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Genes in the major histocompatibility complex (MHC, also known as HLA) play a critical role in the immune response and

variation within the extended 4-Mb region shows association with major risks of many diseases. Yet, deciphering the under-

lying causes of these associations is difficult because theMHC is the most polymorphic region of the genome with a complex

linkage disequilibrium structure. Here, we reconstruct full MHC haplotypes from de novo assembled trios without relying

on a reference genome and perform evolutionary analyses. We report 100 full MHC haplotypes and call a large set of struc-

tural variants in the regions for future use in imputation with GWAS data. We also present the first complete analysis of the

recombination landscape in the entire region and show how balancing selection at classical genes have linked effects on the

frequency of variants throughout the region.

[Supplemental material is available for this article.]

The major histocompatibility complex covers 4 Mb on Chromo-
some 6 and is the most polymorphic part of the human genome.
Most of approximately 200 genes in the region are directly in-
volved with the immune system. The high diversity is thought
to be driven by balancing selection acting on several individual
genes combined with an overall small recombination rate in the
MHC (DeGiorgio et al. 2014). Genome-wide association studies
have revealed theMHC to be themost important region in the hu-
man genome for disease associations, in particular for autoim-
mune diseases (Trowsdale and Knight 2013; Zhou et al. 2016).

The very high diversity and wide-ranging linkage disequili-
brium (LD) makes it difficult to disentangle selective forces and
to accurately pinpoint the variants responsible for disease associa-
tions. Many regions are too variable for reliable identification of
variants from mapping of short reads to the human reference ge-
nome. LD causesmultiple nearby variants to provide the same stat-
istical evidence of association hampering the identification of
causal variants. In addition to the human genome reference
MHC haplotype, seven other haplotypes have been sequenced
(Horton et al. 2008), although six of these are incomplete, and ex-
ploiting these significantly improves mapping performance
(Dilthey et al. 2015, 2016). There is a strong need for obtaining a
larger number of full MHC haplotypes, which requires de novo as-
sembly of the haplotypes without the use of a reference genome.
Long-read technology and refined capturemethods are potentially
very powerful (Chaisson et al. 2015; English et al. 2015; Selvaraj
et al. 2015), but these approaches are still prohibitively expensive
at a large scale.

The Danish Pan-Genome project (Maretty et al. 2017) was de-
signed to perform individual de novo assembly of 50 parent–child

trios sequenced to high depth with multiple insert size libraries.
We use data from 25 of these trios to reconstruct and analyze the
four parental MHC haplotypes in each trio (100 haplotypes in to-
tal). Our approach combines the de novo assemblies with trans-
mission information, read-backed phasing, and joint analysis of
each trio. Our final set of 100 full MHChaplotypes have <2%miss-
ing data and >92% of all variants phased. We recently reported
that we found a total of 701 kb of novel sequence in these haplo-
types and that some of these segments are large (3–6 kb) and
common in our haplotypes (present in 22%–26% of parental hap-
lotypes) (Maretty et al. 2017). Here, we describe our method of
assembly and phasing in detail and perform an evolutionary anal-
ysis of the resulting haplotypes.

Results

Assembly of 100 full MHC haplotypes

Our assembly approachwas designed to circumvent the challenges
in mapping short reads to a reference sequence. Through several
steps, we leverage transmission information and read-backedphas-
ing to create candidate haplotypes to which we can map reads.
Because the candidate haplotypes were created from the reads
themselves, subsequentmapping ismore successful thanmapping
to the reference genome, and phasing is improved. The procedure
of mapping and phasing is iterated, as each inferred phased haplo-
type improves mapping and in turn phasing.

Figure 1 shows a schematic of our pipeline. The starting point
is a set of scaffolds for each individual, de novo assembled using
ALLPATHS-LG (Gnerre et al. 2011) on genomes sequenced to
78× by multiple insert size libraries (Maretty et al. 2017).

We extracted scaffolds mapping with at least 50 kb to the
MHC region (the number of scaffolds ranges from 1 to 8 across in-
dividuals) (Supplemental Fig. S1a) and concatenated these to

5A full list of Consortiummembers and their affiliations is available at
the end of the text.
Corresponding authors: jmj@birc.au.dk, mheide@birc.au.dk
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.218891.116.
Freely available online through the Genome Research Open Access option.

© 2017 Jensen et al. This article, published inGenome Research, is available un-
der a Creative Commons License (Attribution 4.0 International), as described at
http://creativecommons.org/licenses/by/4.0/.

