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Abstract Bacterial diversity underpins many ecosystem
functions; however, the impact of within-species variation
on the relationship between diversity and function remains
unclear. Processes involving strain differentiation, such as
niche radiation, are often overlooked in studies that focus on
phylogenetic variation. This study used bacterial isolates as-
sembled in two comparable microcosm experiments to test
how species variation affected ecosystem function. We com-
pared the relationship between diversity and activity (CO,
production) in increasingly diverse multispecies microcosms
and with multiple ecotypes of a single species. The bacteria
used were isolated from a low-diversity environment and are
species of potential clinical significance such as Pseudomonas
aeruginosa. All isolates were profiled for single carbon source
utilisation. These data showed an increased breadth of re-
source use in the multiple ecotypes when compared to the
mixed-species. The study observed significantly increasing
respiration in more complex mixed-species assemblages,
which was not observed when ecotypes of a single species
were combined. We further demonstrate that the variation
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observed in the bacterial activity was due to the roles of each
of the constituent isolates; between different species, the inter-
actions between the isolates drove the variation in activity,
whilst in single species, assemblage variation was due to
which isolates were present. We conclude that both between-
and within-species variations play different roles in commu-
nity function, although through different mechanisms, and
should be included in models of changing diversity and eco-
system functioning.
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Introduction

Whilst microbial communities are often highly phylogeneti-
cally and functionally diverse, much of the variation in these
communities is masked at the sub-species level [1].
Intraspecific variation though is important and forms one
mechanism by which single species can come to proliferate
in environments, for example by radiating specialists into a
broad range of niches thereby reducing competition and in-
creasing complementary interactions [2—5]. Many current
studies infer specific functions to individual species within
communities as extrapolated from high throughput sequenc-
ing data, e.g. ([6]). Addressing the impact of intraspecific in-
teraction and variation is, however, extremely challenging
using such approaches. Manipulative studies, which give re-
searchers the power to create experimental bacterial consortia,
offer important alternative approaches through which ecosys-
tem function can be related to changes in diversity [7]. Such
biodiversity-ecosystem function (BEF) experiments have
been reported in which bacterial species have been selected

@ Springer


http://dx.doi.org/10.1007/s00248-017-0982-2
http://crossmark.crossref.org/dialog/?doi=10.1007/s00248-017-0982-2&domain=pdf

758

Rivett D. W. et al.

on morphological, phylogenetic or functional criteria [7—10].
Here, we selected bacteria based on data from both 16S rRNA
gene sequence and single carbon source usage to set up two
concurrent BEF experiments. The first BEF experiment
analysed between-species interactions among phylogenetical-
ly diverse species, and the second studied within-species in-
teractions between phylogenetically indistinguishable yet
functionally diverse ecotypes [1] of the same species. This
approach allowed us to conduct an investigation into how
the “unseen” variation within a species can affect ecosystem
functioning.

Bacteria were isolated from expectorated sputum sampled
from individuals with cystic fibrosis (CF). CF respiratory in-
fections are typically chronic by adulthood, with relatively
low bacterial species diversity, high bacterial counts and var-
ied habitats. In these conditions, BEF experiments are espe-
cially applicable [11-13]. This environment has also been
observed to enable the adaptive radiation of the clinically im-
portant bacterial species Pseudomonas aeruginosa [4]. A total
of 23 isolates were chosen of which 12 were identified as
P aeruginosa. The remaining 11 identified as a species from
one of nine commonly isolated genera that naturally co-occur,
representing the abundance of these genera observed in the
sputum samples used (Table S1). Microcosms were assembled
as described by the random partitions design [14]; within each
set of mixed-species and mixed-ecotype combinations, a total
of 28 microcosms were created containing either 1, 2, 3, 4, 6
or 12 isolates, with each isolate present once at each richness
level. Two pools of isolates were used in this study, one using
a mixture of 12 bacterial species and the other using 12 phy-
logenetically indistinguishable P. aeruginosa ecotypes (one
P aeruginosa isolate was used in both pools). These bacterial
combinations were grown for 24 h at 37 °C statically in
30 mg mL™" tryptone water. Respiration was measured using
the MicroResp™ system and abundances of each isolate in the
mixed-species microcosms were monitored through 16S
rRNA gene terminal restriction fragment (T-RF) profiling
from DNA extracted from the microcosms [15] (see
Supplementary Methods).

We observed (Fig. la) an increased respiration by
1.13 ug CO, day ' species ' (Fy.10 = 8.77, P = 0.01) with
increasing richness in the mixed-species BEF experiment. In
contrast, in the mixed-ecotype experiment using
Pseudomonads, there was no significant trend
(0.04 pg CO, day ' ecotype™ ', Fy 10 = 1.35, P = 0.27).
Whilst no significant differences (¢7; = 1.40, P = 0.16) were
observed between the mean monoculture activity values (1
standard deviation throughout) of the mixed-species
(17.53 = 7.68 ug CO, day ') and P. aeruginosa ecotypes
(16.24 £ 1.46 ug CO, day "), the mixed-species assemblages
were consistently more active, and varied, than mixed-ecotype
microcosms containing two or more isolates. This suggested
that the positive trends observed in this mixed-species BEF
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experiment could be due to complementarity (niche differ-
ences or synergistic interactions) and as such not solely
through selection effects [5].

