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Abstract: In this paper, we propose a novel automatic multi-target registration framework for
non-planar infrared-visible videos. Previous approaches usually analyzed multiple targets together
and then estimated a global homography for the whole scene, however, these cannot achieve precise
multi-target registration when the scenes are non-planar. Our framework is devoted to solving the
problem using feature matching and multi-target tracking. The key idea is to analyze and register each
target independently. We present a fast and robust feature matching strategy, where only the features
on the corresponding foreground pairs are matched. Besides, new reservoirs based on the Gaussian
criterion are created for all targets, and a multi-target tracking method is adopted to determine the
relationships between the reservoirs and foreground blobs. With the matches in the corresponding
reservoir, the homography of each target is computed according to its moving state. We tested our
framework on both public near-planar and non-planar datasets. The results demonstrate that the
proposed framework outperforms the state-of-the-art global registration method and the manual
global registration matrix in all tested datasets.

Keywords: multi-target registration; infrared-visible videos; non-planar; feature matching; Gaussian
criterion; multi-target tracking

1. Introduction

Nowadays there is considerable interest in multi-sensor fusion, particularly infrared-visible
sensor fusion [1–3]. This is because these sensors can provide complementary information for scenario
analysis. Many applications, ranging from human detection [4], visual surveillance, and target tracking
to medical imaging [5] can benefit from this fusion. At this time, registration is required to align the
images (or videos) captured by different sensors, which is a very important step to achieve image
fusion. Therefore, this paper focuses on studying infrared-visible video registration with multiple
targets on non-planar scenes (i.e., scenes in which these targets lie on different depth planes).

In previous works, various approaches have been introduced to solve the infrared-visible image
registration problem, such as area-based methods [6–8] and feature-based methods [9–12]. These works
led to some progress in improving registration quality or reducing computational time, but there
are still some difficulties that need to be overcome. Area-based methods adopt area information to
find a transformation, but they are not well suited for infrared-visible registration, since these two
kinds of images will manifest different information of a scene [7]. Furthermore, if the images are not
rectified [8], it will be difficult to precisely align all targets on non-planar scenes in these methods.
In consideration of these facts, we choose featured-based methods for accurate registration.
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Feature-based methods extract a variety of features for image registration. Though the texture
information between infrared-visible images is inconsistent, some methods [10–12] can still find
reliable features. These methods not only can process the planar scene, but also can find a frame-wide
homography for the near-planar scene (in which targets almost lie in the same depth plane). However,
they also have some drawbacks. First, they deal with all targets at a single frame together to find
matches [10,12]. Therefore, they usually have a quite high computational complexity. Besides, the
global matching strategy may introduce more outliers and reduce the quality of matches. Second,
the depth differences between targets are very obvious in many observed scenes (non-planar scenes).
These existing methods [10–12] cannot align the scenes, since one global homography is not enough to
register the targets on different depth planes, even if it is a frame-wide homography.

To address the above problems, we propose an accurate registration framework. For the targets
on non-planar scenes, more than one matrix is required to register them. Taking into account this
fact, our framework achieves non-planar multi-target registration by estimating a homography for
each target. During this process, we don't need to consider the depth values of the targets. More
precisely, we first present a novel feature matching strategy. In the strategy, the foregrounds are
matched. The results are utilized to constrain the feature matching. Then, a reservoir is created for
each target to save the corresponding matches, and a multi-target tracking method [13] is adopted
to distinguish different reservoirs. The transformation of each target is computed with all matches
in its reservoir. The proposed method is very appropriate for visual surveillance, especially when
the distance of monitoring is frequently varying. In practice, target tracking [14] has been applied
in the registration domain. They are typically used to extract trajectories for registration. However,
the purpose of performing tracking in our framework is different from previous works. As in some
registration methods, we suppose that there are moving objects on the observed scenes, which are
synchronized in the infrared-visible videos. The significant contributions presented in this paper may
be summarized as follows:

First, we propose a novel automatic registration framework for infrared-visible videos, which
registers every target. The proposed method can implement accurate multi-target registration on
non-planar scenes.

Second, a new feature matching strategy is presented to find correspondences, which introduces a
simple foreground matching algorithm to guide the feature matching. The strategy is faster and more
robust than global matching strategies.

Third, we adopt a multi-target tracking method to distribute a reservoir for each target in
the current frame. For targets with different motion states, their reservoirs are assigned using
different methods. This way, sufficiently reliable feature pairs are provided to estimate a frame-wide
homography for each target.

The rest of this paper is organized as follows: related work in the domain is explored in Section 2.
In Section 3, we present our proposed method. In Section 4, we provide a description of our experiments
and summarize the results, followed by our conclusions in Section 5.

2. Related Work

The key step of registration is to find correspondences between images (or videos).
Most approaches have been developed to implement this step. These methods are generally studied
for homologous sensor pairs, such as visible stereo or remote sensing pairs. It is not straightforward to
apply them to infrared-visible pairs, since the pairs reflect different phenomena. Infrared sensors record
infrared radiation emitted by objects, while visible sensors record light reflected from objects. Next,
we briefly review two types of registration methods: area-based methods and feature-based methods.

2.1. Area-Based Methods

Some previous methods developed a few similarity functions to directly measure the relevance of
the image region, such as region correlation [6] and mutual information [7,15,16]. For the methods
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using region correlation, they first compute the cross-correlation of each window pair in two images,
and then view the pair with the maximum value as a correspondence. There are some problems
for these methods, like being unreliable in textureless areas and time-consuming. The mutual
information could evaluate the information dependence by calculating the entropy of each image [15].
In infrared-visible image registration, it was usually applied only on a selected part of images, such as
the boundaries [16] and the foregrounds [7]. This is because there are obvious differences in intensity
and texture between two sources.

