Skip to main content
. Author manuscript; available in PMC: 2017 Sep 1.
Published in final edited form as: Phys Rev Lett. 2014 Mar 31;112(13):138101. doi: 10.1103/PhysRevLett.112.138101

FIG. 2.

FIG. 2

(color online). Analysis of rupture force distributions from a DNA unzipping force spectroscopy experiment (the AFM cantilever spring constant ≈2 pN/nm) [17] using three different models. The fits using Pλγ(f) (solid lines), based on our FB model, yield (Δx[nm], k0θ[s−1],λ[s−1]) = (1.1;0.017;2.8×10−5) for v = 8 nm/s and (0.66, 0.99, 0.48) for v = 1600 nm/s. The fits using Pcubic [ε(f)] = (k(ε)/γ) exp [(k0/γΔ x) × (1 − (k(ε)/k0−1=2)] (dashed lines) with k(ε)=k0ε1/2eΔG(1ε3/2) and ε(f) = 1–2f Δx/3ΔG [23] yield (Δ x[nm]; k0[s−1]; ΔG[pN·nm]) = (0.12;0.12;31.9) for v = 8 nm/s and (0.09,7.16,19.0) for v = 1600 nm/s. The fits using PBell(f)=γ1k0efΔx/kBT×exp(γ1k0kBT/Δx×(efΔx/kBT1)) (dotted lines) yield (Δx [nm]; k0[s−1]) = (0.49; 0.13) for v = 8 nm=s and (0.32, 8.19) for v = 1600 nm=s. Note that Pλ(f) describes the heavy tails of the distributions better than Pcubic(f) or PBell(f), implying that unbinding of these DNA duplexes by force cannot be accounted for using one-dimensional models.