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Abstract

Parahydrogen is an inexpensive and readily available source of hyperpolarization used to enhance 

magnetic resonance signals by up to 4 orders of magnitude above thermal signals obtained at ~10 

T. A significant challenge for applications is fast signal decay after hyperpolarization. Here, we 

use parahydrogen based polarization transfer catalysis at micro-Tesla fields (first introduced as 

SABRE-SHEATH) to hyperpolarize 13C2 spin pairs and find decay time constants of 12 s for 

magnetization at 0.3 mT, which are extended to 2 minutes at that same field, when long-lived 

singlet states are hyperpolarized instead. Enhancements over thermal at 8.5 T are between 30 and 

170 fold (0.02% to 0.12% polarization). We control the spin dynamics of polarization transfer by 

choice of μT field allowing for deliberate hyperpolarization of either magnetization or long-lived 

singlet states. Density functional theory (DFT) calculations and experimental evidence identify 

two energetically close mechanisms for polarization transfer: First, a model that involves direct 

binding of the 13C2 pair to the polarization transfer catalyst (PTC), and second, a model 

transferring polarization through auxiliary protons in substrates.
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Nuclear spin hyperpolarization is an intriguing research area, because of its ability to 

enhance nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) signals 

by multiple orders of magnitude.1–5 Hyperpolarization methods are particularly useful if 

they can enhance signals from heteronuclei such as 13C or 15N because they can be installed 

in a wide range of biomolecules, and they retain hyperpolarization on extended 

timescales.6–14 At the same time, hyperpolarization of protons also has particular 

advantages, which stem from higher sensitivity and 100% natural abundance. A particularly 

simple hyperpolarization technique is para-H2 induced polarization (PHIP).15–16 Especially, 

when implemented as Signal Amplification By Reversible Exchange (SABRE) it allows for 

continuous and rapid hyperpolarization directly in solutions.17–18 In the SABRE procedure, 

para-H2 and the target (i.e. to-be-hyperpolarized) molecules bind reversibly with an iridium-

based hexacoordinate catalyst19. At specific magnetic fields, polarization will transfer from 

para-H2 to spins on the target molecule driven by J-coupling interactions, for example ~6.5 

mT is ideal to hyperpolarize proton spins.17–18 On the other hand, heteronuclei 

(e.g. 15N, 31P, 13C) are best magnetized in microTesla fields established in magnetically 

shielded environments, 20–22 an approach that was coined SABRE-SHEATH (SABRE in 

Shield Enable Alignment Transfer to Heteronuclei).

However, if the goal is to hyperpolarize long-lived singlet states,6, 23–27 the picture changes 

slightly because the conditions for the transfer of scalar order have a different field 

dependence. For example, it has been shown that the singlet state of the 15N2 spin pair of 

diazirines is hyperpolarized over a relatively wide range of magnetic fields between a few 

μT to about 100 mT.28 These hyperpolarized nuclear spin singlet states of 15N2 diazirines 

display relaxation time constants of above 20 minutes. Similarly, SABRE was used to 

hyperpolarize long-lived singlet states on 1H2-pairs,29–30 where polarization decay time 

constants of above 4 min were observed.31 Such long hyperpolarization lifetime promises 

biomolecular tracking and imaging of low concentration analytes on significantly extended 

timescales. In this article, we use SABRE-SHEATH, to hyperpolarize magnetization as well 

as long-lived nuclear singlet states in carbon-13 spin pairs and find lifetime T1 of 12 s for 

magnetization and TS of 2 min for long-lived singlet states at 0.3 mT. Here it is important to 
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note, that the current record of a long-lived singlet state is held by a 13C2 spin pair 

(hyperpolarized by DNP, not SABRE) with lifetime, TS, of more than one hour.6

For the presented experiments, we designed two molecules with various isotopic labeling 

schemes. We synthesized 1,2-(4-pyridyl) acetylene, with symmetric structure, and 1-

phenyl-2-(4-pyridyl) acetylene, with asymmetric structure. For both, we consider 

isotopomers with naturally abundant 13C, as well as doubly 13C labeled substrates at the 

triple bond. The results presented in Figure 1 indicate that the acetylene carbon spins as well 

as the aromatic bridge carbon spins are hyperpolarized. The enhancements are between 30 to 

170 fold (0.02% to 0.12% polarization), when compared to thermal signals acquired at 8.45 

T. The molecules with 13C at natural abundance show 2–3 times higher enhancements 

compared to 13C enriched sites. This is likely due to faster T1 relaxation in 13C2 pairs as 

opposed to T1 of isolated 13C spins. An additional cause may simply be the higher ratio of 

polarization source (p-H2) to target spins in the naturally abundant case.32

The hyperpolarization transfer from para-H2 to these substrates occurs via iridium based 

polarization transfer catalysts (PTC’s). We used the standard precatalyst [IrCl(IMes)(COD)], 

(IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene; COD = cyclooctadiene).18–19 

We used substrate concentrations of 30 mM or 160 mM, and catalyst concentrations of 2 

mM or 10 mM for the symmetric and asymmetric compounds respectively. The solvent was 

methanol-d4, and the pre-catalyst was activated by bubbling para-H2 through the sample for 

15 minutes at a pressure of 7 bar and a fractional parahydrogen enrichment of ~85%. 