Other area-based methods convert images into the frequency domain using Fourier transform
and then calculate correlations [17]. Compared to region correlation methods, they are relatively faster
and more robust to the noise. Actually, the above area-based methods could align planar scenes, but it
is hard to realize precise non-planar scene registration using them. The method presented in [8] is able
to align non-planar scenes using region information. However, it only can process the video pairs
which have been rectified, which are not available.

2.2. Feature-Based Methods

As the simplest features, points have been universally applied in registration, and a variety of
algorithms have studied how to match feature points [9,18]. However, extracting features directly from
infrared-visible images is unreliable because of the texture difference. The boundaries are a popular
solution since they are usually captured by both sensors. Therefore, most scholars adopt edges [19]
or features on edges [20]. In their work, the edge information was aligned with different ways, such
as Gaussian field criterion [21]. However, unprocessed edges are unreliable and easily influenced
by noise.

In recent years, foreground detection has been adopted to improve the precision in feature
extraction. Here, some methods adopt tracking to take advantage of detected foregrounds [22–24].
They extract the trajectories of all targets, and then use these trajectories to estimate a frame-wide
homography for the whole scene. Other approaches directly find features on the contours of
foregrounds [10–12]. A reservoir is then applied to save matches from different frames. The reservoir
may be updated by different strategies, such as First in, First out (FIFO) [10] or voting based on
a RANSAC algorithm [12]. These methods also find only one frame-wide homography. Actually,
these kinds of methods are proposed to align planar or near-planar scenes. Nevertheless, a matrix is
insufficient to align multiple targets on different depth planes (but it is enough for one target, even
if the movement of the target is non-planar). As a result, they are not suitable for non-planar scene
registration. The work in [11] present the idea of considering each target individually, but it does not
introduce the approach of matching targets in a complex scene, and still computes only a homography
for all targets.

The proposed method is related to the work of [10–12], but we make some important
contributions to achieve non-planar registration in infrared-visible videos. In our work, we present
a simple foreground matching algorithm to improve the accuracy of feature pairs. Then,
we determine a frame-wide homography for every target based on a multi-target tracking method [13].
These contributions make our proposed framework more precise and have a more extensive range
of applications.

3. Proposed Framework

Figure 1 illustrates the processes of our method. First, a foreground detection algorithm [25]
is applied to get foregrounds from raw image pairs. We extract feature points for registration from
the contour of each foreground. Next, we match the infrared and the visible foregrounds based on
two shape context descriptors [26]. Feature matching is then performed according to the foreground
correspondences. For aligning non-planar scenes, we assign a reservoir for each target. Under the
circumstances, multi-target tracking [13] is needed to distinguish different reservoirs. Following that,
the homography of a target is estimated with all matches in its assigned reservoir. For ensuring the
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registration accuracy, we also create a global reservoir to save matches from all targets, and then
compute a global frame-wide homography. They are used to initialize the newly created reservoir and
constrain the registration of each target, respectively. In the subsequent subsections, we thoroughly
introduce each step of the proposed framework.
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Figure 1. Overview of our proposed framework.

3.1. Foreground and Feature Extraction

This work focuses on registering moving targets on static scenes, so the moving target detection
is the initial step of our method. The PAWCS algorithm [25] is executed to subtract backgrounds,
which builds a statistical background model using color and binary features, and applies a feedback
scheme to identify foregrounds. At this time, morphological operations such as closing and hole
filling are adopted to get improved candidate foreground blobs. The foreground blobs whose areas are
relatively very small are abandoned. To solve the foreground fragmentation problem, when two blobs
are very close (smaller than a fixed distance Dc), and the ratio of their areas (small/large) is smaller
than a threshold Ta, they are merged together. After these, more reliable foregrounds can be obtained.
Since some deviations may occur during foreground detection, we do not adopt all contour points of
foregrounds for registration. The Curvature Scale Space (CSS) corner detection algorithm [20] is used
to extract features from contours, which views the contour point with the curvature maximum as a
feature. The algorithm can locate features accurately with a fast computational rate.

3.2. Feature Matching

For infrared-visible image registration, finding feature correspondences is an important and
challenging step. Previous approaches [10,12] mostly adopt the global matching strategy, in which all
features from multiple targets are matched simultaneously and globally. Indeed, the correspondences
should be found only on the corresponding blobs. Therefore, this section presents a novel algorithm to
process feature matching, which is based on the corresponding relations between foregrounds.

In intersecting fields, the shape information of targets and the spatial relationships between
objects are mostly preserved. Based on this observation, we can match infrared and visible foregrounds
by using two descriptors. For a foreground blob, its centroid is first computed. We build the first shape
context descriptor with its own contour points using the method in [26], which expresses the disposition
of contour points relative to the centroid using a uniform log-polar histogram. The descriptor utilizes
the shape information. The second shape context descriptor is obtained using the contour points from
other foregrounds, which displays the relative spatial distributions between targets.
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After describing all foregrounds in infrared and visible images, the χ2 text statistic is used to
measure the similarity between two descriptors, which is defined as:

C(Si(k), Sv(k)) =
1
2

K

∑
k=1

(Si(k)− Sv(k))
2

Si(k) + Sv(k)
(1)

where Si(k) and Sv(k) represent the K-bin normalized shape contexts of an infrared and a visible
foregrounds, respectively. We accumulate the χ2 statistic values of two kinds of descriptors as the
cost metric of foreground matching. For an infrared foreground, the visible foreground with minimal
cost metric is deemed to be its candidate correspondence. The process is executed from visible to
infrared foregrounds too, since foreground mismatch would seriously reduce the quality of feature
correspondences. Only when a visible foreground is the candidate correspondence of an infrared
foreground and vice versa, they would be regarded as a matched pair.

