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Abstract

Heterogeneity in biological molecules, resulting in molecule-to-molecule variations in their 

dynamics and function, is an emerging theme. To elucidate the consequences of heterogeneous 

behavior at the single molecule level, we propose an exactly solvable model in which the 

unfolding rate due to mechanical force depends parametrically on an auxiliary variable 

representing an entropy barrier arising from fluctuations in internal dynamics. When the rate of 

fluctuations—a measure of dynamical disorder—is comparable to or smaller than the rate of force-

induced unbinding, we show that there are two experimentally observable consequences: 

nonexponential survival probability at constant force, and a heavy-tailed rupture force distribution 

at constant loading rate. By fitting our analytical expressions to data from single molecule pulling 

experiments on proteins and DNA, we quantify the extent of disorder. We show that only by 

analyzing data over a wide range of forces and loading rates can the role of disorder due to internal 

dynamics be quantitatively assessed.

Complex systems, characterized by processes that occur over a wide spectrum of time and 

length scales, often exhibit heterogeneous behavior. Spin glasses with quenched randomness 

[1] and structural glasses in which randomness is self-generated [2,3] are two classic 

examples where heterogeneity is indicated by the violation of the law of large numbers [4]. 

These systems exhibit sub-sample to sub-sample variations in measurable quantities. For 

biological systems, it is increasingly becoming appreciated that there are cell-to-cell 

variations (on length scales ∼μm) [5–7] as well as molecule-to-molecule variations (∼nm 

scales). Manifestation of heterogeneous behavior on the μm length scale is easier to fathom 

than on the molecular scale. In a pioneering study, evidence for disorder in enzymes was 

presented using single molecule experiments [8]. Two recent studies [9,10] have further 

established that on the nm scale biological molecules display heterogeneity and broken 

ergodicity just as found in cells [11] and glasses [12]. Time traces generated using single 

molecule fluorescence energy transfer experiments on the Holliday junction, a mobile 

junction of four DNA strands involved in exchange of genetic information, showed that the 

conformational space is partitioned into disjoint basins of attraction [9]. Interconversions 

* hyeoncb@kias.re.kr. † thirum@umd.edu. 

PACS numbers: 87.10.-e, 82.37.-j, 87.80.Nj

HHS Public Access
Author manuscript
Phys Rev Lett. Author manuscript; available in PMC 2017 September 01.

Published in final edited form as:
Phys Rev Lett. 2014 April 04; 112(13): 138101. doi:10.1103/PhysRevLett.112.138101.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the basins do not occur on long time scales unless the system is annealed by first 

reducing the concentration of Mg2+ ions for a period of time, and then increasing Mg2+. 

More recently, it has been demonstrated that the speed of the DNA unwinding motor 

RecBCD varies from one molecule to another. Persistent heterogeneity in speed can be 

“reset” by an annealing protocol, which involves depleting and then reintroducing Mg2+-

ATP to the enzyme [10]. Both these experiments on unrelated systems show that there must 

be intrinsic disorder between chemically identical molecules.

If the dynamical variations from molecule to molecule in the Holliday junction and RecBCD 

helicase are due to disorder, then it should be possible to discern the consequences in single 

molecule pulling experiments, which probe the response of proteins and nucleic acids to 

mechanical force. Previously, such experiments have been particularly useful in directly 

measuring some features of the folding landscape [13–16] of biological molecules that are 

difficult to access by other methods. Here, we show two signatures of molecular disorder: 

deviations from exponential kinetics in force-induced unfolding of proteins [15,16], and the 

presence of fat tails in the distribution of rupture forces, P(f), characterizing the unzipping of 

DNA [17]. These features cannot be explained using standard theories, which involve 

crossing a one-dimensional free energy barrier in the presence of force. Instead, we propose 

a generic mechanism, based on a model coupling molecular disorder and function. As an 

illustration, consider the unbinding (or binding) kinetics of a ligand from a receptor 

molecule, where the dynamics depends on the time-varying conformation of the receptor 

