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Multicellular glandular trichomes are epidermal outgrowths characterized by the presence of a head made of cells that have the
ability to secrete or store large quantities of specialized metabolites. Our understanding of the transcriptional control of
glandular trichome initiation and development is still in its infancy. This review points to some central questions that need to be
addressed to better understand how such specialized cell structures arise from the plant protodermis. A key and unique feature
of glandular trichomes is their ability to synthesize and secrete large amounts, relative to their size, of a limited number of
metabolites. As such, they qualify as true cell factories, making them interesting targets for metabolic engineering. In this review,
recent advances regarding terpene metabolic engineering are highlighted, with a special focus on tobacco (Nicotiana tabacum). In
particular, the choice of transcriptional promoters to drive transgene expression and the best ways to sink existing pools of
terpene precursors are discussed. The bioavailability of existing pools of natural precursor molecules is a key parameter and is
controlled by so-called cross talk between different biosynthetic pathways. As highlighted in this review, the exact nature and
extent of such cross talk are only partially understood at present. In the future, awareness of, and detailed knowledge on, the
biology of plant glandular trichome development and metabolism will generate new leads to tap the largely unexploited
potential of glandular trichomes in plant resistance to pests and lead to the improved production of specialized metabolites
with high industrial or pharmacological value.

Trichomes, the epidermal outgrowths covering most
aerial plant tissues, are found in a very large number of
plant species and are composed of single-cell or multi-
cellular structures. These structures are divided into
two general categories: they can be glandular or non-
glandular, depending on their morphology and secre-
tion ability. Glandular trichomes can be found on
approximately 30% of all vascular plant species (Fahn,
2000), and in a single plant species, several types of
trichomes (both glandular and nonglandular) can be
observed. Glandular trichomes are characterized by the
presence of cells that have the ability to secrete or store
large quantities of secondary (also called specialized)
metabolites, which contribute to increasing the plant
fitness to the environment (for details, see Box 1).

Two main types of glandular trichomes stand out:
peltate or capitate, which differ according to their head
size and stalk length. Capitate trichomes typically
possess a stalk whose length is more than half the head
height, whereas peltate trichomes are defined as short-
stalked (unicellular or bicellular stalk) trichomes with a
large secretory headmade of four to 18 cells arranged in
one or two concentric circles. Capitate trichomes are
quite variable in their stalk cell number and length,

glandular headmorphology, as well as secretion pattern
and can be classified into various types (Glas et al., 2012).

A key and unique feature of glandular trichomes is
their ability to synthesize and secrete large amounts,
relative to their size, of a limited number of specialized
metabolites: mainly terpenoids (Gershenzon et al.,
1992; Gershenzon and Dudareva, 2007) but also phe-
nylpropanoids (Gang et al., 2001; Deschamps et al.,
2006; Xie et al., 2008), flavonoids (Voirin et al., 1993;
Tattini et al., 2000), methylketones (Fridman et al.,
2005), and acyl sugars (Kroumova and Wagner, 2003;
Schilmiller et al., 2010; Weinhold and Baldwin, 2011).

Over the long term, the ability to modulate the density
and productivity of such secreting structures in plants
would be of great biotechnological interest. This requires
the identification and characterization of the genes
initiating, regulating, and driving the development of
such glandular structures. Awareness of, and detailed
knowledge on, the biology of plant glandular trichome
development and metabolism will generate new leads to
turn trichomes into biochemical factories using metabolic
engineering approaches (Tissier, 2012a), tap their largely
unexploited potential in plant resistance to pests, and lead
to the improved production of important specialized
metabolites (Lange and Turner, 2013; Lange et al., 2011).

PLANT GLANDULAR TRICHOMES: AN
INTERESTING PARADIGM TO STUDY PLANT
CELL DIFFERENTIATION

To modulate the density of glandular trichomes in
the epidermis or their productivity for biotechnological
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purposes, a detailed understanding of the molecular
genetic framework governing their development and
patterning in the plant epidermis would be beneficial.
Glandular trichomes have been studied mostly to de-
cipher the biochemical pathways of the compounds
they produce and secrete (Champagne and Boutry,
2013; Lange and Turner, 2013) and, thereby, have con-
tributed to advancing our understanding of the sec-
ondary metabolism in plants.

A Detailed Understanding of Glandular Trichome
Initiation and Development Is Currently Missing

All multicellular organisms face the challenge of co-
ordinating cell proliferation with cell differentiation
and patterning. Defects in this coordination can lead
to incorrect tissue formation, malformed organs, and

cancerous growth. Glandular trichomes exemplify this
coordination challenge: they are elaborate, highly or-
ganized, and polarized cell structures whose morpho-
genesis is modulated by an intricate array of molecular
processes controlling the different steps of their pat-
terning on the leaf epidermis and subsequent differen-
tiation. Therefore, glandular trichomes can be used as a
paradigm to tackle basic questions about the develop-
ment and differentiation of specialized multicellular
secretory structures in plants.

