects are expected to carry a smaller population
of radicals who are very violent, while smaller sects cannot afford extreme levels of violence, as they
would be the target of repeated attacks inflicted by their opponent.

In figure 3b, we explore how the Nash equilibria of the system change when the sects have the same
sizes NA = NB = N but different resource availability ωA > ωB so that in equation (4.4), x < 1. Results
are similar to those described in figure 3a, with the roles of the two sects switched. Large ωA/ωB − 1
asymmetries lead radicals from the weaker group B to display greater violence than those from the more
resourceful sect A; similarly the weaker group is less radicalized than the stronger one. The resource
asymmetry does not directly affect the utility functions the same way the size asymmetry did, but does
play a role through the resource constraint (4.8). A relatively large ωA allows for larger indoctrination
pA, which will lead to an increase in rA, as desired in the utility function, and to a decrease in kA due to
equation (4.8).

4.5. Optimal control for competing sects
We have thus far ignored a critical aspect of the formation and stabilization of radical factions.
Specifically, our model does not include a sect’s ability to organize or to optimize a strategy in
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Figure 3. Numerically determined Nash equilibria (NE) for asymmetric sects whose defining parameters and initial conditions are the
same with the exception of either their sizes NA > NB (a) or their resources ωA > ωB (b). All (pi , ki) strategies satisfy the constraint
defined by equation (4.8). The blue curves correspond to the (numerically or resource-wise) weaker sect B and the red curves to the
stronger sect A. The solid, dashed and dash-dotted lines indicate three distinct (kA, kB) equilibria pairs; for instance the solid red and solid
blue curves together describe the most asymmetric outcome. Parameters are set at λ = 10, and ωA = ωB = ω = 16 in (a); and at
λ = 10,ωB = 16 in (b). Note that since NA and NB always appear as a ratio in equation (4.15) and in the definition of x, we do not need
to explicitly set their numerical values in (b) where NA = NB.

response to an evolving situation and then share this strategy with its members. However, the ability
to quickly disseminate strategic decisions to a group’s constituency is essential for radical extremists to
establish power. Many revolutions arose from student groups where a large body of similarly idealistic
and disillusioned people could rapidly circulate ideas through physical or virtual proximity, such as
in the case of the 1979 Iran Revolution, or the formation of the Taliban in Afghanistan in the late
1970s [28]. As a more modern example, the Islamic State in Syria and Iraq has used social media to
effectively spread their radical agenda [22]. Different groups may greatly vary in their ability to organize
attacks and disseminate propaganda, even as the parameters used in our model to quantify them
may be the same. We now introduce a small variant in equations (4.6) and (4.7) to include a faction’s
ability to organize and disseminate policy in the dynamic framework for radical faction formation
and consolidation.

We start by assuming that sects A and B have different power structures and organizational
capabilities. To be concrete, we assume that at time t < t0 radical factions of the two sects begin with
random, possibly asymmetric strategies. At time t = t0 sect B radicals unilaterally modify their strategy
to optimize their utility given the current strategy used by sect A radicals; for example, at t = t0,
sect B radicals may increase their attack rate and decrease indoctrination. Sect A radicals will notice
this change, craft an optimal response strategy, coordinate and mobilize their members, and finally
enact their new, optimal policy. We denote the time interval between sect B’s strategy change and
sect A’s response by �A so that sect A’s new strategy is in effect at t1 = t0 + �A. Sect B radicals may
now modify their strategy in return, optimizing their attack and propaganda parameters in response
to the new policies enacted by sect A. We assume changes in sect B’s strategies are enacted at time
t2 = t1 + �B, where �B is the equivalent time for sect B to reorganize after sect A’s strategic changes.
Since decision and implementation times for the two sects may differ we allow �A 
= �B. Sect dynamics
thus unfold according to equations (4.6) and (4.7) under initial values (p0

A, k0
A) selected randomly and

(p0
B, k0

B) determined as the optimal strategy in response to (p0
A, k0

A) at time t = t0. The system continues to
evolve via a cascade of alternating dynamic strategic updating at tj = t0 + [(j + 1)/2]�A + [j/2]�B, where

[.] is the integer part. We can thus define a sequence of epochs τj = tj+1 − tj during which strategies (pj
i, kj

i)
for i = A,B are used.