(open or closed) [18]. The ligand is more tightly bound in the closed than in the open 

conformation. Depending on the gating rate λ (the frequency of transitions between the 

conformations) the ligand is expected to exhibit very different unbinding kinetics. If k is the 

mean rate of unbinding, and k/λ ≫ 1 or k/λ ≪ 1, the environment appears static to the 

ligand [18,19]. The ligand experiences either quenched disorder (k/λ ≫ 1), unbinding via 

parallel paths over a spectrum of multiple barriers, or annealed disorder (k/λ ≪ 1), 

unbinding via a single path over a rapidly averaging barrier. If , the gating 

produces a fluctuating environment along the dynamic pathway of the ligand and affects the 

unbinding process in a nontrivial fashion. This regime is often termed dynamic disorder 
[18,19]. The gating mechanism has been extensively studied in both experiments and 

theories in the context of oxygen binding to myoglobin [18,20,21]. The presence of 

dynamical disorder in the oxygen-myoglobin system results in a power-law decay of 

unreacted oxygen and a fractional order dependence of binding rate constant on solvent 

viscosity [20]. To account for the origin of this phenomenon, Zwanzig proposed a 

fluctuating bottleneck (FB) model [18], which considers a rate process controlled by passage 

through a bottleneck whose cross-sectional area, responsible for the reactivity, undergoes 

stochastic fluctuations.

While the frequency λ governing the internal dynamics, which is intrinsic to a molecule, 

can, in principle, be varied to a certain extent by changing viscosity [20], the unbinding rate 

k can be more easily altered by changing force f or the corresponding most probable force f* 

under the constant loading rate condition in single-molecule pulling experiments, thus 

providing a way to infer dynamic disorder. Here, we adopt Zwanzig’s FB concept as a 

general mechanism for probing the internal disorder in biological molecules, with explicit 
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experimental consequences. By fitting our analytical expressions to single-molecule force 

data, we extract a measure of dynamic disorder in proteins and DNA.

To model the effect of mechanical force on the dynamics of crossing a free energy barrier in 

the presence of molecular gating, we modified Zwanzig’s FB model [18] using an effective 

potential Ueff(x; r) = U (x; r) − fx that depends parametrically on r, the auxiliary variable 

characterizing the internal dynamics, and explicitly on the molecular extension x conjugate 

to the applied force, f [22]. The FB model is governed by two Langevin equations of motion:

(1)

where ζ is the friction coefficient along x. The precise functional form of U (x; r) is arbitrary 

except it should have a local minimum corresponding to a bound (folded) state at x = xb, 

separated by a free energy barrier at x = xts > xb from the unbound (unfolded) ensemble at 

large x. The variable r is the dimensionless bottleneck radius, imposed with a reflecting 

boundary condition at r = 0 to satisfy r ≥ 0 [18]. Both the noise-related random force Fx(t) 
along x and Fr(t), the stochastic fluctuation of r, satisfy the fluctuation-dissipation theorem: 

〈Fx(t) Fx(t′)〉= 2ζkBTδ(t − t′) and 〈Fr(t) Fr(t′)〉= 2λθδ (t − t′), with kBT being the thermal 

energy and 〈r2〉 ≡ θ. Forced unbinding occurs on first passage from xb to xts, with a rate K 
(f, r) that in general varies with both f and r. In traditional models of barrier crossing, there is 

no coupling between reaction dynamics in x and other degrees of freedom, so K only 

depends on f. For example, in the Bell approximation , where Δx‡ = xts − 

xb. In the FB model, the coupling to r is incorporated by making the reaction sink 

proportional to the area of the bottleneck, K(f, r) ≡ k(f)r2. The form of K (f, r) is physical for 

the applications here because the rate of unfolding of proteins or unzipping of DNA should 

increase as the solvent accessible area (∝ r2) increases. For simplicity, we assume the force 

dependence is described by the Bell approximation, , though the 

calculations below can be generalized to more complicated models where k(f) reflects 

movement of the transition state under force [22,23]. The Langevin equations in Eq. (1) can 

be translated into the following Smoluchowski equation (see Supplemental Material [24] for 

details):