A complete circuit for glandular trichome formation
and patterning in the leaf epidermis will require a
sound understanding of their initiation process in the
plant protodermis and of the subsequent develop-
mental steps leading to the formation of a polarized and
specialized multicellular structure, of the genes that
regulate cell division, participate in cell signaling, and
promote specialized cell fate (Fig. 1). It also requires an
understanding of how this developmental regulatory
network affects cellular biological targets such as the
core cell cycle machinery. A particularly large gap in
our current knowledge is the identification of regula-
tors of entry into the glandular trichome cell fate and of
progression through the pathway.

Research on nonglandular trichomes has been very
fruitful in Arabidopsis (Arabidopsis thaliana). It has
generated a developmental framework for unicellular
trichome formation and identified over 30 genes in-
volved in the initiation and development of non-
glandular trichomes. We chose not to review the
development of trichomes in Arabidopsis, as this has
been thoroughly reviewed (Balkunde et al., 2010; An
et al., 2011; Tominaga-Wada et al., 2011; Pattanaik et al.,
2014; Matías-Hernández et al., 2016). Unlike the situa-
tion of Arabidopsis, which contains a single type of
unicellular, nonglandular trichome, our understanding
of the molecular genetic aspects of glandular trichome
development is still in its infancy but currently im-
proving due to recent progress in omics and genome-
editing technologies as well as to a growing focus from
several research teams to characterize this process in
different plant species (Li et al., 2004; Dai et al., 2010;
Bosch et al., 2014; Bergau et al., 2015; Liu et al., 2016).
The (draft) genome sequences of a number of plant
species with glandular trichomes are now available.
A nonexhaustive list includes different tomato species
(Solanum lycopersicum and Solanum pimpinellifolium
[Tomato Genome Consortium, 2012] and Solanum pen-
nellii [Bolger et al., 2014]), potato (Solanum tuberosum
[Xu et al., 2011]), cucumber (Cucumis sativus [Huang
et al., 2009]), tobacco (Nicotiana tabacum [Sierro et al.,
2014; Edwards et al., 2017]) and its related species
(Nicotiana sylvestris andNicotiana tomentosiformis [Sierro
et al., 2013]), hot pepper (Capsicum annuum [Kim et al.,
2014]), mint (Mentha longifolia [Vining et al., 2017]),
cannabis (Cannabis sativa [van Bakel et al., 2011]), and
hop (Humulus lupulus [Natsume et al., 2015]).

Since most of them can be genetically transformed,
studying the molecular genetics of trichome develop-
ment in these species has become much easier (among

Plant Physiol. Vol. 175, 2017 7

Glandular Trichome Development and Bioengineering



others by using genome-editing or RNA interference
technologies). Particularly for species where genetics is
poorly developed (e.g. mint), the combination of tran-
scriptomics at different stages of trichome development
(see below) and of genome-editing or RNA interference
technology should be a powerful approach to address
the function of candidate genes.

Trichome-Specific Data Exist, But Cell Stage-Specific Data
Are Crucially Needed to Advance Our Understanding of
Glandular Trichome Development

Extensive glandular trichome-specific EST resources
were generated for a variety of (nonmodel) plant spe-
cies (Dai et al., 2010; Tissier, 2012b; Soetaert et al., 2013;
Chen et al., 2014; Jin et al., 2014; Trikka et al., 2015;
Akhtar et al., 2017). Dedicated trichome-related open-
access resources exist that help researchers mine this
vast and increasing amount of trichome-related data.
One such resource is the TrichOME database (Dai et al.,
2010), which hosts functional omics data, including

transcriptomics (ESTs/unigene sequences), metab-
olomics (mass spectrometry-based trichome metabolite
profiles), as well as trichome-related genes curated
from the published literature from various species.
These include members of Lamiaceae (Mentha piperita,
Salvia fruticosa, Cistus creticus, and Ocimum basilicum),
Solanaceae (Nicotiana benthamiana, N. tabacum, Solanum
habrochaites, S. lycopersicum, and S. pennellii), Asteraceae
(Artemisia annua), Fabaceae (Medicago sativa and Medi-
cago truncatula), and Cannabaceae (C. sativa and
H. lupulus).