Thereafter, hyperpolarization was performed according to the SABRE-SHEATH 

procedure:10, 20, 28 the sample is exposed to para-H2 in a magnetically shielded environment 

outfitted with a small solenoid coil to obtain a controllable μT magnetic field. One minute of 

exposure to para-H2 is sufficient to equilibrate polarization. Subsequently, the sample is 

transferred manually as quickly as possible (~ 8 s) to a Bruker 360 MHz (8.45T) magnet for 

read out. The manual transfer time of 8 s is relatively consistent, with variations of ~1 s.

The polarization transfer occurs in catalytically active PTC’s. Two possible, energetically 

low PTC species are depicted in Figure 2. The ground state energies were determined by 

density functional theory calculations using the all-electron FHI-aims code.33 The 

geometries were optimized using the PBE parameterization of exchange and correlation34 

with a van der Waals correction35 and the tier 2 basis sets33, 36. Scalar relativity was handled 

in the atomic ZORA approximation. 33 Additional possible configurations and the 

corresponding PTC-energy landscape are provided in the Supplemental Information (SI). 

Furthermore, we provide 1H-NMR spectra of the hyperpolarized hydrides bound to the 

Iridium center demonstrating the presence of at least two catalytic species. In this first study, 

we were not able to detect hyperpolarized 13C signals from molecules bound to the Iridium 

molecules. Therefore, we rely on more indirect evidence coupled with ab initio calculations 

to determine likely PTC structures.

In the first PTC model (Figure 2A), all substrate molecules bind to the Ir center via nitrogen. 

This is the energetically lowest PTC species identified by us. Here, polarization transfers 

from para-H2 to the pyridyl protons first and finally arrives at the acetylenic carbons. In the 
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second PTC model (Figure 2B), the catalyst binds with the triple bond and polarization is 

transferred directly to 13C sites.

The spectra displayed in Figure 1 could quickly lead to the conclusion, that the active PTC 

must be the directly binding model (Figure 2B), because we do not observe 

hyperpolarization from the ring carbons, other than from those in the bridge to the acetylene 

bond. Moreover, we observe hydrogenation, which most certainly requires binding of the 

triple bond to the iridium center. Hydrogenation rates depend on the ratio of substrate to 

catalyst: at 3:1 hydrogenation completes in less than 30 minutes, however at above 15:1, 

hydrogenation takes more than 12 h. In a single SABRE experiment (with 1 min of 

bubbling) we estimate significantly less than 1% hydrogenation at the 15:1 ratio, which was 

used for most experiments. We even observe hyperpolarized hydrogenation products that 

display typical ALTADENA type enhancements due to incorporation of para-H2 (spectra 

provided in the SI), still, keeping in mind that the displayed spectra of Fig. 1 must all result 

from SABRE as they are uniquely associated with the intact, non-hydrogenated substrates.

However, these conclusions may be premature. First, the PTC on of Figure 2A is 

energetically lower. Furthermore, notice that all non-detected 13C spins are directly bound to 

protons. This leads to much faster 13C relaxation (a typical T1 relaxation time for 

aromatic 13C directly bound to a proton is ~5s see Ref.37, whereas T1 relaxation constants of 

the bridge carbons are found to be 11(1) s and T1 of the acetylenic carbons is 12(0.5) s at 

low fields) with two important consequences. First, the hyperpolarization buildup at 

these 13C sites will be much less efficient, and second, a small amount of hyperpolarization 

may quickly relax during the ~8 s sample transfer from polarization region into the magnet. 

In addition, we performed SABRE under optimized condition for 1H polarization transfer at 

6.5 mT, and this resulted in strong enhancement of the pyridyl ring protons, while 

enhancement of 13C were negligible and 1H enhancements on the distant phenyl ring were 

much smaller. Though bound species are never observed from the 13C spectra, the hydride 

peaks are available in the SI. We observe a small chemical shift difference of the hydride 

peaks (~0.2 ppm, which would be much larger for the binding mode in Figure 2B based on 

DFT calculation). Finally, we attempted to hyperpolarize diphenyl-13C2-acetylene (no ring 

nitrogens) in the SABRE-SHEATH mode and did not observe enhancements. All these 

considerations point to a strong contribution of the PTC shown in Figure 2A.