The framework we have just introduced is related to two well-established game theoretic scenarios.
The first is that of Stackleberg games, where a preset leader and follower are defined: the leader’s
strategy is optimized with respect to how the follower is expected to respond; the follower optimizes
its strategy in response to the leader’s [29]. The second scenario is that of mean field games [30–33]:
partial differential equations used to understand the behaviour of many interacting agents, where each
is seeking to optimize a given function but is also constrained by the choices of others. In general, mean
field games may involve solving both a forward-in-time propagation problem and a backwards-in-time
optimization one.
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Our optimization problem is somewhat of a hybrid between a Stackleberg and a mean field game,

with leaders and followers alternating and behaviours described via the differential equations in
equations (4.6) and (4.7). To complete its formulation, we must introduce the proper objective function
to be maximized. Before doing so, we note that since the τj epochs are finite and the strategies within it
are enacted for a finite time period, an equilibrium state will not be reached within any τj time interval.
Since sect B radicals are the first to optimize their strategy, we introduce the following objective function
for sect B over the τj epoch

Uj
B(pB, kB) =

∫ tj+1

tj

[
ṙB − NA

NB
kAṙA

]
dt, (4.27)

where kB is subject to the constraint in equation (4.8), and where j is even. Specifically, we assume
that sect B radicals have knowledge of sect A’s intrinsic parameters and strategic choices, including
their reaction times �A. At time tj sect B radicals modify their (pB, kB) strategies by maximizing the
integral in equation (4.27) over the future time interval ending at tj+1 = tj + �A, when sect A radicals are
expected to react to such modifications. The values of j in equation (4.27) are even, since the first period
of optimization begins at t0 and ends at t1 = t0 + �A, alternating with sect A in future cycles. A similar

objective function Uj
A can be defined for sect A by interchanging the A,B labels and using j odd as the

first optimization interval for sect A radicals begins at t1 and ends at t2 = t1 + �B.
We first analyse two distinct limits. If �B → ∞ the objective function defined in equation (4.27) will

be dominated by near equilibrium dynamics and Uj
B(pB, kB) can be approximated as

Uj
B ≈

[
req

B − NA

NB
kAreq

A

]
−

[
rB(tj) − NA

NB
kArA(tj)

]
. (4.28)

Optimizing equation (4.27) is thus equivalent to optimizing equation (4.15) as the quantities evaluated
at the lower bound tj are fixed and do not depend on the (pB, kB) values we are optimizing over. Similar

considerations hold for Uj
A if �A → ∞. In the opposite limits �A � 1 and �B � 1 equation (4.27) can be

approximated as

Uj
B ≈ �A

(
ṙB − NA

NB
kAṙA

)
. (4.29)

Since �A is fixed, our task is to maximize the term in parenthesis in equation (4.29) through
equations (4.6) and (4.7) under the constraint defined in equation (4.8). The resulting equation is linear
in kB and pB, so it can be trivially shown that if kA, rA 
= 0 and rB 
= 0, 1, equation (4.29) is maximized by
(kB, pB) = (0, ωB) for all j. If kA = 0, however, all strategy decisions for B are equivalent, and regardless
of which strategy is chosen, rB will exponentially decay to zero. Similarly, we can show that under the
same conditions described above for sect B, sect A radicals will follow an analogous updating strategy
(kA, pA) = (0, ωA). As a result, for short update times, we expect both sects to very quickly fix their
strategies to display no violence. The corresponding propaganda values will set at arbitrary values. In
this case, there is no dynamic strategy updating and eventually the two radical groups disappear. Note
that here our game defines a classic Prisoner’s Dilemma: individually, each i = A,B sect maximizes its
utility by selecting ki = 0, but if both sects choose the no attack strategy, the outcome is less optimal for
both than if they had chosen ki 
= 0.