These trichome-specific expression data are particu-
larly useful to identify trichome-specific genes involved
in particular biosynthetic pathways as well as in other
trichome-related processes. A key question is how to
extract the most significant data out of this massive and
growing amount of bulk information to advance our
understanding of specific aspects of glandular trichome
biology (Tissier, 2012a). From a developmental per-
spective, one of themain limitations of such resources is
that most of these trichome-specific expression data
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were derived from mature glandular trichomes (which
are usually easier to isolate than developing structures)
or from a population of trichomes at mixed develop-
mental stages. Indeed, glandular trichome initiation
and differentiation occur at different times in different
locations within a single leaf. Therefore, even very
young leaves contain a trichome population of mixed
developmental stages (Bergau et al., 2015). Given the
way most EST resources were generated up to now, the
expression of genes playing a role in early develop-
mental steps may be, in the best case, underestimated
or, in the worst case, even not detected. This is partic-
ularly the case of genes active in the initiation phase
(selection of trichome initials) or early in development.
In addition to trichome-specific EST resources, nu-

merous glandular trichome-specific gene promoters
have been reported in the literature for a variety of
plants, including (but not restricted to) Antirrhinum
majus, A. annua, C. sativus, H. lupulus, Mentha spp.,
N. tabacum, S. lycopersicum, and S. habrochaites (Okada
and Ito, 2001; Wang et al., 2002, 2011, 2013; Gutiérrez-
Alcalá et al., 2005; Liu et al., 2006; Jaffé et al., 2007; Kim
et al., 2008; Shangguan et al., 2008; Ennajdaoui et al.,
2010; Choi et al., 2012; Sallaud et al., 2012; Spyropoulou
et al., 2014; Kortbeek et al., 2016; Laterre et al., 2017;
Vining et al., 2017; for review, see Tissier, 2012b). It is
worth noting that most of these trichome-specific pro-
moters are active in mature glandular trichomes

(mostly in glandular cells at the tip of the trichome).
Their activity during early trichome development has
been barely analyzed.

Molecular data pointing to genes playing a specific
role in glandular trichome development already exist,
especially concerning some transcription factors, cell
cycle regulators, as well as receptors involved in
phytohormone-induced signaling cascades. Several
transcription factors belonging to different protein
families and playing a role in glandular trichome de-
velopment have indeed been identified: AmMIXTA, a
MYB transcription factor from A. majus whose ectopic
expression in tobacco induces the development of ad-
ditional long glandular trichomes (Glover et al., 1998);
GoPGF, a basic helix-loop-helix (bHLH) transcription
factor from Gossypium spp., acting as a positive regu-
lator of glandular trichome formation, its silencing
leading to a completely glandless phenotype (Ma et al.,
2016); AaHD1, a homeodomain-Leu zipper transcrip-
tion factor required for jasmonate-mediated glandular
trichome initiation in A. annua (Yan et al., 2017); AtGIS,
a C2H2 zinc-finger transcription factor from Arabi-
dopsis whose ectopic expression in tobacco regulates
glandular trichome development through GA3 signal-
ing (Liu et al., 2017); AaMYB1, a MYB transcription
factor from A. annuawhose overexpression induces the
formation of a greater number of trichomes (Matías-
Hernández et al., 2017); and CsGL3, an HD-Zip

Figure 1. Glandular trichome initia-
tion and development, a process with
many unknowns. A differentiating
protodermal cell integrates both envi-
ronmental and endogenous signals.
Such signal integration results in the
selection of a pool of trichome cell
precursors that will initiate a specific
developmental program. In these tri-
chome initials, cell-specific transcrip-
tional control of gene expression and
cell cycle regulation results in the onset
of a controlled cell division and tri-
chome morphogenesis program, most
of which is still not so well understood
in the case of glandular trichomes. It
probably also involves some cell-cell
signaling promoting the one cell-
spacing rule, which allows a specific
patterning of trichomes in the epider-
mis. Morphogenesis of the trichome
glandular head also necessitates exten-
sive remodeling of the cell wall. The ex-
tent of endoreduplication in glandular
trichomes is still mostly uncharacterized.
The illustration shows a modified con-
focal image of a long glandular trichome
initial from N. tabacum. Chloroplasts
are shown in green, propidium iodide-
stained cell walls in magenta, and nuclei
in cyan.
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transcription factor whose mutation leads to a glabrous
phenotype in cucumber (Cui et al., 2016).

In tomato, several genes required for the proper de-
velopment and function of different types of glandular
trichomes have been reported. The woolly (Wo) gene,
encoding a class IV homeodomain-Leu zipper protein
homolog to the Arabidopsis GL2, and a B-type cyclin
gene, SlCycB2 (possibly regulated by Wo), control the
initiation and development of type I trichomes. Mutant
alleles of Wo triggered a hairy phenotype due to the
overproduction of type I trichomes, while suppression
of Wo or SlCycB2 expression by RNA interference de-
creased their density in tomato (Yang et al., 2011a,
2011b). Another mutation (hairless) affects the SRA1
(Specifically Rac1-Associated protein) subunit of
the WAVE regulatory complex. SRA1 controls the
branching of actin filaments and is required for the
normal development of all trichome types of tomato,
which suggests that proper actin-cytoskeleton dynam-
ics is a basal requirement for normal trichome mor-
phogenesis (Kang et al., 2016). Mutations of some
enzymes involved in secondary metabolism also im-
pact trichome density and/or the metabolic activity of
glandular trichomes. For example, in the anthocyanin-
free mutant, loss of function of the chalcone isomerase
(SlCHI1) triggers a reduction of type VI trichome
density and metabolic output (Kang et al., 2014),
while down-regulation of DXS2, a methylerythritol
4-phosphate (MEP) enzyme, increases their density
(Paetzold et al., 2010). The molecular mechanisms
through which these genes affect trichome density are
currently unknown.