Like for the foreground, every feature point is described by a shape context using all contours in
the image. Equation (1) is also used to measure the descriptor similarity. Then, we match the features
from each foreground individually. For a foreground in the first image modality, we first consider if its
corresponding blob existed in the second modality. If it existed, feature correspondences are found
only on the corresponding blob pair; if not, we find matching points on all foregrounds in the second
modality. The correspondence problem is solved using the Hungarian algorithm [27]. For the matches
from various targets, they would be saved in different reservoirs, which is detailed in Section 3.3.

3.3. Reservoir Creating and Assignment

3.3.1. Reservoir Creating with Gaussian Criterion

To estimate an accurate frame-wide transformation, various reservoirs have been used to save
matches from different frames. However, existing reservoirs have some disadvantages. Reference [10]
presented a FIFO reservoir to preserve matches from N continuous frames. When the movements of
targets are faint, the reservoir would be filled with matches that are not typical enough for calculating
a homography. Reference [12] proposed a reservoir using a voting scheme based on the RANSAC
algorithm [28], but it may save some persistent outliers because the RANSAC algorithm is not stable.

Therefore, we propose a novel reservoir for better correspondence preservation. In which, we
first calculate the Gaussian distance of each match with the following expression:

Ek = exp
(
−d2(H(xi(k)), xv(k))

σ2 − λ·C(Si(k), Sv(k))
)

(2)

where xi(k) and xv(k) are the infrared and the visible feature points in the match, respectively.
d2(H(xi(k)), xv(k)) is the L2 distance of the point pair transformed by the current matrix H, and
C(Si(k), Sv(k)) represents the descriptor similarity calculated by Equation (1). σ represents a range
parameter, and λ is a balanced factor which controls the trade-off between spatial and attribute
distances of the match. With the Gaussian criterion, we can together consider the matching metric and
the homography adaptability of the match. When the reservoir is filled, the K-means algorithm [29] is
used to divide all matches into two groups (inliers and outliers) according to their Gaussian distances.
For a new match, we will randomly pick one of the outliers and replace it. To show the robustness of
Gaussian distance, Figure 2 shows the curves of L2 distance (EL2 = d2(xi, xv)) and Gaussian distance
(Eg = 1− exp

(
−d2(xi, xv)/σ2)). We see that using the Gaussian distance makes inlier and outlier

division become more easy.
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3.3.2. Reservoir Assignment Using Multi-Target Tracking

We need to find the target association in consecutive frames to allot a reservoir for each target.
Therefore, a multi-target tracking method [13] is adopted, in which KCF trackers and foregrounds help
each other to take tracking decision. The foregrounds are used to get the sizes of moving targets in
combination with the outputs of KCF trackers, while KCF trackers are applied to find the association
and handle some special cases, such as occlusions. By obtaining the output RFt of each tracker
CFt−1, the method identifies the moving state of each foreground blob FORt such as entering, leaving,
occlusion and so on. In our work, since infrared targets are more salient, and infrared scenes are not
easily influenced by shadow and light changing, we track targets in infrared videos. Some tracking
results of the targets with different states are given in Figure 3.
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Figure 3. Representative cases (Case: 1–7) of tracking results for the targets with different moving
states. The green bounding box shows the output of a tracker. There are seven kinds of moving state,
as shown in Case (1–7): entering (Case 1), tracking normally (Case 2), fragmentation (Case 3), occlusion
(Case 4), invisible (Case 5), lost tracking (Case 6) and leaving (Case 7).

During reservoir assignment, a global reservoir is first created to save matches from all targets.
Then, we assign a reservoir to each tracker of the current frame based on the tracking results, which
reserves the matches from the corresponding target. This is discussed as follows:

• If only one tracker CFt−1
j is associated with a foreground FORt

j, it means the target is being

tracked normally (Case 2 in Figure 3). At this time, the reservoir of CFt−1
j is directly assigned to

the tracker CFt
j , and the matches from the foreground FORt

j are saved in the reservoir.

• More than one tracker CFt−1
j may be associated with a foreground FORt

j , which could be caused
by an occlusion (Case 4) or fragmentation (Case 3). We differentiate the two cases according to
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the way presented in [13]: if the area of the blob is smaller than the sum of the two trackers in
some consecutive frames, it is very likely caused by fragmentation. Otherwise, we assume that
two targets are under occlusion. If caused by an occlusion, there are multiple trackers CFt

j for the

foreground. The reservoir of each CFt−1
j is assigned to the corresponding tracker CFt

j . Each match
from the foreground is saved in the reservoir with the tracker closest to the match. If caused by
fragmentation, we combine these trackers CFt−1

j to produce a new tracker CFt
j for the foreground,

and merge their reservoirs to bring in a new reservoir for the current tracker. The matches from
the foreground are reserved in the reservoir.

• If no tracker CFt−1
j is associated with a foreground FORt

j, it means a new target is entering the
scene (Case 1) or tracking is lost (Case 6). At this moment, a new tracker CFt

j is built for the
foreground, and a new reservoir is created to keep the point pairs in the foreground. Since the
matches in the reservoir may be insufficient to estimate a reliable homography, we introduce part
of matches from the global buffer to the reservoir. Next, if caused by tracking failure, the lost
reservoir would be merged into the new reservoir, when the lost tracker CFt−1

j is recalled.