To investigate this in more detail, we performed a careful characterization of 

hyperpolarization transfer as function of micro-Tesla field using the doubly 13C labeled 

molecules. As depicted in Figure 3, we varied the magnetic field between −12 and +12 μT, 

accompanied by simulations of the hyperpolarization transfer process.

The first important finding is that we can directly choose to polarize different states of 

the 13C pair: magnetization or singlet, which are easily distinguishable by their spectra. 

Magnetization is easily detected from both molecules (Figure 3 A1, B1), whereas singlet-

order can only be detected immediately from the asymmetric 1-phenyl-2-(4-pyridyl) 

acetylene because the acetylenic carbons have a chemical shift difference (Figure 1C). For 

this asymmetric compound, the acetylenic carbons are strongly coupled at low fields (JCC is 

~185 Hz, whereas their chemical shift difference ΔνC is less than 0.5 mHz). Upon transfer 
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to the high field in the magnet (8.45 T) for read out, the chemical shift difference becomes 

significantly larger than the JCC coupling (ΔνC ~770 Hz), the carbons are now weakly 

coupled, and the singlet state is no longer an eigenstate. The sample transfer from low to 

high field transforms I1·I2 singlet order into detectable (I1z – I2z) which gives antiphase 

signals in a pulse acquire experiment, as shown in Figure 3 (B4) (Full analysis of singlet 

order transfer is provided in the SI). However, for the symmetric molecule, since the two 

carbons will remain symmetric at high field, the singlet state cannot be accessed 

immediately. In principle, access to the singlet can be accomplished by specialized pulse 

sequences such as singlet-to-magnetization (S2M)38–39 or SLIC,40–41 yet this is beyond the 

scope of the present work.

In order to understand the polarization transfer dynamics at micro-Tesla fields in detail, we 

consider resonance conditions dictated by the Hamiltonian of the doubly 13C labeled 

molecule. As detailed in the SI, at low fields of <0.6 μT, we encounter a resonance condition 

to polarize magnetization, given as

(Eq.1)

where νH and νC are the frequencies of protons and carbons and JHH is the J-coupling 

between the two para-H2 derived hydrides on the iridium. When solved for the magnetic 

field using ν = −γB we obtain the magnetization transfer field as

(Eq. 2)

where γH=42.577 Hz/μT and γC=10.705 Hz/μT. When the field is increased to a few μT, 

additional resonance conditions to create magnetization and/or singlet are encountered. The 

Hamiltonian reveals overlapping conditions to create magnetization and singlet given as

(Eq. 3)

where JCC is the acetylenic 13C J-coupling. Again, solving for the transfer field we obtain:

(Eq. 4)

Equations (1,2) and (3,4) fully encompass the behavior observed in Figure 3. In the low field 

region, maximum magnetization transfer is observed at ~ ± 0.34(0.1) μT, whereas there is 

negligible singlet buildup. At slightly elevated fields, both magnetization and singlet have 

local maxima/minima at ~ ±5.6(0.2) μT and ~ ±6.4(0.2) μT (see Fig. 3B). These values are 

consistent with JHH ~ 10(3) Hz, and JCC ~190(5) Hz. JCC can also be estimated from the 
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hyperpolarized NMR spectrum of the free form where we find JCC = 185 Hz (see Fig. 1 

panel D).

By numerical simulations of the spin dynamics we confirm that the general behavior is 

largely independent of the polarization transfer mechanism (direct to 13C2 (Fig. 2B) vs. 

indirect via auxiliary protons (Figure 2A); see SI for details). However, the numerical value 

of JCC strongly depends on the exact nature of the PTC. We have performed first principles 

calculations of the relevant J-couplings using the FHI-aims code.33 We used the PBE34 

parameterization for exchange and correlation and the fully uncontracted cc-Pv5Z42 basis 

sets (tier 2 for iridium33). The ab initio calculations predict a JCC of ~191 Hz for substrate 

bound via nitrogen (Figure 2A) vs. a JCC of 120 Hz for substrate bound directly via the 

acetylenic bond (see full details in the SI). Based on the measurements shown in Figure 3, 

we can now conclude with more confidence that the primary PTC is the energetically 

favored species shown in Figure 2A because for the PTC in 2B we would expect efficient 

hyperpolarization at significantly lower fields of 3.5±0.3 μT, which is not observed.

Finally, since the asymmetric molecule allows for easy read out of, both, singlet state and 

magnetization, we can measure their lifetimes TS or T1. As displayed in Figure 4, we 

measured TS at 0.3 mT and 50 mT, and fit with exponential decay constants of 117(7) s and 

69(4) s respectively. For comparison, we measured T1 at the field where it has longer TS (0.3 

mT) and find that magnetization decays much more rapidly with exponential decay constant 

T1 of 12(.5) s. The T1 lifetime of the 13C2 pair at 8.45T is measured as 8(0.4) s.