(2)

where  is the mean probability of finding the system still bound (x < xts) with 

bottleneck value r at time t, and  [18,22]. Depending on whether f is 

constant or is a linearly varying quantity with time, i.e., f(t) = γt, our problem is classified 

into unbinding under force-clamp or force-ramp conditions, respectively.
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Force clamp

For a constant f, Eq. (2) for  solved analytically with a reflecting boundary condition 

at r = 0, and an initial condition  with r ≥ 0. The resulting survival 

probability  is an extension of the result by Zwanzig [18] in the 

presence of force, f [22]:

(3)

where S(f) ≡ (1 + (4k(f)θ/λ))1/2 and E ≡ e−2λS(f)t. In two asymptotic limits of λ, the 

expression for  becomes simple. (i) For4k(f)θ/λ ≪ 1,wehaveS ≈ 1 and the survival 

probability decays exponentially, , with k(f)θ acting as an effective 

rate constant. (ii) For 4k(f)θ/λ ≫ 1, we get S ≫ 1 and the survival probability exhibits a 

power-law decay,  at short times t ≪ [k(f)θλ]−1/2, changing over 

into an exponential decay with rate k(f)θ at long times t ≫ [k(f)θλ]−1/2. In the limit of 

quenched disorder, as λ → 0, the power-law decay extends to all times.

Using the Bell force dependence for k(f) in Eq. (3), we find S = (1 + eΛ(f))1/2, where Λ(f) = 

(Δx‡/kBT) ×(f − fcr) with fcr = (kBT/Δx‡) log (λ/4k0θ). Two limiting conditions arise: (i) For 

λ ≫ 4k0θ, Λ(f) changes sign from negative to positive at f = fcr. Therefore, as f is increased, 

a crossover occurs from an exponential kinetics with S ≈ 1 (f < fcr) to a power-law kinetics 

with S ≫ 1 (f > fcr). (ii) For λ ≪ 4k0θ, Λ(f) ≫ 1 and S ≫ 1; hence, the power-law behavior 

persists at all f.

Force ramp

In constant loading rate experiments, where the external force f = γt is ramped at a fixed rate 

γ, k(f) in Eq. (2) is time dependent, i.e., , where . Thus, 

 satisfies a Smoluchowski equation with a time-dependent sink, , 

with an initial condition , and a reflecting boundary condition 

. The survival probability at time t in this case can be analytically computed (see 

the Supplemental Material [24] for details of derivation), leading to the result

(4)
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where ρ ≡ βκ(t), , , ρ0 ≡ ρ(0), and 

. Here, 

Iβ(ρ) is a modified Bessel function of the first kind,  when β is not an integer, 

and , when β is an integer, where Kβ(ρ) is a modified Bessel function of the 

second kind. An analytical, but rather complicated expression for the rupture force 

distribution  is obtained from  (see [24]). As will be 

discussed below, the distributions  for finite λ exhibit fat tails at large f, a consequence 

of disorder. By fitting the theoretical expression for  (Eq. S19 in [24]) to measured 

force distribution data, one should be able to quantify the extent of disorder in terms of λ.

In the two limits of λ → ∞ and 0, one can obtain explicit expressions for the most probable 

rupture force f* as a function of : for λ → ∞, , while for λ → 

0,  (see [24]). The latter equation is valid 

when . For λ → 0 and ,  is peaked at f = 0. The presence of finite 

probability at f = 0 is due to unfolding through spontaneous transitions [25]. The difference 

in f* between the two asymptotic limits of λ is maximized when  (illustrated in Fig. 