Intermediate values of �i for i = A,B yield intricate dynamics as can be seen in figures 4–7. In these
figures, all optimizations were performed using a grid search with typically 100 points along the (pi, ki)
axes for i = A,B, except where otherwise indicated. Thus, at each epoch τj, radical factions may select
their new strategy from a space of 100 × 100 (pi, ki) possible configurations subject to the constraint in
equation (4.8). We select t0 = 0 and assume that the initial strategy for sect A radicals is set at (p0, k0) =
(0.25, 0.25) unless otherwise specified.

In figure 4, we show the results of our alternating optimization process for �i = 1 and for several sets
of symmetric initial conditions r0

i = 0.3, 0.4, 0.6 for i = A,B. All other parameters are kept the same and

are explicitly given in the figure caption. In figure 4a–c, we plot the optimal values of (pj
i, kj

i) over each
τj epoch. As can be seen, one sect will select higher indoctrination, the other higher violence depending
on the initial conditions and in ways that are not easily predictable. The two sects selecting opposite
strategic choices is a general trend that persists for other initial conditions and parameters not shown
here, similar to the asymmetric Nash equilibria discussed in §4.4. It is interesting to note that while we do
not impose that the (pi, ki) strategies must lie on the constraint line defined by equation (4.8), the radical
factions will typically maximize their utility functions by settling on the constraint line. Indeed, apart

from a few initial time epochs τj, the constraint kj
i + pj

i/ωi = 1 is satisfied throughout the optimization
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Figure 4. Time-dependent optimal strategies and radical population dynamics for asymmetric sects whose defining parameters and
initial radical population sizes are the same. Initial conditions are set to r0i = 0.3 in (a,d), to r0i = 0.4 in (b,e) and to r0i = 0.6 in (c,f ) for
i = A,B. Non-dimensional parameters are fixed at�i = μB = 1, λi = 3, Ni = 1000, ωi = 1 for i = A,B; initial strategic conditions
are set as k0A = 0.25, p0A = 0.25 in all panels. (a–c) Optimal strategies (pji , k

j
i ) for i = A,B evolving over the τj time epochs. Circles

represent strategic changes. The blue coloured B sect is the first to optimize its strategy at time t0. For all parameter choices displayed
here, one sect tends to displaymore violence and less indoctrination than the other. (d–f) Resulting (rjA, r

j
B) phase plane dynamics. Initial

conditions are marked with a blue circle; endpoints with a black square. The solid blue line refers to a sect B update over a time period
�A, the dashed red curve corresponds to a sect A update over a time period�B. The inset magnifies the phase diagram in the later
stages of the optimization process as the system approaches the black square endpoint. In (a,d) and (b,e), we used a finer grid for the
optimization search (200 points) than in (c,f ) (100 points). The size of the corresponding limit cycles in the three insets does not seem to
be affected by the finer or coarser grid sizes used during the optimization.

process for all j and for i = A,B. In figure 4d–f, we follow the dynamics of the radical populations and
note that the system will evolve towards final values that depend dramatically on initial conditions.
In particular, by comparing figure 4a–c and 4d–f, we note that sects with a larger radical faction are
associated with lower levels of violence and vice versa. We find that this too is a general, robust trend
that persists over initial conditions and parameters choices, again falling in line with what was observed
in §4.4. Finally, one common feature of the long time dynamics observed in all panels of the lower
row of figure 4 is a push–pull trend between the two sects that leads to limit cycles, as can be seen
in the insets. The exact size of these limit cycles may depend on our coarse optimization routine. To
examine this possibility we allowed different grid sizes while searching for the optimal strategies. In
particular, the grid size used in figure 4a,d and 4b,c is twice as large (200 points) as that used in 4c,f
(100 points). We notice that the typical width of the limit cycles in all three panels are comparable,
indicating that the grid discretization plays a minor role in the emergence of the limit cycles shown
in figure 4.