• If a tracker CFt−1
j is not associated with any foreground FORt, it means a target is invisible

(Case 5) or leaving (Case 7). In this case, the tracker CFt−1
j and its reservoir are saved in some

consecutive frames. As presented in [13], if the tracker is associated with a foreground again
in these frames, the lost tracker and the reservoir are recalled. Otherwise, the tracker and the
reservoir are both removed.

3.4. Homography Estimation

To align multiple targets accurately, we estimate a homography for each target. For a foreground
blob, one or more matrix is required, whose quantity is the same as the number of reservoirs
corresponding to the foreground. Since the matrices from a single frame may be noisy, frame-wide
transformations are adopted. Now, we also need a global matrix to ensure registration precision.
The current global matrix Hgcur is first computed with all matches in the global reservoir using the
RANSAC algorithm [28]. Then, we calculate the overlap error of a transformation using:

E(M) = 1− Γ(Si, M) ∩ Sv

Γ(Si, M) ∪ Sv
(3)

where M is a transformation matrix, Γ(Si, M) is the transformed infrared foreground image, and
Sv represents the original visible foreground image. After getting the overlap errors Et−1 (for the
reference global frame-wide Mgt−1) and Ecur (for the current homography Hgcur), we update the
global frame-wide matrix with:

Mgt =

{
(1− β) ∗Mgt−1 + β ∗ Hgcur i f Ecur < Et−1

Mgt−1 otherwise
(4)

where β is an adaptation factor. We used a fixed value in our experiment. After that, we can estimate a
global frame-wide homography for the whole scene.

For an infrared foreground blob BIR
i , we have to confirm its corresponding visible foreground

before aligning it. Under this condition, if there is a matched visible foreground during the foreground
matching (Section 3.2), the visible foreground is viewed as the correspondence Bvis

i . Otherwise, we
transform the infrared foreground with the global matrix Mgt. The visible foreground that has the
lowest overlap error with the transformed foreground is chosen as the correspondence Bvis

i . After that,
we start to estimate the homography of this foreground pair.

Algorithm 1 describes our strategy in detail. If there is only one reservoir for the infrared
foreground BIR, we first estimate a current homography Hqcur with all matches in the reservoir Rcur

using the RANSAC algorithm [28], and get its overlap error Ecur (Equation (3)). We then discuss the
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moving state. If tracking normally, the previous frame-wide matrix Mqt−1 is viewed as the reference
frame-wide Mqt−1

re f ; if fragmentation, there are multiple previous matrices. We consider their average

as the reference frame-wide Mqt−1
re f ; if entering or lost tracking, there is no frame-wide homography in

the previous matrix group
{

Mqt−1}. In this case, the global matrix Mgt is selected as the reference
frame-wide Mqt−1

re f . Next, we determine the overlap error Et−1
re f of Mqt−1

re f (Equation (3)). According

to Hqcur, Ecur, Mqt−1
re f and Et−1

re f , we last estimate the current frame-wide homography Mqt using
Equation (4).

If there is more than one reservoir for the infrared foreground, it means some targets are occluded.
At this time, we divide the foreground BIR into M (the number of reservoirs) targets BIR

1 , BIR
2 , . . . , BIR

M .
Each target includes the foreground pixels in its tracker, and the pixels that are not in any trackers
but are closest to the tracker. For each target BIR

j , we first compute the current matrix Hqcur
j and the

current overlap error Ecur
j . Then, we view the corresponding previous frame-wide Mqt−1

j as Mqt−1
re f ,

and confirm its overlap error Et−1
re f . According to Hqcur

j , Ecur
j , Mqt−1

re f , and Et−1
re f , we estimate the current

frame-wide homography Mqt
j for the target (Equation (4)). With the homography estimate algorithm,

we can calculate an accurate frame-wide transformation for each target.

Algorithm 1 Estimating Homography for a Foreground in Current Frame

Input: Infrared foreground: BIR. visible foreground: BVIS. Moving state: FIR.
Reservoir group: {Rcur}. Previous homography group:

{
Mqt−1}. Global matrix: Mgt

Output: current frame-wide homography group:
{

Mqt}
Proceduce Homography estimation

If size ({Rcur}) = 1
Rcur → Hqcur , Ecur = 1− Γ

(
BIR, Hqcur) ∩ BVIS/Γ

(
BIR, Hqcur) ∪ BVIS

If FIR = tracking normally Mqt−1
re f = Mqt−1 end if;

If FIR = fragmentation Mqt−1
re f =

N
∑

i=1
Mqt−1

i /N end if;

If FIR = entering or lost tracking Mqt−1
re f = Mgt end if;