The tomato Wov allele was shown to promote ab-
normal multicellular trichome differentiation when ec-
topically overexpressed in N. tabacum (Yang et al.,
2015). This hints at conserved transcriptional networks
among Solanaceae species. However, the trichomes in
this Wov overexpressor line failed to develop glandular
heads and appeared as rather aggregated and undif-
ferentiated structures. Whether a WD40-bHLH-MYB
regulatory mechanism similar to the one in Arabi-
dopsis also controls glandular trichome development in
Solanaceae is still unclear (Serna and Martin, 2006;
Yang et al., 2015). A recent RNA-sequencing analysis of
N. tabacum trichomes showed that orthologs of Arabi-
dopsis genes involved in trichome formation via the
WD40-bHLH-MYB regulatory mechanism (such as
TTG1, GL2, GL3, and several MYB transcription fac-
tors) are expressed in these structures (Yang et al.,
2015). However, their transcriptional levels were not
altered significantly in response to the overexpression
of a Wov transgene, which induced a clear trichome
proliferation phenotype. On the contrary, homologs of
genes (Wo and SlCycB2) involved in trichome formation
in asterids (Yang et al., 2011a, 2011b) were significantly
up-regulated inWov transgenicN. tabacum plants (Yang
et al., 2015).

The differentiation of long-stalked glandular tri-
chomes may be initiated and controlled in N. tabacum
by the activity of another MYB transcription factor.

Indeed, ectopic expression of MIXTA from A. majus
(Glover et al., 1998) or of its Gossypium hirsutum
ortholog CotMYBA (Payne et al., 1999) resulted in the
development of excess long-stalked trichomes. There-
fore, it is likely that another unidentified N. tabacum
MYB gene, an ortholog to AmMIXTA and CotMYBA,
plays a role in the development of long-stalked glan-
dular trichomes in this species. Whether thisMYB gene
needs to be part of a regulatory complex to initiate and
promote glandular trichome development is not yet
known.

Five trichome-related mutants of the genes CsGL3,
TRIL, MICT, TBH, and CsGL1, all of them encoding
homeodomain-Leu zipper transcription factors from
different subfamilies, have been reported in C. sativus
(Chen et al., 2014; Li et al., 2015; Pan et al., 2015; Zhao
et al., 2015; Cui et al., 2016;Wang et al., 2016b). Based on
the observed phenotypes, a molecular mechanism un-
derlying the development of multicellular trichomes in
this species has been proposed in a recent review (Liu
et al., 2016) and seems to confirm that the transcrip-
tional control of multicellular trichomes in C. sativus
differs from the one observed in Arabidopsis.

The development of glandular trichomes is tightly
regulated by the integration of diverse environmental
and endogenous signals. In this respect, some phyto-
hormones, especially jasmonate (JA) and possibly GAs,
elicit glandular trichome development via signaling
cascades and the activation of trichome-specific tran-
scriptional regulators (Li et al., 2004; Koo and Howe,
2009; Bose et al., 2013; Bosch et al., 2014; Tian et al., 2014;
Liu et al., 2017; Yan et al., 2017). In Mentha arvensis,
exogenous application of GA resulted in a moderate
increase in trichome density and diameter of the gland,
suggesting a positive, although moderate, effect of GA
on trichome initiation and development in mint (Bose
et al., 2013). For example, reduced JA levels (through
silencing of OPR3, a key enzyme in the biosynthesis of
the precursor of JA) led to impaired glandular trichome
development in tomato: the density of type VI tri-
chomes was reduced drastically, and their metabolite
content was different from that of the wild type (Bosch
et al., 2014). The JA receptor JASMONIC ACID IN-
SENSITIVE1, the tomato ortholog of the ubiquitin li-
gase CORONATINE INSENSITIVE1 in Arabidopsis, is
involved in this JA-mediated signaling cascade (Li
et al., 2004; Katsir et al., 2008; Kang et al., 2010; Bosch
et al., 2014). It remains to be investigated whether a
synergistic effect between GA and JA signaling, similar
to that observed in Arabidopsis (Qi et al., 2014), also
promotes glandular trichome development.