Resource

27:1597–1607 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/17; www.genome.org Genome Research 1597
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.218891.116/-/DC1
mailto:jmj@birc.au.dk
mailto:jmj@birc.au.dk
mailto:jmj@birc.au.dk
mailto:mheide@birc.au.dk
mailto:mheide@birc.au.dk
mailto:mheide@birc.au.dk
http://www.genome.org/cgi/doi/10.1101/gr.218891.116
http://www.genome.org/cgi/doi/10.1101/gr.218891.116
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


create diploid consensus scaffolds including bubbles in the assem-
bly graph (step 2). For each trio, >77% of the bubbles in the align-
ment graphs were phased without Mendelian violation using the
sequence immediately upstream of and downstream from each

bubble to find exact matches within the trio (step 3). After phas-
ing, we created a sequence for each nontransmitted parental hap-
lotype and created a consensus sequence between transmitted
parental haplotypes and inherited child haplotypes by multiple

Figure 1. Assembly of 100 full MHC haplotypes. Schematic showing the construction ofMHC haplotypes. Genomes in trios are de novo assembled using
ALLPATHS-LG (step 1). Scaffolds larger than 50 kb mapping to the MHC are extracted and concatenated, creating diploid consensus scaffolds (step 2).
Bubbles in the alignment graphs for individuals in the trio aremapped uniquely within the trio by exact matching of the sequence upstream of the bubbles
(step 3). Global alignment between phased bubbles is used to create a consensus sequence between transmitted parental and inherited child haplotype
sequences (steps 4 and 5). Reads from parents and child are then mapped to the consensus sequence, genotyped, and phased (step 6), gaps are closed
(step 7), and reads are mapped again for another iteration of mapping, genotyping, and phasing (step 8).
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global alignments of segments between phased bubbles (steps 4
and 5). We then mapped reads to the transmitted (consensus)
haplotypes and genotyped and phased them using transmission
information and read-backed phasing (step 6). We then closed
gaps to obtain full-length haplotypes with <2% gaps (step 7)
(Supplemental Fig. S1b). A second iteration of mapping, genotyp-
ing, and phasing resulted in phasing of >92% of the variants in
the transmitted haplotypes, of which >80% were mapped back
to the nontransmitted haplotype using exact matching (step 8)
(Supplemental Fig. S1c). We evaluated the accuracy of variant call-
ing and phasing by cloning and Sanger sequencing of five clones
from 75 random fragments from highly polymorphic regions con-
taining between two and 10 variants (204 variants in total). We
found a validation rate of 86% (for details, see Supplemental Table
S1) for the phase of the variants.

We used simulations to further evaluate the power and accu-
racy of our approach by simulating reads in an artificial trio with
known MHC haplotypes, reconstructing the haplotypes using
our pipeline, and comparing these to the original haplotypes.
We simulated reads from a trio with four of the different reference
haplotypes—pgf andmcf in the mother, cox and qbl in the father,
and pgf and cox in the child. Reads were simulated to exactly re-
flect the coverage, insert size distribution, and error profile as our
own sequencing. De novo assembly and inference of phased hap-
lotypes were then done in exactly the sameway as for the real data
using our pipeline outlined in Figure 1; we then investigated
whether we could separately recover the cox and the pgf haplo-
types in the child. Supplemental Figure S2, a and b, shows that al-
though the initial assembly in the child is a mixture of the two
haplotypes, the final haplotypes generally align over the whole re-
gion with pgf and cox, respectively, showing that the pipeline has
phased them. We found that 91.6% of the haplotypes aligned to
the correct haplotypes (Supplemental Fig. S2b), and the lengths
of incorrectly phased segments were generally very short com-
pared to the correctly phased segments (Supplemental Fig. S2c).
Because collapse of paralogous or repetitive sequence might be a
likely error mode in the assembled haplotypes (Alkan et al.
2011), we calculated the content of Alu and LINE-1 repetitive ele-
ments as ameasure of the amount of collapsed repetitive sequence
in the eight reference haplotypes, our simulated haplotypes, and
our 100 new haplotypes. We found that both our simulated and
new haplotypes have Alu and LINE-1 content similar to the refer-
ence haplotype, and the variation among haplotypes in Alu and
LINE-1 content is considerable (Supplemental Fig. S3). The six in-
complete reference haplotypes all show a strong deficiency in
these elements.

The length of the 100 individual haplotypes range from4.5 to
5.2 Mb (Supplemental Fig. S1d), and missing data in the haplo-
types range between 0.2% and 2% (Supplemental Fig. S1e). The
distribution of missing data over the MHC region is shown in
Supplemental Figure S4. It also shows that there are large blocks
ofmissing data in six of the eight haplotypes suppliedwith the ref-
erence genome.

To visualize the differences among our haplotypes, we
aligned them one by one to the pgf and cox reference haplotypes
from hg38 using MAFFT (Katoh and Standley 2013) and scored
the percentage of differences in the alignment in 10-kb windows
along the MHC. Figure 2 shows a heat plot of differences with
the pgf haplotype (a similar heat plot against cox is found in
Supplemental Fig. S5).