Et−1
re f = 1− Γ

(
BIR, Mqt−1

re f

)
∩ BVIS/Γ

(
BIR, Mqt−1

re f

)
∪ BVIS

Hqcur, Ecur, Mqt−1
re f , Et−1

re f → Mqt

Else
BIR → BIR

1 , BIR
2 , . . . , BIR

M
For Rcur

j ∈ Rcur
1 , Rcur

2 , . . . , Rcur
M do

Rcur
j → Hqcur

j , Ecur
j = 1− Γ

(
BIR

j , Hqcur
j

)
∩ BVIS/Γ

(
BIR

j , Hqcur
j

)
∪ BVIS

Mqt−1
re f = Mqt−1

j , Et−1
re f = 1− Γ

(
BIR

j , Mqt−1
re f

)
∩ BVIS/Γ

(
BIR

j , Mqt−1
re f

)
∪ BVIS

Hqcur
j , Ecur

j , Mqt−1
re f , Et−1

re f → Mqt
j

End for
End if

End proceduce

4. Experiments and Results

4.1. Experiments

4.1.1. Datasets

To manifest the advantage and generalization of the propose framework, experiments were
performed on both near-planar and non-planar scenes, although the framework is presented for
non-planar video scene registration. For near-planar scenes, we employed the public LITIV dataset
provided by Torabi [22], which includes nine video pairs of 240 × 320 resolution. In these videos,
all targets are on near-planar scenes since they were viewed from afar. Furthermore, ground-truth
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matrices are provided, which were used to produce the results of manual registration. For non-planar
scenes, there are few public datasets with videos which contain multiple targets on different depths
for IR-visible registration. The OTCBVS dataset provided by Bilodeau [8] is the only one we
found. Therefore, four raw video pairs of 360 × 480 resolution in the dataset were used in our
experiment. Since the ground-truth is not provided by the dataset, we created our own ground-truth
transformations by manually selecting some identifiable points in the infrared and visible images.

4.1.2. Approach Comparison

In the proposed method, different matrices are computed to align multiple targets. Therefore, we
first compared our method with a state-of-the-art global registration method [12]. In which, all targets
are analyzed together, and a global frame-wide homography is estimated for the whole scene. Detailed,
the method directly matched contour points, and saved the feature pairs from each target in a reservoir
based on a voting scheme. Next, we also compared the proposed framework with manual ground-truth
to show the superiority of our framework. It must be declared that the ground-truth represents the
manual registration matrix rather than the reference image. The error of it is not necessarily equal to 0.

In Section 3.4, the global transformation matrix has been estimated to ensure registration accuracy.
To validate the robustness of the proposed feature matching strategy and the reservoir, we introduce the
proposed global matrix as a comparison in our experiments. Since a global homography is difficult to
realize for non-planar registration, the results on OBCTVS dataset cannot directly reflect the robustness
of the matching strategy and reservoir. Therefore, the method is applied only on the near-planar
database. For fairness, all methods are tested on the same foreground images, and the same error
function is adopted to evaluate these methods. Besides, the parameters used by every method were
identical in both methods.

4.1.3. Evaluation Metric

Most previous methods [10,12,22] created a pair of binary polygons for each sequence pair by
manually selecting some matched points. They used the overlap error between the transformed
polygons as evaluation metric. However, there are certain limitations for the metric. First, it only can
assess the registration quality for perfectly planar scene. For near-planar or non-planar scene, the metric
is useful only when all targets lie on the same depth with the polygons. Otherwise, the polygon overlap
error is not competent to measure registration accuracy. Besides, these polygons were built for global
registration methods, which calculate only one registration matrix for a frame pair. It could not be
adopted in the proposed framework, because more than one matrix may be got simultaneously in
our method.

Under the circumstances, we considered the overlap error between the transformed infrared and
the corresponding visible foreground images as registration error function, which is defined as:

EC(M1,2,...,N) = 1−
(
∪N

k=1Γ
(

BIR
k , Mk

)
∩ Sv/ ∪N

k=1 Γ
(

BIR
k , Mk

)
∪ Sv

)
(5)

where Mk is the transformation matrix of the kth infrared target BIR
k , and ∪N

k=1Γ
(

BIR
k , Mk

)
is the union

set of all transformed infrared targets. Sv represents the raw visible foreground image. The error
function can measure the alignment of each target for all methods. To be clear, for a frame pair, if there
is no target in infrared or visible image, the overlap error of this pair is not considered.

4.1.4. Parameter Settings

There are mainly five parameters in our method: Dc, Ta, σ2, λ and β. Parameters Dc and Ta

control the merging of detected foreground blobs. Only when the nearest distance between two
foregrounds is smaller than Dc and their area ratio is lower than Ta, the foreground blobs could be
merged. To solve the foreground fragmentation problem but not merge two targets together, the
experiments show Dc = 50 pixels and Ta = 0.2 are the best set. Parameter σ2 is the range factor in
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calculating the Gaussian distance of each match. Typically, we set σ2 = 100. Parameter λ presents
the trade-off between the spatial and attribute information of a correspondence. Since we prefer to
consider the adaptability of the point pair to the transformation matrix, the parameter λ is set to 0.5.
Parameter β is the weight factor for estimating frame-wide homography. To find a middle ground
between updating matrix timely and avoiding the local optimum, we initialize β = 0.25.

4.2. Results

4.2.1. Results for Near-Planar Scenes

Figure 4, Tables 1 and 2 display the registration errors of all algorithms on near-planar scenes.
We find that the proposed global registration matrix usually has lower errors than the registration
method presented by Charles [12], although the method also computes a global transformation. This
is essentially because our matching strategy and reservoir can provide more accurate correspondences
for homography estimation. In the dataset, the sizes of infrared scenes are quite different from those of
visible scenes, so the distribution and number of targets may be not consistent between two types of
images. The phenomena are very universal throughout each sequence pair. In this case, the proposed
feature matching strategy can prevent more mismatches by finding target correspondences, and the
reservoir can distinguish inliers and outliers more exactly by using Gaussian criterion.

Sensors 2017, 17, 1696 10 of 16 

 

method presented by Charles [12], although the method also computes a global transformation. This 
is essentially because our matching strategy and reservoir can provide more accurate 
correspondences for homography estimation. In the dataset, the sizes of infrared scenes are quite 
different from those of visible scenes, so the distribution and number of targets may be not consistent 
between two types of images. The phenomena are very universal throughout each sequence pair. In 
this case, the proposed feature matching strategy can prevent more mismatches by finding target 
correspondences, and the reservoir can distinguish inliers and outliers more exactly by using 
Gaussian criterion.  