Time-Course Analysis of Glandular Trichome
Development Coupled to Cell Type- and Stage-Specific
Expression Data as a Way to Advance Our Understanding
of Glandular Trichome Development

The development of multicellular glandular tri-
chomes proceeds through the enlargement of single
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epidermal cells, followed by several cell divisions to
generate a structure perpendicular to the epidermal
surface (Fig. 2), and specific types of glandular tri-
chomes seem to have a well-defined developmental
plan (Tissier, 2012a; Bergau et al., 2015). This highly
regulated differentiation program also includes a po-
larized and localized cell wall lysis and remodeling
(Bergau et al., 2015).
Within a given plant species, it would be interesting

to dissect the developmental sequence of glandular
trichome formation (including a time-course analysis)
and to sort the cells at specific stages using marker-
assisted cell sorting. The difficulty resides in the specific
isolation of cells at early developmental stages. Re-
cently, flow cytometry was used to specifically separate
young and mature type VI trichomes from the wild
tomato species S. habrochaites based on their distinct
autofluorescence signals. This allowed the analysis of
their transcriptomic and metabolomic profiles in a cell
stage-specific way (Bergau et al., 2016).
Such systematic dissection of the development of

glandular trichomes seems very promising but could
be refined. Ideally, instead of autofluorescence (which
may span various developmental stages), a series of
trichome-specific transcriptional promoters driving the
expression of a fluorescent marker (used as a cell stage
marker) and closely associated with well-defined de-
velopmental stages should be used. Such genetic

resources are not yet available in the field of glandular
trichome development. Focus should be set on identi-
fying markers of entry into the glandular trichome
pathway as well as those labeling subsequent early
differentiation steps. Some published gene promoters,
like the one of AmMYBML3 (Jaffé et al., 2007), are al-
ready known to specifically label developing trichomes
and could be used to drive the expression of a fluores-
cent reporter protein. Flow cytometry-assisted cell (or
nucleus) sorting would then permit us to characterize
the transcriptomic changes in a stage-specific way, in a
manner similar to what was done to characterize sto-
matal development (Adrian et al., 2015). In an iterative
fashion, the data could be mined to identify additional
marker genes, so that only a few markers are necessary
to initiate such transcriptomic studies. As an alternative
approach, ectopic overexpression of some transcription
factors is known to induce glandular trichome devel-
opment (Payne et al., 1999; Yang et al., 2015). Inducible
overexpression of such transcription factors could be
used in RNA-sequencing assays as a molecular switch
to identify genes acting during early developmental
stages (Yang et al., 2015) that, in turn, could be used as
cell stage markers. Further research is definitely needed
to identify key genes driving the postembryonic de-
velopment of glandular trichomes and to generate a
molecular toolbox facilitating more applied genetic
engineering approaches.

Figure 2. Glandular trichome initiation
and development in N. tabacum. A to F,
Confocal microscopy images showing the
early steps of glandular trichome devel-
opment. The number of cells forming the
developing glandular trichome is shown at
the bottom of each frame. A differentiating
protodermal cell enlarges and forms a
protuberance (A), the cell nucleusmigrates
to the tip of the protuberance (B), and cell
division takes place (C), forming a struc-
ture made of two cells (D). The upper cell
protruding from the epidermis then un-
dergoes an asymmetric division, forming
one large cell (which will form the multi-
cellular stalk after several rounds of con-
trolled cell division) and one small cell
(which will give rise to the multicellular
glandular head; E). A developing trichome
made of five cells is shown in F. Scale
bars, 20 mm. Magenta represents cell
wall (propidium iodide staining), cyan
represents nuclei (4’,6-Diamidine-2’-
phenylindole staining), and green represents
chloroplasts (chlorophyll a autofluorescence).
G, Scanning electron micrograph showing
the typical cell architecture of a mature
long glandular trichome.

Plant Physiol. Vol. 175, 2017 11

Glandular Trichome Development and Bioengineering



Glandular Trichome Development: A Diversity of
Model Species

The field of glandular trichome development lacks a
unique and robust model system. This is partly due to
the difficulty of finding an appropriate model system.
Glandular trichomes are extremely diverse in terms of
shape, cell number, and type of secreted compounds
and may not be the result of a single evolutionary event
(Serna and Martin, 2006). This implies that their de-
velopment may not be under similar transcriptional
control in different plant families or evenwithin a single
plant species between different trichome types (Serna
and Martin, 2006). The current view is that no single
species can serve as a unique model to study the biol-
ogy of glandular trichomes but that certain species or
families of species progressively emerge as references
for certain types of trichomes, such as Lamiaceae for
peltate trichomes or Solanaceae for capitate trichomes,
as suggested by Tissier (2012a). So far, published data
suggest that multicellular trichome formation probably
occurs through different transcriptional regulatory
networks from those regulating trichome formation in
Arabidopsis, so mere orthologous relationships may
not be inferred (Payne et al., 1999; Serna and Martin,
2006; Yang et al., 2015; Liu et al., 2016).

TURNING GLANDULAR TRICHOMES INTO
CHEMICAL FACTORIES

Plant specialized metabolites have been used for
centuries as a source for fragrances and medicine. Since
the discovery of their molecular structures and the
elucidation of their biosynthesis pathways, breeders
and chemists have been trying to select the best com-
pounds by crossing species and varieties. For small
molecules, chemical synthesis is another option once
the structure of the molecule has been determined.
However, the size and complexity of the stereochem-
istry of some plant metabolites make their chemical
synthesis extremely complicated and expensive.