The six existing haplotypes from the human reference ge-
nome are included for comparison, showing that these contain

many sequencing gaps. In contrast, our new haplotypes contain
fewer sequencing gaps (Supplemental Fig. S4). The diversity is var-
iable but generally very high across the region. In the proximal part
of the class II region, diversity is so high that alignment becomes
unreliable, explaining well why mapping-based approaches fail
in this region, which is also among the most important in as-
sociationmapping studies.We noticed that alignment to the refer-
ence haplotype (pgf) near the C4A and C4B genes (Chr 6:
31982024–32002681, Chr 6: 32014762–32035418, blue gene
markers in Fig. 2), known to harbor common structural variation
and to be associated with several diseases, is poor for most haplo-
types including the alternative reference haplotypes. When we
align to the cox haplotype, we can improve alignment in this re-
gion significantly for most haplotypes (Supplemental Fig. S5);
however, for some haplotypes, alignment is still poor. We con-
clude that identification of structural variation in this region by
alignment to the reference haplotype is not reliable (Dilthey
et al. 2015; Sekar et al. 2016), and new approaches such as
graph-based methods are needed to fully exploit our new haplo-
types for mapping and imputation in the most complex parts of
the extended MHC region.

Because all of our new haplotypes come from the Danish
population, which genetically is quite homogenous (Athanasiadis
et al. 2016), we wanted to assess the extent to which our haplo-
types represent global MHC diversity, because this is an important
aspect to consider when looking for disease associations in
the MHC. To investigate this, we sampled five random diploid
MHC regions from each of the 26 populations in The 1000 Ge-
nomes Project (The 1000 Genomes Project Consortium 2015)
and compared the sampled regions with our newhaplotypes using
principal component analysis and constructing a neighbor-join-
ing tree based on the distance matrix computed from the data
(Supplemental Fig. S6). We find that our haplotypes well represent
global diversity in theMHC region, which fit with our prior expec-
tation, since most MHC diversity is likely to be old and main-
tained by balancing selection over much longer time spans
(millions of years) than the divergence of human populations
(<100,000 yr).

Population genetics of the MHC

For population genetics analyses, we chose to focus on the haplo-
types with the most phased variants and the least amount of
sequence gaps—the 50 haplotypes transmitted to the children.
To obtain a reliable variant call set in reference genome coordi-
nates, we aligned against hg38 and used the AsmVar pipeline
(Liu et al. 2015) to produce a large and error-prone candidate set
of variants called from the alignment. This candidate set was
then evaluated in all 25 children using the BayesTyper application
(JA Sibbesen, L Maretty, The Genome Denmark Consortium, A
Krogh, in prep.), which assign genotype probabilities from com-
paring k-mer profiles from the reads with k-mers present in the ref-
erence and in the candidate set of variants. From a candidate set of
193,170 SNV and 32,002 structural variants, we call and genotype
50,170 SNVs and 5742 indels and complex variants. In contrast,
we only found a total of 16,702 variants in our initial analysis in
which we used the unphased scaffolds in the MHC region for var-
iant calling.

As a test of the accuracy of this call set, we compared our in-
ferred genotypes to the genotypes called by a SNP chip
(HumanCoreExome BeadChip v.1.0) on the same individuals. In
our samples, 2475 SNPs were polymorphic and genotyped in all
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individuals in our call set and on the chip. We found an overall
concordance of 97.5%, which reflects a concordance >99% for
most of the MHC region and a few less concordant regions due
to very high levels of polymorphism likely to affect both our infer-
ence and the accuracy of the SNP chip (Supplemental Fig. S7).

Comparing to dbSNP, we find that most SNVs in our call set
are known due to the large number of previous targeted investiga-

tions of theMHC (only 9.11% of SNV variants are novel) (Table 1).
In strong contrast, most indels and complex variants >50 bp we
identify are novel (25.00% for deletions and 98.37% for insertions,
99.56% for complex variants) (Table 1), suggesting they have been
missed in previous studies.

Because of the complexity and inaccessibility of the MHC re-
gion, most previous studies have focused on specific regions of the

Figure 2. Differences between MHC haplotypes and reference pgf. The new haplotypes and the seven alternative reference haplotypes were aligned to
the reference pgf haplotype through pairwise alignment, and the percentage of pairwise differences was calculated in bins of 10 kb, shown here in white
(low) to red (high). Dark gray bins contain >50% missing data (i.e., Ns); bins with red line lack alignment blocks. The region classes and important genes
such as the classical loci are shown above. C4A and C4B are marked in blue.
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MHC.Our newhaplotypes allowedus to gain amore global view of
the region.