To study how the symmetric organizational time scales �i affect sect dynamics we plot the optimal

(kj
i, pj

i) for various �i values for i = A,B in figure 5. In particular, in figure 5a,c, we set �i = 0.1 while
in figure 5b,d �i = 10. Initial conditions are fixed at r0

i = 0.4 for i = A,B. The resulting curves should
be compared with the ones displayed in the central panels of figure 4 for which �i = 1 with all other
parameters and initial conditions the same as in figure 5. Figure 5b,d confirm that strategic choices are
dominated by near equilibrium behaviour for very large �i values, while figure 5a,c show that very small
�i yield ki ≈ 0 for both groups, as anticipated above. Note that although in figure 5a, we stop at t = 1 and
the corresponding endpoint in figure 5c is (rA, rB) = (0.15, 0.19) upon letting t → ∞ asymptotically ri → 0
for i = A,B.
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Figure 5. Time-dependent optimal strategies and radical population dynamics for asymmetric sects whose defining parameters and
initial radical population sizes are the same. Organizational times are set at �i = 0.1 in (a,c) and at �i = 10 in (b,d) for i = A,B.
Initial conditions are chosen as r0i = 0.4. Other non-dimensional parameters and initial strategic conditions are set as in figure 4.
(a,b) optimal (pji , k

j
i ) strategies evolving over the τj time epochs. The notation is the same as in figure 4. (c,d) Resulting (r

j
A, r

j
B)

phase plane dynamics. Figure 4b,e may be used to compare and contrast the above plots with the intermediate organizational
time�i = 1.

In figure 6, we explore how asymmetries in size Ni or resources ωi between the i = A,B sects affect
the optimization dynamics, similar to our exploration of these effects with regard to Nash equilibria.
In figure 6a,c, we set NB < NA and ωA = ωB, while in figure 6b,d, we fix ωB < ωA and NA = NB. As in
the Nash equilibrium case, the more populous sect displays greater levels of violence but a smaller
percentage of radicalized members, while the opposite is true for the sect with greater resources.

The effects of radical factions with different organizational times are explored in figure 7 where �A 
=
�B, and where different values for (p0

A, k0
A) are selected. We set ωi = 1 for i = A,B and do not require initial

strategies to fall on the constraint line defined by equation (4.8). In figure 7a,c,e, �A = 4, �B = 2, while
in figure 7b,d,f, �A = 2, �B = 4. For each of these choices, we use two sets of initial strategies (p0

A, k0
A) =

(0.25, 0.25) in figure 7a,b, or (0, 1) in figure 7c,d. These choices yield four sets of optimal (pj
i, kj

i) trajectories
for i = A,B over various τj epochs. We find that the initial strategy chosen by sect A radicals highly affects

the dynamics. For (p0
A, k0

A) = (0.25, 0.25), sect B radicals select highly aggressive strategies with kj
B  1

and pj
B  0 for large enough j, regardless of the reorganizational times �i for i = A,B. Sect A radicals on

the other hand select high indoctrination rates pj
A, while their kj

A attack rates hover around the initial
value k0

A = 0.25. Vice versa, initial strategies (p0
A, k0

A) = (0, 1) lead to sect B radicals opting for a mixture

of indoctrination and attack rates with (pj
B, kj

B)  (0.8, 0.2), while sect A’s strategy remains one of extreme
violence. Once more, this is true regardless of �i for i = A,B. The time delay asymmetries, however, do
affect the oscillatory nature of the optimization process, as can be seen from comparing figure 7a,b and
especially figure 7c,d.
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Figure 6. Time-dependent optimal strategies and radical population dynamics for sects whose initial radical population sizes and
defining parameters are the same, with the exception of their sizes Ni (a,c) or their resource availabilityωi (b,d). (a,b) optimal (p

j
i , k

j
i )

strategies over several time epochs τj ; (c,d) resulting (r
j
A, r

j
B) phase plane dynamics. In all panels,�i = μB = 1,λi = 3, and (p0A, k

0
A)=

(0.25ωA, 0.25). In (a,c), differential sect sizes are NA = 1000 and NB = 100; available resources are equal and set atωi = 1 for i = A,B.
In (b,d), sect sizes are the same at Ni = 1000 for i = A,B and differential resources are set atωA = 160 andωB = 32. The notation is
the same as in figure 4. The inset magnifies the phase diagram in the later stages of the optimization process, as the system approaches
the black square endpoint.