The rise of molecular genetics and a better under-
standing of the genomes has changed the way breeders
work: they now use molecular genetic screening
approaches to help them select the best breeding can-
didates and descendants. This speeds up the selection
process and optimizes the breeding program.

Among plant specialized metabolites, terpenoids are
themost abundant in term of quantity and diversity (for
review, see Croteau et al., 2000; Bouvier et al., 2005;
Gershenzon and Dudareva, 2007). Some of them are
renowned not only for their economic value but also for
their molecular complexity.

Metabolic engineering of terpenoids emerged as a
new method to produce naturally occurring products.
Microorganisms have been heavily used for the heter-
ologous expression of plant metabolites (for review, see
Kirby and Keasling, 2009; Keasling, 2010; Marienhagen
and Bott, 2013), and at present, plants also have become
a host of interest for the heterologous or homologous

production of some plant specialized metabolites (for
review, see Aharoni et al., 2005; Dixon, 2005; Wu and
Chappell, 2008).

The biosynthesis of isoprenoids in plants is unique,
and many reviews have already covered the different
aspects of their production and regulation (Bouvier
et al., 2005;Hemmerlin et al., 2012; Lipko and Swiezewska,
2016). Plants synthesize the common precursor for
isoprenoids, isopentenyl diphosphate (IPP), and its al-
lylic isoform dimethylallyl diphosphate (DMAPP) by
two distinct and compartmentalized pathways, the
cytosolic mevalonate (MVA) pathway and the plastid-
ial MEP pathway (Fig. 3). Specialized terpenoids are
generally synthesized by either the MEP or the MVA
pathway depending on their length: sesquiterpenes
(C15) and triterpenes (C30) mainly derive from the
MVA pathway, while monoterpenes (C10) and diter-
penes (C20) derive from the MEP pathway.

Metabolic Engineering in N. tabacum

N. tabacum is an interesting model system for meta-
bolic engineering of terpenoid compounds because it
synthesizes an important pool of natural precursors
(IPP/DMAPP) and, besides the essential metabolites
derived from the isoprenoid biosynthesis pathways, it
produces a very high amount of a limited range of
specialized metabolites. These consist of two types of
terpenoids, namely sesquiterpenes (Back and Chappell,
1996; Starks et al., 1997; Ralston et al., 2001), as phyto-
alexins specifically produced in response to a pathogen
attack (Stoessl et al., 1976), and diterpenes, constitu-
tively synthesized and secreted by the head of glan-
dular trichomes (Keene and Wagner, 1985; Kandra and
Wagner, 1988; Guo and Wagner, 1995; Wang and
Wagner, 2003; Fig. 3). Capsidiol, one of the main phy-
toalexin sesquiterpenes produced in response to a
fungal attack, and cembratriendiol, one of the main
diterpenes found in the cuticle, derive from the MVA
and theMEP pathway, respectively (Huchelmann et al.,
2014). Both types of metabolites are not required for the
growth and development of the plants and do not in-
volve a complex metabolic pathway. Changing the fate
of the metabolic fluxes normally used for sesquiterpene
and diterpene production looks, in theory, quite simple.
As the phytoalexin sesquiterpenes are only synthesized
in response to a pathogen attack, the main pool of ter-
penoid precursors available under normal conditions is
that involved in diterpene synthesis.

Terpenoid Engineering with Constitutive and
Ubiquist Promoters

The metabolic engineering of tobacco plants to pro-
duce various terpenoids is widely described, and re-
views already covered the methods and the final
metabolic profiles (for review, see Verpoorte and
Memelink, 2002; Lange and Ahkami, 2013; Moses et al.,
2013). Most of the engineered metabolites were
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synthesized using the original precursor pools, derived
from the MEP pathway for monoterpenes and diter-
penes and from the MVA pathway for sesquiterpenes
and triterpenes. Promoters used to drive expression of
the transgenes were ubiquist and constitutive. Al-
though successful, the amount of metabolites produced
in transgenic tobacco lines is usually relatively low (in
the range of a few ng g21 fresh weight; Lücker et al.,
2004; Wei et al., 2004; Farhi et al., 2011) compared with
the endogenous production of capsidiol (up to 100 mg
g21 fresh weight; Dokládal et al., 2012) or of diterpenes
(up to 75 mg cm22 depending on the variety; Severson
et al., 1984). To be economically viable, the engineering
of terpenoids in plants should reach yields comparable
to those occurring naturally.
As mentioned previously, sesquiterpenes (C15) and