We calculated the folded site fre-
quency spectrum for nine classical HLA
genes (HLA-A, HLA-C, HLA-B, HLA-DRA,
HLA-DRB1, HLA-DQA1, HLA-DQB1,
HLA-DPA1, HLA-DPB1), the entire MHC
region, and for the entire genome (Sup-
plemental Fig. S8). The site frequency
spectrumis shifted towardmorecommon
variants in the whole region and in the
classical HLA genes in particular when
compared to the rest of the genome.

Figure 3 shows SNV and indel varia-
tion along the MHC region for the 50
haplotypes. Nucleotide diversity is far
above genome average in three broad re-
gions, where the folded site frequency
spectrum of SNVs is also shifted to inter-
mediate frequencies. Indels occur with
higher relative frequency outside classi-
cal loci compared to SNVs andwith high-
er minor allele frequencies also (Fig. 3B).

We observe Tajima’s D statistics
above genome-wide values extending
from the classical loci along with an in-
crease in the proportion of nonsynony-
mous variants, consistent with linkage
to sites under balancing selection in clas-
sical MHC genes (Fig. 3D–F; Supplemen-
tal Fig. S9).

The recombination rate inferred us-
ing LDhat (Auton and McVean 2007) is
highly variable across the entire MHC re-
gion, with recombination rate hotspots
interspersed with regions of very low re-
combination rate (Fig. 4A). We find no
strong overall correlation between gene
density and recombination rate, but in
the most gene dense part of the class III
region, we find long sequence stretches
with low recombination rate. We find a
high recombination rate in classical loci
but also observe a high recombination
rate outside classical loci, especially up-
stream of the Class I region. Jeffreys
et al. (2001) determined recombination
in a 200-kb region of the MHC using
sperm typing, and our results show con-
cordant peaks in recombination rate in

this region, supporting the accuracy of our recombinationmap in-
ference (Supplemental Fig. S10).

In order to study potential consequences on linked diversity
of balancing selection acting in the MHC region, we first chose
to focus on a region 60 kb upstream of and including the classical
HLA-DRA gene (Fig. 5), which has been shown to be under balanc-
ing selection in theCEUpopulations (DeGiorgio et al. 2014), to see
if we could detect balancing selection and towhat extent these sig-
natures extend away from the locus. We detected strong LD ex-
tending upstream of the gene (Fig. 5D), and although the
average minor allele frequency of variants decays slowly moving
away from this gene, we still see high minor allele frequencies in
neighboring genes (Fig. 5A) alongwith a positive Tajima’sD across

Table 1. Variants called

Type All Known Novel Percentage novel

SNV 50,170 45,601 4569 9.11
Insertions ≤50 2498 1869 629 25.18
Deletions ≤50 2076 1808 268 12.91
Insertions >50 123 2 121 98.37
Deletions >50 40 30 10 25.00
Complex ≤50 778 174 604 77.63
Complex >50 227 1 226 99.56

Figure 3. Variation and population genetics. (A,B) Number of SNVs and indels across the MHC region
in 50-kb sliding window (step 10 kb). (C) Nucleotide diversity (π) and (D) Tajima’sDwere calculated in 5-
kb sliding windows (step 1 kb). (E,F ) Count of nonsynonymous and synonymous SNVs across the MHC
region and pN/pS estimated assuming 73% and 27% of sites to be nonsynonymous and synonymous,
respectively, calculated as the proportions in the reference pgf haplotype. The MHC classes and impor-
tant genes, such as classical HLA genes, are marked above.
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almost the entire region (Fig. 5B). These observations are also re-
flected in the estimated recombination rate in the region (Fig.
5C). Although we see a minor peak in recombination rate between
the genes, recombination rate is generally much lower compared
to the entire region (Fig. 4). These observations suggest that bal-
ancing selection cause increased frequency of variation in genes
linked to the classical HLA-DRA gene.

We then decided to test whether this effect could be detected
in other HLA genes known to be under balancing selection. In or-
der to study the importance of selection and the frequency of cod-
ing variants in linked genes in general, we calculated the average
minor allele frequency (MAF) of synonymous and nonsynony-
mous variants as a function of distance to the closest of nine
HLA genes (classical HLA loci) previously shown to be under bal-
ancing selection (DeGiorgio et al. 2014). Figure 6A shows a gradual
decline in minor allele frequency for both synonymous and non-
synonymous variants away from classical genes, which stretches
over >100 kb.