In figure 7e, we follow the (rj
A, rj

B) trajectories corresponding to figure 7a,c over several time epochs τj.

Similarly, figure 7f shows the (rj
A, rj

B) dynamics corresponding to figure 7b,d. Initial radical population
sizes are set at (r0

A, r0
B) = (0.7, 0.7) and are denoted by a blue circle in all cases. Black squares indicate the

ending points of the various trajectories. In figure 7e, the path that veers towards the right and proceeds
to define a limit cycle is characterized by (p0

A, k0
A) = (0.25, 0.25), corresponding to figure 7a; the one that

veers towards the left is associated with (p0
A, k0

A) = (0, 1) and corresponds to figure 7c. As seen in the
Nash equilibrium case, the sect choosing more violence is less radicalized than the sect choosing more
propaganda, in both cases. We find similar behaviour in figure 7f. Here the trajectory that veers to the
right corresponds to (p0

A, k0
A) = (0.25, 0.25) and to figure 7b; the one that veers towards the left is associated

with (p0
A, k0

A) = (0, 1) and to figure 7d.
Although we have only shown a few characteristic cases, solutions arising from the alternating

optimization process typically converge to a Nash equilibrium or to a limit cycle around a Nash
equilibrium; the qualitative features of these solutions generally match the behaviour found from
identifying the Nash equilibria as described in §4.4. We can conclude that whether a repeated and
alternating, or a simultaneous Nash equilibrium process is used to determine optimal behaviour, sects
with smaller radical fractions will typically attack their opponents at higher rates, while sects with larger
radical factions prefer a split strategy characterized by stronger indoctrination.
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Figure 7. Time-dependent optimal strategies and radical population dynamics for asymmetric sects whose initial radical population
sizes and defining parameters are the same, with the exception of their organizational times �i . In all panels, parameters are
μB = 1, λi = 3, Ni = 1000, ωi = 1 for i = A,B and initial conditions are set as r0A = r0B = 0.7. (a–d) Optimal (pji , k

j
i ) strategies

over several time epochs τj . In (a) (p0A, k
0
A)= (0.25, 0.25) and �A = 4,�B = 2; in (b) (p0A, k

0
A)= (0.25, 0.25) and �A = 2,�B =

4; in (c) (p0A, k
0
A)= (0, 1) and �A = 4,�B = 2; in (d) (p0A, k

0
A)= (0, 1) and �A = 2,�B = 4. (e,f ) Each panel traces two distinct

trajectories corresponding to different initial strategies for sect A. Panel (e) contains the two (rjA, r
j
B) trajectories corresponding to the

(pji , k
j
i ) optimal strategies shown in panels (a) and (c), both characterized by �A = 4, �B = 2. The trajectory that veers from the

initial point towards the right corresponds to (k0A, p
0
A)= (0.25, 0.25) and to (a); the one that veers towards the left to (k0A, p

0
A)= (0, 1)

and to (c). Similarly, the trajectories in (f ) are characterized by �A = 2, �B = 4. Here, the trajectory that veers from the initial
point towards the right corresponds to (k0A, p

0
A)= (0.25, 0.25) and to (b); the one that veers towards the left to (k0A, p

0
A)= (0, 1)

and to (d).
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5. Conclusion
In this work, we studied the radicalization of two rival sects, each characterized by moderate and extreme
factions. We included spontaneous radicalization and de-radicalization, as well as active indoctrination
and the perpetration of violent attacks towards the other sect. Actions taken by each group are modulated
by a sensitivity factor that may or may not depend on the actions taken by the opposite one. Using
a set of coupled ODEs, we analysed non-interacting and interacting but symmetric sects, outlined
behavioural trends and, where possible, derived analytical solutions. A game theoretical approach was
then introduced, whereby all parameters are fixed except for internal indoctrination and external attack
rates. These are the ‘strategies’ that radical factions of each sect adjust to optimize a given utility function
meant to increase their own ranks and decrease rival attacks. Indoctrination and attack rates are also
subject to a constraint limiting the total available resources available so that one activity may be favoured
only at the expense of the other. We analysed the game in terms of Nash equilibria as well as through a
simple iterative process that included possibly different response times.