Further investigation of the data (Table 1) using a general
linear model [ 14] found that the effect of bacterial interactions
was both significant, greater significance was observed be-
tween mixed-species (F419 = 15.91, P < 0.01) than mixed-
ecotype assemblages (F 1o = 4.40, P = 0.02). We investigated
this further by plotting the observed against the predicted ac-
tivity for both BEF experiments (Fig. 1b, c) [10]. Here, the
null model was equivalence between the observed and pre-
dicted values (1:1 relationship) with predicted values calculat-
ed using the total constituent monoculture activity divided by
the number of species within an assemblage. We found that in
the mixed-species assemblages (Fig. 1b), a significant differ-
ence between the prediction and the null model (3 = 0.77,
g = 2.03, P = 0.043) was observed. This was eliminated
when the relative abundances (T-RF profiles) were added into
the predictions (G = 0.96, tg, = 1.53, P = 0.127), thereby
accounting for relative differences in species abundance
[10]. Interactions between bacterial species are manifested
by changes in their relative abundances [9], by both positive
(e.g. cross-feeding [2]) and negative (e.g. competitive exclu-
sion [16]) mechanisms. The prediction got closer to the null
hypothesis with the inclusion of the interactions. This is not
dependent solely on diversity but on the interplay between the
species. By contrast, in P. aeruginosa ecotype assemblages,
the null model prediction (Fig. 1¢) was not significantly dif-
ferent from the null model (3 = 0.91, £z, = 0.07, P = 0.206),
thereby suggesting that any differences in ecotype abundance
did not impact upon overall activity.

Differences were found between the effects of composi-
tion (Table 1) in the ecotype and mixed-species experi-
ments; composition did not significantly affect activity in
mixed-species assemblages (F; 55 = 1.10, P = 0.38); how-
ever, respiration was significantly affected by the different
ecotype compositions (F; ss = 1.93, P = 0.05). To address
why composition was important to the variation within the
data, each isolate was tested using Biolog EcoPlates™
(Table S2) to assess their ability to utilise specific com-
pounds as single sources of nutrients (analysed as a binary
matrix). These results (Fig. 2) indicated that there were sig-
nificant differences (ANOSIM R = 0.345, P =0.01, 99 per-
mutations) between the P. aeruginosa ecotypes (mean dis-
tance = 0.72 £ 0.17) and the mixed-species (0.44 + 0.25).
This suggested that the significant differences found for the
P aeruginosa ecotypes could be due to niche radiation.
With the potential to radiate variation in niche usage within
a given population, this is a plausible mechanism to explain
the observed community dominance of P. aeruginosa dur-
ing late-stage disease [4, 11]. It is interesting, however, that
the combining ecotypes did not manage to effect activity as
observed when mixing species. This was despite their
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Fig. 1 Bacterial respiration is dependent on increasing phylogenetic
richness rather than ecotypic richness. a A direct comparison of activity
(ng CO, dayfl) of the microcosms with mixed-species ((black circle)
black, solid line) and mixed-ecotypes only ((grey triangle) grey, dotted
line). Community activity was shown to increase as more species were
added to a microcosm; however, this effect was not observed as the

apparent individual differences, as demonstrated by the car-
bon utilisation profiles, and the significant effect of compo-
sition on the activity values. The rationale for this cannot be
elucidated in this study; however, we postulate that due to
there being only one type of carbon source present in the
media, the ecotypes may not have had the opportunity to
interact and increase the overall activity. Further study is
required to test our hypothesis.

Table 1 Linear models estimating the effect of the additive model,
composition and interactions on bacterial respiration. These biological
factors were analysed with respect to the partitioned species pool and
microcosm variance in the mixed-species and P. aeruginosa ecotype
microcosms [14]. Residual degrees of freedom (Res.df) are those
remaining after a variable has been added sequentially to the model

Step Variable Res.df F P
Multispecies microcosms
1 Respiration ~1 167 - -
2 1+ additive model 166 7.31 0.02
3 2+ composition 154 1.1 0.38
4 3+ interactions 150 1591 <0.01
5 4+ partitioned species pool 138 3.14 <0.01
6 5+ microcosm variation 83 191 <0.01
P. aeruginosa microcosms
1 Respiration ~1 167 - -
2 1+ additive model 166 0.14 0.71
3 2+ composition 154 1.93 0.05
4 3+ interactions 150 44 0.02
5 4+ partitioned species pool 138 20.66 <0.01
6 5+ microcosm variation 83 1.19 0.26

number of P. aeruginosa ecotypes increased. This observed activity was
shown to be predicted by the monocultures (solid black lines represent the
trend of the data with the dotted black lines showing the 1:1 relationship
for comparison) when considering both b mixed-species, in which the
relative abundances were included and ¢ mixed-ecotype microcosms,
where activity was divided equally between the isolates

In conclusion, we have shown that more mixed-species
communities display more synergistic interactions, in terms
of increased respiration, compared with assemblages of eco-
types from a single species. The differences between the
mechanisms (species-species interactions vs. niche diversifi-
cation) by which variation in the data arose illustrate different
ways bacteria can affect overall community function. This
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Fig. 2 Ecotypes of a single species are more functionally dissimilar than
phylogenetically diverse bacterial species. The ability of each isolate to
utilise a range of carbon sources was used to determine that the different
species (black circle) were more functionally similar than the
P. aeruginosa ecotypes (white triangle) using Jaccard’s dissimilarity
based on a binary presence/absence matrix. Dotted and dashed lines
represent the 95% confidence interval around the mean distance within
the group
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study demonstrates the importance of including differing
mechanisms of community dynamics when considering
biodiversity-ecosystem function experiments; not only are in-
teractions vital for the overyielding of mixed-species assem-
blages, but strain variation plays an interesting role within
community ecology and should be accounted for in ecological
analysis of BEF experiments and wider bacterial communities
in nature.
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