These results are in line with the findings of Lenz et al. (2016)
based on a much larger sample of exome-captured genes in the
MHC region that balancing selection at the HLA genes shelters
nonsynonymous variation of potential detrimental effects and/or
of relevance for association findings in nearby genes. As a control,
we randomly selected nine genes from the MHC region and com-
pared the samemetricbut foundnosignificant correlationbetween
MAF and distance to the nearest control gene for synonymous var-
iants and, although significant for nonsynonymous variants, the
slope was in the opposite direction, i.e., positive (Supplemental
Fig. S11). If balancing selection causes the increase in MAF, we

would expect to see increased linkage dis-
equilibrium (LD) near these HLA genes.
We therefore calculated LD as a function
of distance to the same HLA genes and
found that LD indeed is high near HLA
genes and extend up to hundreds of kilo-
bases from the genes (Fig. 6B, red line). As
a control, we selected nine genes in the
genome, chosen randomly, but matched
in length with a classical HLA gene, so a
control gene of similar length matched
each classical HLA gene. In contrast to
theHLA geneswe sawamuchmore rapid
decay in LD moving away from control
genes (Fig. 6B, gray line) in line with the
overall decay of LD in the human
genome.

These observations suggest that
linked selection keeps variants in other
genes at higher frequency with potential
detrimental effects if some of these vari-
ants have a direct effect on fitness.

Discussion

Our ability to assemble highly accurate
full MHC haplotypes has allowed us to
present a global view of the variation
alongthis important regionof thehuman
genome. The preponderance of new
structural variation shows that de novo
assembly is necessary in order to catalog
the full variation in the region. The 100

haplotypeswe release shouldhave immediate use as an imputation
panel for deciphering the causative variants of genome-wide asso-
ciation studies (GWAS) reported in a large number of studies.

A recent advance in genome inference in the MHC region is
the construction of population reference graphs (Dilthey et al.
2015). Population reference graphs tie together variant sequence
such as MHC alleles from the IMGT/HLA database and variants
from The 1000 Genomes Project (The 1000 Genomes Project
Consortium 2015) with full-length haplotypes. The IMGT/HLA
database has accumulated 17,166 MHC alleles (release 3.29.0,
July 10, 2017) since the first release (1.0) in 1998. Excluding the
highly diverse HLA-DRB genes (HLA-DRB1, HLA-DRB5), in which
we find 420 novel variants, we only find 317 new variants in the
classical MHC genes. However, the haplotype sequences that con-
stitute the majority of the graph outside classical loci are currently
constructed fromonly eight reference haplotypes. Considering the
amount ofmissing data in six of the eight reference haplotypes, we
anticipate that population reference graphs of the MHC region us-
ing our 100 novel haplotypes will improve inference and variant
discovery, particularly outside the classical loci such as the C4A/
C4B genes, in which imputation is otherwise limited due to poor
alignment. Current implementations of MHC population refer-
ence graphs rely on multiple sequence alignment in blocks of se-
quence between and within classical loci across the MHC region.
This approach works especially well for studying small variants
but is limited in the ability to detect new structural variation,
because the quality of the graph is largely reliant on the quality
of the sequence alignment, which can be poor in some regions
such as near the C4 genes.

Figure 4. Recombination across the MHC region. Recombination rate estimated across the MHC re-
gion. Arrowheads point up toward two outliers that were removed for better visualization of the rest
of the region.
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In order to capture structural variation at classical loci, graph
methods should not rely on alignment to a reference sequence
based on annotation. Better would be to construct a graph that re-
lies on detection of nonvarying sequences in theMHC region that
are shared among haplotypes instead of using annotation of clas-
sical loci. This allows for a graph structure in which all structural
variation is retained in the graph and can be described by paths
through common anchor sequences. Including a reference se-
quence in the graph construction will allow annotation of the var-
iants without biasing variant identification toward the reference.

A recent study used a capture array and deep sequencing of
the complete MHC region in 20,635 individuals of Han Chinese
ancestry (Zhou et al. 2016). Among the 224,872 reported SNVs,
only 29,429 are common (MAF>5%) and only 0.19% of the com-
mon SNVs are novel. In contrast, we report 44,370 common SNVs

of which 6.06% are novel, suggesting
that the full assembly allows us to access
variation not easily captured by an array.

The approaches to studying varia-
tion in theMHChavedifferent advantag-
es and drawbacks. For instance, although
capture arrays canaccuratelydetectmuch
of the variation in the MHC, they are
by construction limited in the amount
of new variation that they can find.
Similarly, the population reference
graphs can greatly improve inference us-
ing mapping-based approaches but are
constructed from known variation and
depend largely on accurate alignment to
known annotations. Recently, a novel
method for capturing and sequencing
theMHCbased onhomozygous cell lines
was used to accurately determine the se-
quence of 95MHChaplotypes, including
thehighlypolymorphic class I andclass II
genes and the structurally variant C4
genes (Norman et al. 2017). These haplo-
types are likely to be better resolved than
our haplotypes in some of themost poly-
morphic regions, but it is important to
notice that they are built only from se-
quence captured by probes in the region,
potentially missing novel sequence. It
was also noted by Norman et al. (2017)
that theMHChaplotypeswerenot select-
ed randomly and are therefore unsuitable
for formal analysis of linkage disequili-
brium. Our haplotypes are remarkable
because they are built from de novo as-
semblies and phased essentially without
the reference genome. Our survey of var-
iation in the childrenbasedonalignment
against the reference is suboptimal for
complex variation since this is not all
included in the LAST (Kiełbasa et al.
2011)⇒AsmVar (Liu et al. 2015)⇒
BayesTyper (JA Sibbesen, L Maretty, The
GenomeDenmarkConsortium, AKrogh,
in prep.) pipeline that we have used.
When graph-basedmethodsmature (Pat-
en et al. 2017), our datawill also allow the