One of our main findings is that, unless very high rates of violence are employed, small groups of
radicals in overall moderate sect populations cannot be sustained over long times. Eventually, radicals
will become less extreme and the entire sect will consist of moderates. Our results may thus offer some
perspective on the mechanisms that lead radical groups who tend to employ greater violence in their
early days, when they are still numerically small, to transition towards less violent methods, such as
indoctrination, later on, as they mature. We also find that sects whose non-strategic parameters are
completely symmetric allow for Nash equilibria that are not symmetric in their indoctrination and attack
rate strategies. Of the two competing sects, our results show that the radical faction of one becomes less
numerous but very violent, while the other sect is characterized by a large number of fanatics who are
less violent.

This dichotomy between sect size and level of violence will persist if we relax the condition of
symmetric non-strategic parameters and also allow the two sects to differ in total population size. In
this case, the more populous sect will display a smaller percentage of very violent radicals than the less
populous one. Why does this happen? If radicals from the less populous sect chose to use high levels
of violence themselves, they would be subject to too many retaliatory attacks from their much larger
opponent, so their best strategy is to favour internal propaganda over direct attacks of their rivals. On the
other hand, radicals of the more populous sect are constantly seeking ways to increase their ranks among
moderates of their own sect. For them, increasing the level of violence against the less numerous sect is a
way to incense moderates and spur them towards extremism. Similar patterns arise when sect-sizes are
symmetric, but available resources for the two sects are unequal. In this case, while the radical faction of
the more resourceful group largely engages in internal indoctrination, radicals from the less resourceful
group typically become more violent while their ranks decrease in relative size. These results indicate
that when resources are limited the best strategy is to attack rather than internally indoctrinate. Here,
retaliatory action from the opposite sect is limited compared with the case of asymmetric sect sizes, since
now the groups are equal in size, and the more resourceful one is largely focused on internal proselytizing
rather than on attacking. Finally, we allowed for a series of optimal updates where each sect was able
to adjust their strategies in response to their opponent’s choices in an alternating fashion. Depending on
parameter choices and initial conditions, limit cycles may be observed, although the same general trends
described above for Nash equilibria hold: one of the two sects will preferentially engage in internal
indoctrination, the other in violently attacking their opponent.

One of the possible ingredients missing from this work is the intervention of third parties to pacify
conflict. Examples of such parties could be more powerful groups, nations, or international bodies. For
example, one could include a penalty term in the utility function so that large radical factions or large
attack rates are more costly due to the imposition of third-party sanctions. We could also relax the
allegiance to a specific sect and allow for recruitment of both radicals and moderates to occur across
sect lines, for example, through free or coerced religious conversion. In this context, sect populations
would no longer be fixed. As presented in our work, attacks do not lead to casualties; allowing for
victims could be another mechanism whereby both violence and indoctrination could lead to the possible
extinction of a sect. Finally, we could consider multiple interacting sects marked by shifting allegiances,
as motivated by the complex dynamics in the Middle East, with ad hoc functional forms for radicalization
and de-radicalization, and including possible calibration of parameters through data.

One final observation is that in presenting this model, we have used the general framework of
religious and/or ethnic conflict. Our work, however, can also be mapped onto western political debates,
given the proper identifications and modifications are introduced. A most notable case is that of
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two-party democracies where each is characterized by a more radical, active group and by a more
moderate, centrist wing. In this case, the attack rates of our model represent the negative, incendiary,
statements used by radicals against the opponent party, while internal indoctrination rates can model
positive advertisement used by radicals to internally mobilize more moderate supporters. As in our
current work, resources are fixed so that a choice must be made on whether to concentrate on negative
attacks or on positive statements. We leave the fine tuning of this mapping for future work.
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