 

 

 
Figure 4. Accuracy comparisons of the ground-truth, the method of [12], the proposed global matrix 
and our framework using the foreground overlap errors on the LITIV dataset. 

Table 1. Average overlap errors for all sequence pairs of the LITIV dataset (red entries indicate the 
best results). 

Sequence Pair Ground-Truth Charles et al Proposed Global Matrix Proposed Framework
LITIV-1 0.4515 0.4850 0.4227 0.4155 
LITIV-2 0.5290 0.7196 0.5031 0.4701 
LITIV-3 0.3646 0.5545 0.3340 0.3257 
LITIV-4 0.3418 0.4838 0.2854 0.2742 
LITIV-5 0.4085 0.9130 0.4047 0.3908 
LITIV-6 0.4564 0.7852 0.4395 0.3972 
LITIV-7 0.5380 0.7524 0.4947 0.4766 
LITIV-8 0.6232 0.9118 0.5840 0.4670 
LITIV-9 0.3533 0.8091 0.3107 0.2774 

Table 2. Minimum overlap errors for all sequence pairs of the LITIV dataset (red entries indicate the 
best results). 

Sequence Pair Ground-Truth  Charles Et. Al. Proposed Global Matrix Proposed Framework
LITIV-1 0.1571 0.1308 0.1135 0.1075 
LITIV-2 0.1678 0.1971 0.1187 0.1250 
LITIV-3 0.0804 0.1093 0.0897 0.0844 
LITIV-4 0.1851 0.1746 0.1504 0.1419 

Figure 4. Accuracy comparisons of the ground-truth, the method of [12], the proposed global matrix
and our framework using the foreground overlap errors on the LITIV dataset.

We also see that the proposed non-planar registration framework succeeds in extracting the
proposed global matrix in all video pairs. The situation is caused by the non-planar characteristic of
the LITIV dataset. In the dataset, the scenes don’t fully follow the planar assumption, especially for
LITIV-8 and LITIV-9. In this case, the framework has a better performance since it can eliminate the
influence of varying depths by aligning each target individually.
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Table 1. Average overlap errors for all sequence pairs of the LITIV dataset (red entries indicate the
best results).

Sequence Pair Ground-Truth Charles et al. Proposed Global Matrix Proposed Framework

LITIV-1 0.4515 0.4850 0.4227 0.4155
LITIV-2 0.5290 0.7196 0.5031 0.4701
LITIV-3 0.3646 0.5545 0.3340 0.3257
LITIV-4 0.3418 0.4838 0.2854 0.2742
LITIV-5 0.4085 0.9130 0.4047 0.3908
LITIV-6 0.4564 0.7852 0.4395 0.3972
LITIV-7 0.5380 0.7524 0.4947 0.4766
LITIV-8 0.6232 0.9118 0.5840 0.4670
LITIV-9 0.3533 0.8091 0.3107 0.2774

Table 2. Minimum overlap errors for all sequence pairs of the LITIV dataset (red entries indicate the
best results).

Sequence Pair Ground-Truth Charles Et. Al. Proposed Global Matrix Proposed Framework

LITIV-1 0.1571 0.1308 0.1135 0.1075
LITIV-2 0.1678 0.1971 0.1187 0.1250
LITIV-3 0.0804 0.1093 0.0897 0.0844
LITIV-4 0.1851 0.1746 0.1504 0.1419
LITIV-5 0.1922 0.5075 0.0824 0.1875
LITIV-6 0.1675 0.1923 0.1475 0.1311
LITIV-7 0.3125 0.2343 0.2188 0.2222
LITIV-8 0.3107 0.7281 0.1837 0.1832
LITIV-9 0.2072 0.6036 0.1509 0.1465

As shown in these results, our method and the proposed global matrix outperform ground-truth
homography in all sequence pairs. This is normal and desirable performance, because there are
some disadvantages for the ground-truth. First, the deviation is unavoidable when establishing a
ground-truth by manually selecting some point pairs. Second, the ground-truth produces an ideal
registration only for a planar scene. However, the moving of the target is not always on one depth
plane. Hence, methods that aim to align the current targets have a higher precision. For the proposed
method, it is also because the method can implement multi-target registration on non-planar scenes.
In addition, we find there are some strong increases in the error curves of these methods, which are
caused by the size differences between infrared and visible scenes.

4.2.2. Results for Non-Planar Scenes

The registration results on non-planar scenes are shown in Figure 5. The figure contains three
groups, which present the results of each method, respectively. There are five images in each row
of a group, and the quantities of targets in these images vary from one to five. We superimpose the
transformed infrared images on the visible images to display the registration outputs.

We see that the ground-truth cannot align non-planar scenes, even if there is only one target on the
scenes. The reason for the situation is that the ground-truth can merely register a depth plane. For any
target, if it does not lie on the plane, the ground-truth has no ability to align it. This declares that
the global ground-truth matrix is not applicable to non-planar registration. The second group shows
the global registration method in [12] can align the scenes which contain one target. This is because
the frame-wide homography provided by the method is competent in registering one target, even it
moves in three-dimensional space. However, the method fails to complete the registration of multiple
targets, since one matrix is not enough to eliminate the influence of depth differences between targets.
The last group illustrates that our method always succeeds in aligning all targets on non-planar scenes,
regardless of the number of targets. This is no surprise, since our framework provides a frame-wide
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matrix for each target, and then eliminates the effect of non-planar characteristic. This guarantees that
the proposed method could achieve better performance on non-planar multi-target registration than
the global method and the ground-truth.