large novel indels and complex variants to be incorporated and im-
puted into genotype and short read studies of theMHCregion. This
includes the novel common insertions of >700 kb novel sequence
in fragments sometimes exceeding 5 kb that we reported from k-
mer profiling in Maretty et al. (2017).

Importantly, despite this caveat in our method, our haplo-
types can be utilized to improve the shortcomings of other meth-
ods. For instance, the addition of our haplotypes to population
reference graphs will make it possible to study novel sequences us-
ing mapping-based approaches and will enable us to place them
more accurately in the reference genome. It will also enable design
of new capture arrays and probes to accessmore of theMHC region
and perhaps gain more insight into how much of this previously
unknown sequence is common, how much is polymorphic, and
whether any of these are functional.

Figure 5. LD patterns and selection upstream of HLA-DRA. (A) Average minor allele frequencies (MAF)
across the region. The red dots are theMAF of the variants, and the line shows the averageMAF in bins of
10 variants. (B) Tajima’sD statistic calculated in 1-kb bins. (C) Recombination rate estimate. (D) In a 60-kb
region upstream of the HLA-DRA gene, the r2 statistics was calculated.
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Our evolutionary analyses indicate that the abundant balanc-
ing selection affects a large part of the region, keeping variation
linked to classical variation at a very high frequency. We speculate
that some of this linked variationmay be deleterious but sheltered
by strong balancing selection and therefore also contain some of
the disease associations reported.

Methods

Data

The parent–offspring trios (mother–father–child) in the Danish
Pan-Genome were selected from the Copenhagen Family Bank
(Eiberg et al. 1989; Maretty et al. 2017). The study protocol was re-
viewed and approved by The Danish National Committee on
Health Research Ethics (file number 1210920, submission num-
bers 36615 and 38259).

Phasing of MHC haplotypes

We constructed haplotypes of the whole MHC region using
ALLPATHS-LG (Gnerre et al. 2011) scaffolds as the starting point,
including variants in FASTG format (http://fastg.sourceforge.net/
FASTG_Spec_v1.00.pdf) from scaffolds.

We aligned scaffolds to the reference genome (hg38) using
the LAST (Kiełbasa et al. 2011) aligner with the following parame-
ters: lastal –e25 –v –q3 –j4 –m 100 | last-split –s35 –v –m 0.01. The
parameters were optimized for high sensitivity alignment with a
relaxed error threshold, allowing alignment of more dissimilar
scaffolds. We then extracted scaffolds of at least 50 kb mapping
to the MHC region from the assembly graphs. The entire scaffolds
were used and not only the parts mapping to the reference.

In order to determine the orientation and order of the scaf-
folds aligning to the MHC region, we calculated the median of
the start position of each scaffold alignment to the reference se-
quence. Alignment blocks of less than half the size of the greatest
alignment block were excluded. We determined the order of the
scaffolds from themedian start position and determined the orien-
tation by the sum of the lengths of scaffolds aligning in either
sense or antisense orientation. Scaffolds aligning in antisense ori-
entation were reverse complemented. The start and end of the re-
gionwas defined as 1Mbupstreamof themajor histocompatibility
complex, class I, F (HLA-F), and 1kb downstream from the kinesin-
like protein (KIFC1), roughly corresponding to the range defined
in the reference haplotype (pgf). The sequences of HLA-F and
KIFC1 were used to perform BLAST (Altschul et al. 1990)
(BLASTN) against the first and last scaffold in the order, respective-
ly, and the starting position of each gene determined from the
highest scoring hit. The scaffolds were then trimmed accordingly
and finally concatenated to create full-length MHC scaffolds. A
gap of length one (“N”) was added in between the scaffolds to in-
dicate the break between scaffolds.

Wedetermined positions of variant sites from the graphwith-
in the trio by exact matching of 40 bp upstream of each variant.
Upstream flanking sequences (UFS) of length 40 bases were ex-
tracted for each variant extracted from the assembly graphs. For
each individual in a parent–offspring trio, the UFS was used to per-
form exact matching against each individual in the trio. More spe-
cifically, only uniquely matching positions were kept from each
individual, discarding multiple mappings of an UFS to different
positions in an individual or unique matching of UFS from differ-
ent individuals to the same position in an individual. Likewise, the
reverse complements to the upstream flanking sequence (RUFS)
were used to perform exact matching in order to capture putative
inversion events.