triterpenes (C30) are considered to derive from the (cy-
tosolic) MVA pathway, while monoterpenes (C10) and
diterpenes (C20) are derived from the (plastidial) MEP
pathway. However, such a distinction is actually not so
strict, given the existence of cross talk between the
MVA and MEP pathways, which consists of an ex-
change of prenyl diphosphates between the cytosol and
the plastids (for review, see Hemmerlin et al., 2012).
More and more metabolites have been shown not to
derive from a strictly cytosolic or plastidial pool of
precursors, but the exact way the cross talk works is still

unclear (Box 2). As an example, sesquiterpenes can be
synthesized using a plastidial pool of IPP (Dudareva
et al., 2005; Bartram et al., 2006). Monoterpenes and
diterpenes also can have mixed origins (Itoh et al., 2003;
Wungsintaweekul and De-Eknamkul, 2005; Hampel
et al., 2007).

New strategies emerged for the engineering of ter-
penoids in plants, which consisted of targeting the
overexpressed enzymes to different subcellular locali-
zations to take advantage of either the MVA- or the
MEP-derived pool of precursors (Wu et al., 2006). Using
such a strategy, the engineering of sesquiterpenes and
monoterpenes was monitored in tobacco (Wu et al.,
2006). To produce sesquiterpenes (patchoulol or
amorpha-4,11-diene), those authors expressed in
tobacco the corresponding terpene synthase and a far-
nesyl diphosphate synthase fused (or not) to a
chloroplast-targeting sequence to exploit either the
MEP- or the MVA-derived pool of precursors, respec-
tively. In this pioneering study, expression of the
transgenes was driven by ubiquist promoters (a dif-
ferent one for each transgene). Addressing the enzymes
to the cytosol only led to a low yield of sesquiterpenes
(a few ng g21 fresh weight, as in previous studies),
while addressing the enzyme to the plastids (to take
advantage of the MEP-derived pool of IPP/DMAPP)
led to a much higher yield (up to 25 mg g21 fresh

Figure 3. Isoprenoidmetabolism inN. tabacum cells. The red square represents themajorMEP isoprenoidmetabolism in plastids
of developed trichomes. Phytohormones are indicated in blue and specialized metabolites in violet. ABA, Abscisic acid; FPP,
farnesyl diphosphate; GGPP, geranylgeranyl diphosphate; GPP, geranyl diphosphate.
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weight). Those impressive results are also quite sur-
prising, as sesquiterpenes are synthesized naturally in
the cytosol, while the engineered production is higher
when the enzymes are localized in plastids. Monoter-
pene production in the cytosol was achieved using the
same strategy to express the monoterpene synthase and
the geranyl diphosphate synthase. However, in this
case, the localization of the enzymes seemed to be less
important, as both engineering strategies (using the
MVA- and the MEP-derived precursors) led to roughly
the same amount of R-(+)-limonene (400–500 ng g21

fresh weight; Wu et al., 2006).
Modifying the fate of isoprenoid precursors can lead

to severe phenotypes, which might be expected given
the importance of isoprenoids in plant growth and
development and the fact that expression was ubiquist.
Tobacco lines producing the highest quantity of ses-
quiterpenes were indeed severely affected: they
exhibited chlorosis and dwarfism. This phenotype also
was observed in metabolic engineering of the ginse-
noside saponin in tobacco (Gwak et al., 2017). In this
case, production of the saponin led to a severe pheno-
type, including dwarfism, change in flower and pollen
morphology, and impaired seed production (Gwak

et al., 2017). Similarly, dwarfism was observed upon
metabolic engineering of tobacco chloroplast to pro-
duce artemisinic acid (Saxena et al., 2014). All these
approaches used ubiquist promoters to drive expres-
sion of the transgenes. Because of the similarity of the
phenotypes observed (dwarfism, chlorosis, and de-
creased seed production) between the different reports,
cytotoxicity of the new metabolites is probably not the
only cause. The problem could lay in the constitutive
expression of transgenes, which might result in
plant depletion of its essential terpenoid precursors
(IPP/DMAPP). For plant metabolic engineering to be
efficient, there is a necessity to better control the
spatiotemporal expression of the transgenes. One
strategy to limit the effect of sinking essential IPP pools
consists of specifically targeting the expression of the
genes in a cell type-specific way. In this respect, glan-
dular trichomes are an ideal expression system.

Terpenoid Engineering Specifically in Trichomes

From a metabolic point of view, glandular trichomes
are of particular interest, as they are involved in the
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synthesis, storage, and/or excretion of specialized
metabolites, making these compounds easily avail-
able. The carbon metabolism of glandular trichomes
in Solanaceae has evolved to support high metabolite
production (Balcke et al., 2017). Some genera, such as
Nicotiana, produce up to 15% of their leaf biomass in
the trichomes (Wagner et al., 2004). The C20 terpe-
noids are exported to diffuse within the cuticle
and mediate resistance to insects and fungi (Chang and
Grunwald, 1976; Severson et al., 1984; Wang and
Wagner, 2003; Sallaud et al., 2012). Rerouting the
diterpene production from cembrane and labdane
types (naturally produced in tobacco) to other diter-
penes has been performed by addressing the terpene
synthase directly to the plastids with a trichome-
specific promoter.