In conclusion, we demonstrated that, both magnetization and long-lived singlet order can be 

induced on 13C2 using SABRE-SHEATH. Hyperpolarization lifetime is extended to ~2 

minutes, or 10 times T1. Furthermore, we describe direct hyperpolarization of long-lived 

singlet order by SABRE-SHEATH when the J-coupling in the targeted spin pair is much 

larger than the JHH coupling between the hydrides. This is in contrast to the first 

demonstration, of heteronuclear (15N2) long-lived states hyperpolarized by SABRE, where 

JNN and JHH were comparable in size leading to a resonance condition that is matched at a 

broad range of fields,28 raising the question if long-lived states could be hyperpolarized 

when JNN or JCC are much larger. Here we have shown that specific μT-fields work in that 

case. Hyperpolarization levels and enhancements remained relatively low in this first 

demonstration. A likely culprit are the quadrupolar 14N nuclei, as we are finding that 

quadrupoles act as highly efficient polarization sinks at μT fields. Therefore, we could likely 

boost hyperpolarization by additional 15N labeling of our substrates and other strategies 

detailed in the literature.43–45 Finally, we have also assembled clear evidence for at least two 

potential PTC species that simultaneously exist in solution and we presented arguments that 

lead us to believe that polarization transfer is primarily mediated indirectly via protons in the 

substrates. Overall, the presented results illustrate an avenue towards simple and fast 

hyperpolarization of long-lived 13C hyperpolarization with potential applications in 

biomolecular MRI or the observation of slower processes by hyperpolarized NMR. The 

presented advances can be translated to biomolecules already shown to be amenable to 

heteronuclear SABRE hyperpolarization including nicotinamide20, 46, in vivo pH sensor 

imidazole47, hypoxia sensor metronidazole43 and others.10, 48 While the current work was 

performed in methanol solutions, recent advances in heterogeneous49–50 and water-
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soluble51–56 SABRE catalysis may lead to in vivo translation of the presented approach for 

fast hyperpolarization of long-lived 13C molecular probes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
13C spectra of naturally abundant (A&B) and 13C labelled (C&D) substrates used in 

experiments. A&C show results for the symmetrically substituted 1,2-2 pyridyl acetylene. 

B&D are from the asymmetrically substituted 1-phenyl-2-(4-pyridyl) acetylene. For the 

naturally abundant substrates the bridge carbons on the pyridyl rings (3, 4 in A, 3 in B) show 

significant enhancement, while the one on the benzene ring (4 in B) is only slightly 

hyperpolarized. The 13C-13C coupling, JCC, read from the line-splitting in panel D is 185 

Hz. (The SI also provides a thermal spectrum in Fig. S2.)
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Figure 2. 
Two possible polarization transfer catalysts (PTC’s). Top: 3D models obtained after energy 

minimization in the all electron code FHI-aims. Bottom: Structural formulas of the PTCs for 

clarity. A) The substrate is bound to all Ir binding sites via nitrogen. B) One of the 

molecules’ triple bond binds to the iridium catalyst, which has a higher energy than the 

structure in A. DFT calculations reveal that the energy difference between the two proposed 

complexes is relatively small (0.09 eV). Other possible complexes (with higher energies) are 

discussed in the SI.
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Figure 3. 
Field dependent hyperpolarization for the two substrates. Panel A shows (1) a 

hyperpolarized magnetization spectrum hyperpolarized at 0.17 μT (and acquired at 8.45 T) 

for the symmetric substrate and (2) its field dependence in the μT range. Panel B shows the 

experimental and simulated results of creating magnetization and singlet order for the 

asymmetric substrate, as function of magnetic field; (1) Magnetization spectrum 

hyperpolarized at 0.28 μT. (2) Experimental and (3) simulated field dependence for 

magnetization. (4) Singlet spectrum hyperpolarized at 6.2 μT. (5) Experimental and (6) 

simulated field dependence for singlet order. In (B3) and (B6), the highlighted points are the 

local maxima for polarization transfer labeled by analytically derived resonance conditions 

from careful inspection of the nuclear-spin Hamiltonian provided in the SI.
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Figure 4. 
T1 and TS measurements of 1-phenyl-2-(4-pyridyl) acetylene. For all measurements, the 

sample was first hyperpolarized in the shield using 0.4 μT (polarize magnetization) / 6 μT 

(polarize singlet order) then positioned at 0.3 mT or 50 mT. After varying delay times the 

sample was transferred to the magnet quickly to measure the remaining signal. The data 

points were sampled randomly to eliminate the effect of the slow triple bond hydrogenation, 

and the lifetime constants were obtained using single exponential fit.
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