Sensors 2017, 17, 1696 11 of 16 

 

LITIV-5 0.1922 0.5075 0.0824 0.1875 
LITIV-6 0.1675 0.1923 0.1475 0.1311 
LITIV-7 0.3125 0.2343 0.2188 0.2222 
LITIV-8 0.3107 0.7281 0.1837 0.1832 
LITIV-9 0.2072 0.6036 0.1509 0.1465 

We also see that the proposed non-planar registration framework succeeds in extracting the 
proposed global matrix in all video pairs. The situation is caused by the non-planar characteristic of 
the LITIV dataset. In the dataset, the scenes don’t fully follow the planar assumption, especially for 
LITIV-8 and LITIV-9. In this case, the framework has a better performance since it can eliminate the 
influence of varying depths by aligning each target individually. 

As shown in these results, our method and the proposed global matrix outperform ground-truth 
homography in all sequence pairs. This is normal and desirable performance, because there are some 
disadvantages for the ground-truth. First, the deviation is unavoidable when establishing a  
ground-truth by manually selecting some point pairs. Second, the ground-truth produces an ideal 
registration only for a planar scene. However, the moving of the target is not always on one depth 
plane. Hence, methods that aim to align the current targets have a higher precision. For the proposed 
method, it is also because the method can implement multi-target registration on non-planar scenes. 
In addition, we find there are some strong increases in the error curves of these methods, which are 
caused by the size differences between infrared and visible scenes. 

4.2.2. Results for Non-Planar Scenes 

The registration results on non-planar scenes are shown in Figure 5. The figure contains three 
groups, which present the results of each method, respectively. There are five images in each row of 
a group, and the quantities of targets in these images vary from one to five. We superimpose the 
transformed infrared images on the visible images to display the registration outputs. 

 
(a) The registration results using the ground-truth. 

 
(b) The registration results using the global method [12]. Sensors 2017, 17, 1696 12 of 16 

 

 
(c) The registration results using the proposed method. 

Figure 5. Registration results on some typical frame pairs in the OTCBVS dataset using the manual 
ground-truth homography, the global method in [12] and the proposed framework, as shown in 
group (a–c). Each group contains two sets of images, which is displayed by two rows. Each row 
contains five images with different numbers of targets. 

We see that the ground-truth cannot align non-planar scenes, even if there is only one target on 
the scenes. The reason for the situation is that the ground-truth can merely register a depth plane. For 
any target, if it does not lie on the plane, the ground-truth has no ability to align it. This declares that 
the global ground-truth matrix is not applicable to non-planar registration. The second group shows 
the global registration method in [12] can align the scenes which contain one target. This is because 
the frame-wide homography provided by the method is competent in registering one target, even it 
moves in three-dimensional space. However, the method fails to complete the registration of multiple 
targets, since one matrix is not enough to eliminate the influence of depth differences between targets. 
The last group illustrates that our method always succeeds in aligning all targets on non-planar 
scenes, regardless of the number of targets. This is no surprise, since our framework provides a frame-
wide matrix for each target, and then eliminates the effect of non-planar characteristic. This 
guarantees that the proposed method could achieve better performance on non-planar multi-target 
registration than the global method and the ground-truth. 

Tables 3 and 4 give the average and minimum registration errors for all sequences in the non-
planar dataset. According to these tables, we observe that our framework significantly reduces the 
average registration error of each sequence pair (24.14% for Video 1, 35.32% for Video 2, 10.12% for 
Video 3 and 15.32% for Video 4). Moreover, our method could achieve much lower minimum errors 
for all studied pairs compared to the method proposed in [12] and the ground-truth. These 
experimental data reveals that the propose framework is more suitable for non-planar registration 
than both the automatic and manual global registration methods. 

Table 3. Average overlap errors for all sequence pairs of the OTCBVS dataset (red entries indicate the 
best results). 

Sequence Pair Ground-Truth Charles et al. Proposed 
OTCBVS-1 0.7220 0.7176 0.4762 
OTCBVS-2 0.6983 0.7423 0.3891 
OTCBVS-3 0.6920 0.5537 0.4525 
OTCBVS-4 0.6346 0.5839 0.4307 

Table 4. Minimum overlap errors for all sequence pairs of the OTCBVS dataset (red entries indicate 
the best results). 

Sequence Pair Ground-Truth Charles et al. Proposed 
OTCBVS-1 0.2582 0.2300 0.1764 
OTCBVS-2 0.3806 0.3263 0.1594 
OTCBVS-3 0.4291 0.2981 0.2329 
OTCBVS-4 0.2797 0.1978 0.1457 

Figure 5. Registration results on some typical frame pairs in the OTCBVS dataset using the manual
ground-truth homography, the global method in [12] and the proposed framework, as shown in group
(a–c). Each group contains two sets of images, which is displayed by two rows. Each row contains five
images with different numbers of targets.

Tables 3 and 4 give the average and minimum registration errors for all sequences in the non-planar
dataset. According to these tables, we observe that our framework significantly reduces the average
registration error of each sequence pair (24.14% for Video 1, 35.32% for Video 2, 10.12% for Video 3
and 15.32% for Video 4). Moreover, our method could achieve much lower minimum errors for all
studied pairs compared to the method proposed in [12] and the ground-truth. These experimental
data reveals that the propose framework is more suitable for non-planar registration than both the
automatic and manual global registration methods.
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Table 3. Average overlap errors for all sequence pairs of the OTCBVS dataset (red entries indicate the
best results).