S1E using synthetic data), but disappears for sufficiently high loading rates, . In 

conventional dynamic force spectroscopy (DFS) theory, f* is linear in log γ. However, a 

positive curvature often develops when the force response of the molecule is ductile and, 

hence, the transition state location moves towards the bound state [22,26,27]. We predict that 

if a system has disorder, negative curvature should be discernible at low loading rates in the 

f* versus log γ plot especially for f* ≈ 0 when disorder is quenched, i.e., λ → 0 (see Fig. 

S1E [24]). Besides fitting  to force distribution data, a careful investigation of f* vs log 

γ plots at small γ could be useful to capture the fingerprints of dynamical disorder.

We use our theory, derived from a single model, to analyze two representative sets of force 

data, one from a force-clamp and one from a force-ramp experiment.

Polyubiquitin stretching

The first is polyubiqutin stretched at constant f in AFM, where the survival probabilities 

Σf(t), obtained from dwell time analysis, exhibited nonexponential decay [15,16]. The 

experimental data were further interpreted using a Gaussian distribution for free energy 

barriers and transition state locations separating the folded and unfolded states of ubiquitin 

[16]. We find that the physics of the measured nonexponential decay can be quanitatively 

explained using our theory [Eq. (3)] based on the FB model. The almost exact fit of the 

theory to experiment for  at f = 110 pN in Fig. 1(a) shows the presence of dynamical 

disorder.

For polyproteins (used in AFM experiments) there are two possible origins for disorder: (i) 

couplings between neighboring modules and (ii) disorder inherent to each module. Because 

a simple statistical relationship such as binomial factorization associated with the kinetics of 

Hyeon et al. Page 5

Phys Rev Lett. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individual modules [28] is expected to break down for the scenario (i), experiments that 

change the number of modules can discriminate between the two scenarios. Regardless of 

the origin of heterogeneity, our theory can be used to extract the parameters characterizing 

disorder effects.

If the bottleneck represents molecular gating or breathing dynamics in a multimodular 

construct of polyubiquitin, λ should, in principle, be an increasing function of f. As the 

applied tension increases, the amplitude of transverse fluctuations decreases, hence, 

increasing the corresponding frequency. Even in the Bell model, the extracted parameters 

Δx‡ and k0 should be interpreted as capturing the geometry of the landscape, which changes 

with f [22,26]. From the fits of Σ(t) at different values of force we extracted k(f)θ and λ at 

each f [bottom of Fig. 1(b)]. The effective rate constant k(f)θ changes exponentially with f, 
in accord with the Bell model. By using log k(f)θ = log k0θ + (Δx‡/kBT)f we obtain Δx‡ = 

0.24 nm and k0θ = 0.13 s−1. The value of Δx‡ is in excellent agreement with experimental 

measurements [16]. Interestingly, we also find a rough exponentially increasing trend in λ 
with f. The increase of λ implies that the rate of change of the accessible surface increases 

as f increases, supporting our physical intuition about the influence of f on the internal 

dynamics. A nonexponential Σf(t) in the force-clamp condition corresponds to a heavy tailed 

P(f) in the force-ramp condition. The parameters determined for polyubiquitin satisfy λ/

4k0θ ≪ 1 for all f values [Fig. 1 (b)]. Therefore, a heavy tailed P(f) will manifest itself over 

the entire range of  that gives rise to the 

most probable forces f* = 80 – 200 pN.

Unbinding of DNA duplexes

The effects of disorder manifest themselves dramatically in unzipping experiments on DNA 

duplexes between 5′–GGCTCCCTTCTACCACTGACATCGCAACGG–3′ and 3′ – 

TAGCGTTGCC – 5′, where underlined sequences are complimentary to each other [17]. 