For variable sites, we genotyped each individual in a trio by
exact matching of UFS and RUFS. Sites with missing data for one
or more individuals were excluded. For each position, variants
found in the parents were added to the offspring variant call set.
Each individual in the trio was then genotyped either by the vari-
ants from their own call set or by lookup in the sequence at the giv-
en position. Biallelic variants were phased using transmission
informationwithin the trio. Subsequently, sequences were created
for each of the six haplotypes, i.e., the transmitted and nontrans-
mitted haplotypes from father and mother, respectively, and the
child haplotypes inherited from father and mother, respectively.
The variant call sets were then updated to account for changes in
variant lengths.

We constructed consensus sequences for each parent–off-
spring haplotype using global alignment between all pairwise
sets of phased variants. Haplotypes were refined by first mapping
reads to the four haplotypes within each trio using BWA-MEMver-
sion 0.7.5a (Li and Durbin 2009), then calling variants with
Platypus, version 0.7.9.1 (Rimmer et al. 2014), and finally phasing
variants that passed quality control by determining the parent of
origin (PoO) of alternative alleles (for details, see Maretty et al.
2017). Gaps in the haplotypes were closed using the GapCloser
module from SOAPdenovo2 (Luo et al. 2012) through five
iterations of adding one read library at a time. After gap closing,

Figure 6. Linked selection. (A) Average minor allele frequencies of non-
synonymous (blue, n = 432, P-value <0.01) and synonymous variants (red,
n = 369, P-value <0.001) were calculated in bins of 25 variant sites and
plotted as a function of the average distance of those 25 variants to the
nearest classical HLA gene (HLA-A, HLA-C, HLA-B, HLA-DRA, HLA-DRB1,
HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1). Variants within the classical
MHC genes are not included. A linear regression was fitted for each variant
type on the nonbinned data. (B) Linkage disequilibrium (r2) calculated for
all pairs of SNPs in either classical HLA genes (red) or control genes (gray)
and all other SNPs in the MHC region are shown here as a function of dis-
tance from the genes.
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all transmitted haplotypes were submitted to remapping, variant
calling, and phasing as described above. Variant positions in non-
transmitted haplotypes weremapped by pairwise alignment to the
transmitted haplotypes.

Variant calling and variant annotation

All transmitted haplotypes were aligned to hg38 using the LAST
(Kiełbasa et al. 2011) aligner. The AsmVar pipeline (Liu et al.
2015) was used to create a candidate set of genotypes from the
two haplotypes from each individual. BayesTyper (JA Sibbesen, L
Maretty, The Genome Denmark Consortium, A Krogh, in prep.)
was used to call variants from the candidate set of variants; phasing
was restored by using the allele call origin INFO field fromAsmVar
(Liu et al. 2015) and removing any variants discordant in respect
to phasing and allele call origin. Alleleswith allele call probabilities
greater than 0 were kept to create a more refined call set. Geno-
typing and phase restorationwas then performed again for all indi-
viduals in a joint call set in order to rescue missed genotypes.

Variants were annotated using ANNOVAR (Yang and Wang
2015) and variants from dbSNP (release 142) and The 1000
Genomes Project (phase 3) (The 1000 Genomes Project Consor-
tium 2015). Variants were classified as either known or novel. Var-
iants were considered novel if not annotated in dbSNP (release
142) or The 1000 Genomes Project (phase 3) (The 1000 Genomes
Project Consortium 2015).

Pairwise alignment to reference haplotypes

Alignment of novel and alternative reference haplotypes to the
pgf and cox reference haplotypes was performed using MAFFT
(7.245) (Katoh and Standley 2013) with the parameters - -fft and
- -memsave. Alignments that failed in >20% of the length of the
reference were removed. N-content and number of pairwise differ-
ences were counted in bins of 10 kb across the entire region.

Population genetics

Nucleotide diversity, Tajima’s D, r2, and minor allele frequencies
were computed using VCFtools version 0.1.14 (Danecek et al.
2011). Nonsynonymous and synonymous variants were counted
in coding regions, and pN and pSwere estimated using the fraction
of nonsynonymous (0.73) and synonymous (0.27) sites calculated
from the reference (pgf).