Sequence Pair Ground-Truth Charles et al. Proposed

OTCBVS-1 0.7220 0.7176 0.4762
OTCBVS-2 0.6983 0.7423 0.3891
OTCBVS-3 0.6920 0.5537 0.4525
OTCBVS-4 0.6346 0.5839 0.4307

Table 4. Minimum overlap errors for all sequence pairs of the OTCBVS dataset (red entries indicate the
best results).

Sequence Pair Ground-Truth Charles et al. Proposed

OTCBVS-1 0.2582 0.2300 0.1764
OTCBVS-2 0.3806 0.3263 0.1594
OTCBVS-3 0.4291 0.2981 0.2329
OTCBVS-4 0.2797 0.1978 0.1457

In order to reflect the global performance of these methods, we also present error-to-time curves
for every video pair, as shown in Figure 6. We see that our method produces the best results, and
our error curves are mainly below the curves of two comparison methods. The proposed framework
has the ability to achieve a higher precision and stabilize at this level more often than the global
registration methods.

Sensors 2017, 17, 1696 13 of 16 

 

In order to reflect the global performance of these methods, we also present error-to-time curves 
for every video pair, as shown in Figure 6. We see that our method produces the best results, and our 
error curves are mainly below the curves of two comparison methods. The proposed framework has 
the ability to achieve a higher precision and stabilize at this level more often than the global 
registration methods. 

 

 

Figure 6. Accuracy comparisons of the ground-truth, the method of [12] and our framework using the 
foreground overlap errors on the OTCBVS dataset.  

Then, we encounter two questions: why are the registration errors still important? Why are our 
error curves not smooth? There are two simple answers to these questions. The first one is the 
occlusion. Our framework is able to process slight partial occlusion. However, when a target is 
seriously occluded by others, the framework may identify all as one target, and calculate only one 
homography for these targets. As a result, the registration is not accurate. Serious occlusion is 
frequently happening throughout each sequence, which leads to the high overlap errors and the 
fluctuation of registration errors. Registration results on some occlusion frames occurred in  
OTCBVS-1 are presented in Figure 7. 

 
Figure 7. Registration results on some serious occlusion frames in the OTCBVS-1. The results are not 
accurate since only one homography is computed for multiple targets under the occlusion. 

The second answer is the deviation in foreground detection. Actually, foreground detection is 
imperfect in most infrared and visible images, and foreground fragmentation may occur in some 
frames. Using the noisy foreground frames, the high overlap errors are obtained in these frames, even 
if we have estimated an accurate transformation for each target. Therefore, the errors are still 
important and unstable. Some noisy foreground pairs and the registration results on them are shown 

Figure 6. Accuracy comparisons of the ground-truth, the method of [12] and our framework using the
foreground overlap errors on the OTCBVS dataset.

Then, we encounter two questions: why are the registration errors still important? Why are our
error curves not smooth? There are two simple answers to these questions. The first one is the occlusion.
Our framework is able to process slight partial occlusion. However, when a target is seriously occluded
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by others, the framework may identify all as one target, and calculate only one homography for
these targets. As a result, the registration is not accurate. Serious occlusion is frequently happening
throughout each sequence, which leads to the high overlap errors and the fluctuation of registration
errors. Registration results on some occlusion frames occurred in OTCBVS-1 are presented in Figure 7.
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Figure 7. Registration results on some serious occlusion frames in the OTCBVS-1. The results are not
accurate since only one homography is computed for multiple targets under the occlusion.

The second answer is the deviation in foreground detection. Actually, foreground detection is
imperfect in most infrared and visible images, and foreground fragmentation may occur in some
frames. Using the noisy foreground frames, the high overlap errors are obtained in these frames,
even if we have estimated an accurate transformation for each target. Therefore, the errors are still
important and unstable. Some noisy foreground pairs and the registration results on them are shown
in Figure 8. We find that the proposed framework could achieve acceptable registration accuracy in
these pairs. This is because the feature matching algorithm and reservoir used by our method ensure
that we can get plenty of accurate matches from various frames for registration. This is to say, the
proposed method is robust to deviations in foreground extraction.
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5. Conclusions
In this paper, we have presented a multi-target independent analysis framework to implement 

non-planar infrared-visible video registration. The method finds foreground correspondences in 
order to match feature points more robustly and faster. To align multiple targets on different depth 
planes, we adopted a multi-target tracking method to assign a reservoir for each target. 

Figure 8. Noisy foreground frame pairs in the OTCBVS dataset and the registration results on these 
frames. The first row is infrared foregrounds and the second is visible foregrounds. The last row is 
the registration results on these pairs. 

For targets with different moving states, their frame-wide homography is estimated in different 
ways. Experimental results showed that the proposed framework could precisely register multiple 
targets on both near-planar and non-planar scenes. It also outperformed a recent state-of-the-art 
global registration method and the manual ground-truth. Furthermore, the experiments verified that 
our method is robust to foreground fragmentation. 
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Figure 8. Noisy foreground frame pairs in the OTCBVS dataset and the registration results on these
frames. The first row is infrared foregrounds and the second is visible foregrounds. The last row is the
registration results on these pairs.

5. Conclusions

In this paper, we have presented a multi-target independent analysis framework to implement
non-planar infrared-visible video registration. The method finds foreground correspondences in order
to match feature points more robustly and faster. To align multiple targets on different depth planes,
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we adopted a multi-target tracking method to assign a reservoir for each target. For targets with
different moving states, their frame-wide homography is estimated in different ways. Experimental
results showed that the proposed framework could precisely register multiple targets on both
near-planar and non-planar scenes. It also outperformed a recent state-of-the-art global registration
method and the manual ground-truth. Furthermore, the experiments verified that our method is
robust to foreground fragmentation.
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