The measured rupture force distributions have heavy tails at high f, though the physical 

reasons for the tails were not discussed in the original paper. Figure 2 shows the unzipping 

force distribution at two pulling speeds, 8 nm/s and 1600 nm/s, and fits using our model, 

compared to two other models commonly employed in analyzing DFS experiments. It is 

clear that our theory for  using the FB model most accurately fits the force data. Two 

other models, based on the Bell model [29] and a cubic potential [23], fail to capture the tail 

part of the data because they incorporate no disorder, only unbinding through a one-

dimensional free energy profile. For 8 nm/s, the gating frequencies are almost zero (λ ≈ 2.8 

× 10−5 s−1). However, λ increases by nearly 4 orders of magnitude to λ = 0.48 s−1 at v = 

1600 nm/s. Given that the bubble dynamics of a DNA duplex occur with a characteristic 

time scale of ~50 μs [30], our extracted λ values are too small for the breathing motion of 

base pairs to be a source of disorder. It is more reasonable to surmise that each duplex is 

pulled from starkly different and very slowly interconverting conformations, similar to that 

found in Holliday junctions and RecBCD. The origin of this disorder is likely to be in the 

heterogeneity of base pairings, although the experiment was intended to probe the unbinding 

dynamics from a homogeneous sample made of two DNA strands with perfect 

complimentarity. The large increase in λ as v increases suggests that tension facilitates 
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interconversion between states, which accords well with the expectation that force lowers 

barriers between distinct bound states.

Applications of our theory reveal that by analyzing data from single-molecule pulling 

experiments over a range of forces, loading rates, and temperatures [31] one can infer the 

role that dynamical disorder, intrinsic to the molecule, plays in unfolding or unbinding 

kinetics. The observed nonexponential kinetics in survival probability or fat tails in the 

unfolding force distributions cannot be captured by theories based on one-dimensional free 

energy profiles. Our work shows that by using an auxiliary coordinate in addition to 

extension [32] we can quantitatively predict the consequences of disorder in the dynamics of 

biological molecules. The theory provides a conceptual framework for analyzing future 

single molecule pulling experiments on complexes involving proteins, DNA, and RNA in 

which heterogeneity is sure to play a prominent role.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
(color online). Interpretation of polyubiquitin data at constant force using the FB model. (a) 

Survival probability constructed from dwell time analysis of polyubiquitin data in a force 

clamp at f = 110 pN (digitized from Fig. 1 in Ref. [16]). The line is the fit using Eq. (3). The 

inset shows Σf(t) using a logarithmic scale. (b) (top) Solid lines show our theoretical fits to 

the survival probability data (colored circles obtained by digitizing the results in Fig. 2 in 

Ref. [16]) at different values of the force f = 90–190 pN. The extracted parameters k(f)θ (red 

circles), λ (blue diamonds), and their ratio λ/4k0θ are plotted against f on the two panels at 

the bottom.
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FIG. 2. 
(color online). Analysis of rupture force distributions from a DNA unzipping force 

spectroscopy experiment (the AFM cantilever spring constant ≈2 pN/nm) [17] using three 

different models. The fits using  (solid lines), based on our FB model, yield (Δx‡[nm], 

k0θ[s−1],λ[s−1]) = (1.1;0.017;2.8×10−5) for v = 8 nm/s and (0.66, 0.99, 0.48) for v = 1600 

nm/s. The fits using Pcubic [ε(f)] = (k(ε)/γ) exp [(k0/γΔ x‡) × (1 − (k(ε)/k0)ε−1=2)] (dashed 

lines) with  and ε(f) = 1–2f Δx‡/3ΔG‡ [23] yield (Δ x‡[nm]; k0[s−1]; 

ΔG‡[pN·nm]) = (0.12;0.12;31.9) for v = 8 nm/s and (0.09,7.16,19.0) for v = 1600 nm/s. The 

fits using  (dotted 

lines) yield (Δx‡ [nm]; k0[s−1]) = (0.49; 0.13) for v = 8 nm=s and (0.32, 8.19) for v = 1600 

nm=s. Note that Pλ(f) describes the heavy tails of the distributions better than Pcubic(f) or 

PBell(f), implying that unbinding of these DNA duplexes by force cannot be accounted for 

using one-dimensional models.
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