PCA plot and NJ tree of HLA haplotypes

We merged our vcf file (25 individuals) with all individuals from
The 1000 Genomes Project (The 1000 Genomes Project
Consortium 2015) using VCFtools version 0.1.14 (Danecek et al.
2011). Subsequent analysis was done in R (version 3.4.0) (R Core
Team 2014) using the packages SNPRelate (Zheng et al. 2012)
and APE (Paradis et al. 2004). All 25 Danish individuals and five
random individuals from each of The 1000 Genomes Project
(The 1000Genomes Project Consortium2015) populationswas se-
lected, and SNPs with >5% missing data were removed. Standard
PCA plot was made using the function snpgdsPCA() and the
Neighbour-Joining tree was built from the distance matrix created
by the function snpgdsDiss().

Genotype concordance

The HumanCoreExome BeadChip v.1.0 was used to genotype
the individuals using the HiScan system (Illumina). Genotypes
were called using GenomeStudio software (v2011.1; Illumina).
Concordance was calculated from all sites (n = 2475) genotyped
by the chip and BayesTyper (JA Sibbesen, L Maretty, The

Genome Denmark Consortium, A Krogh, in prep.) in all
individuals.

Linked selection and LD decay

We calculated the minor allele frequency of all synonymous and
nonsynonymous variants from our call set in all genes in the
MHC region. For each of these variants, we calculated the distance
to the nearest classical HLA gene (HLA-A, HLA-C, HLA-B, HLA-
DRA, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-
DPB1). We then made a linear regression on the minor allele fre-
quency and distance to the nearest classical locus.We then binned
all variants in bins of 25 variants, except those within the classical
HLA genes. For each bin, we calculated the average minor allele
frequency and the average distance to the nearest classical HLA
gene and plotted this for better visualization. We did the
same for nine randomly selected control genes (HCG14, VWA7,
LY6G6C, CSNK2B, DAXX, MIR6832, NELFE, SAPCD1, TRIM39-
RPP21) from the MHC region to serve as a control.

LD was calculated for all pairs of SNPs in classical HLA genes
(snp1) and all other SNPs (snp2) using VCFtools (Danecek et al.
2011) and the options - -geno-r2-positions and –maf 0.05. All pair-
wise LD measures were summarized in 10-kb bins using the arith-
metic mean. This procedure was then applied to a set of control
genes (GSTM3, D2HGDH, PDE6B, TUBGCP2, LRRC32, IRX5,
RAB40B, SAFB2, SLC5A4) that were randomly selected from all
genes in the genome, but matched in length with the classical
HLA loci, so each classical HLA gene was matched by a control
gene of similar length.

Recombination rate

The recombination rate was calculated using rhomap (LDhat)
(Auton and McVean 2007) on the joint genotype call set using a
likelihood table with n = 50 and t = 0.001 with a total of
1,010,000 iterations and a burn-in of 10,000 iterations. Samples
of the chain were taken every 2500 iterations after the burn-in.

Validation by simulation

Weused ART (Huang et al. 2012) to generate read errormodels and
quality profiles for each library size from the sequencing libraries
of a randomly selected trio. We then designed a trio in which
the father carries the cox and the qblMHChaplotypes, themother
carries the pgf and the mcf MHC haplotypes, and the child carries
the pgf and the cox haplotypes, such that we expect the father to
have transmitted the cox haplotype and the mother to have trans-
mitted the pgf haplotype. For each individual in this trio, we used
ART (Huang et al. 2012) to simulate reads from the corresponding
haplotypes with coverage matching the average coverage in the
Danish trio data for each insert size, so that the simulated read cov-
erage is similar to the real data. The readswere thenused to de novo
assemble the MHC region in each individual with ALLPATHS-LG
(Gnerre et al. 2011) using the same settings and parameters used
for the real data. The phasing pipeline was applied in order to
phase the haplotypes; the results before and after phasing were
evaluated by aligning the assembled sequences of the child to
the reference haplotypes cox and pgf using LAST (Kiełbasa et al.
2011) to generate alignments and dot plots of the aligned
segments.

Repetitive element content

The content of repetitive elements was calculated using
RepeatMasker (Smit et al. 1996–2010) to summarize the content
of Alu and LINE-1 repetitive elements in the eight reference
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haplotypes (pgf, cox, mcf, qbl, mann, ssto, dbb, apd), the simulat-
ed haplotypes, and the 100 new haplotypes.

Experimental validation

In order to validate the phase of our predicted variants, we per-
formed clonal Sanger sequencing in five replicates per sample to
capture a total of 75 regions containing between two and 10 vari-
ants (204 variants in total). We calculate the validation rate as the
fraction of variants that have the same phase as we predicted out of
the total number of variants of which we could correctly identify
an allele.

Data access

WGS data, Sanger sequencing data, and genotype data from this
study have been submitted to the European Genome-phenome
Archive (EGA; https://www.ebi.ac.uk/ega/home), which is hosted
by the EBI, under accession number EGAS00001002108. Python
scripts for the essential parts of the pipeline are available in
the online Supplemental Materials and at https://github.com/
jacobmjensen/phasemhc.
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