Diterpene Engineering

One of the best examples is the heterologous pro-
duction of taxadiene in trichomes of the wild tobacco
N. sylvestris (Rontein et al., 2008; Tissier et al., 2012).
Taxadiene, particularly taxa-4(5),11(12)-diene, is the
precursor of paclitaxel, a potent anticancer diterpene

usually extracted from the bark of Taxus spp. (Hezari
et al., 1995; Koepp et al., 1995). Several groups have
already tried to synthesize this precursor ubiquitously
in plants (for review, see Soliman and Tang, 2015), but
the production of the diterpene triggered growth de-
fects in tomato (Kovacs et al., 2007) and a lethal phe-
notype in Arabidopsis, most probably because of an
overused geranylgeranyl diphosphate pool for diter-
pene synthesis (Besumbes et al., 2004). As a result, the
MEP-derived primary metabolites were not synthe-
sized in sufficient amounts to sustain normal growth.
Only a few attempts led to the production of taxadiene
in plants without any defect, as in ginseng (Panax
ginseng; Cha et al., 2012) andN. benthamiana (Hasan et al.,
2014) by the ubiquitous overexpression of the taxadiene
synthase, but the amount produced was quite low.

Expression of taxadiene synthase specifically in
N. tabacum trichomes, using the transcriptional promoter
of cembratrienol synthase (CBTS), led to the production
in the exudate of 5 to 10 mg g21 fresh weight taxadiene,
representing only 10% of the total taxadiene produc-
tion, suggesting a problem of excretion (Tissier et al.,
2012; discussed further in Box 3). However, the amount
produced is impressive compared with the 27 mg g21
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dry weight obtained in the best stable transgenic
N. benthamiana line (Hasan et al., 2014). Hasan et al.
(2014) could increase the production in N. benthamiana
up to 48 mg g21 dry weight by, in addition to consti-
tutively overexpressing the taxadiene synthase, silenc-
ing the expression of the gene coding for the phytoene
synthase and thereby increasing the geranylgeranyl
diphosphate availability. In N. tabacum, silencing the
genes coding for CBTS did not increase the production
of taxadiene (Tissier et al., 2012). Compared with the
cultivated tobacco (N. tabacum), the wild tobacco
(N. sylvestris) naturally synthesizes, as diterpenes,
cembranoids but no labdanoids. Using the CBTS pro-
moter to drive the expression of the 8-hydroxy-copalyl
diphosphate synthase and the Z-abienol synthase spe-
cifically in N. sylvestris trichomes, synthesis of the lab-
danoid, Z-abienol, reached a yield of 30 mg g21 fresh
weight without any major impact on the production
of cembranoids or on plant development (Sallaud
et al., 2012). Similarly, casbene, another diterpene from

Ricinus communis, also was produced in N. tabacum
trichomes (Tissier et al., 2012), demonstrating that these
structures can really be used as a biofactory for the
production of a diverse set of diterpenes. While most of
the cembrane and labdane diterpenes are normally
found in the cuticle or in the exudate, only a small
fraction (10%) of casbene or taxadiene was found in the
exudate, suggesting the necessity of associating a
transporter when engineering a metabolic pathway
(Box 3).

Triterpene Engineering

Could N. tabacum trichomes be used as a production
platform for terpenoids other than diterpenes? In N.
tabacum trichomes, the main isoprenoid-derived me-
tabolites are diterpenes from the MEP pathway. Meta-
bolic engineering in trichomes might take advantage of
this cross talk to produce, for example, triterpenes in-
stead of the naturally occurring diterpenes by diverting

Figure 4. Terpenoid metabolism in engineered tobacco trichomes for triterpene production in the cytosol. The gray pathway
represents the normal biosynthetic route for triterpenes and sterols. The enzymes are targeted to the cytosol to enhance the cross
talk and sink the plastids from its precursors. Overexpressed enzymes are denoted in dark blue. New products deriving from the
engineering metabolism are denoted in light blue. CYP450, Cytochrome P450; FDS, farnesyl diphosphate synthase; FPP, farnesyl
diphosphate; GGPP, geranylgeranyl diphosphate; GPP, geranyl diphosphate; OSC, 2,3-oxidosqualene cyclase; SQE, squalene
epoxidase; SQS, squalene synthase.
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the plastidic pool of IPP toward the cytosol to produce
the compounds of interest (Fig. 4). Some plants, such as
S. habrochaites, produce some sesquiterpenes directly in
the plastids. The corresponding enzymes, involved in
the biosynthesis of those C15 terpenes, a sesquiterpene
synthase and a farnesyl diphosphate synthase, evolved
to be localized to the plastids (Sallaud et al., 2009).
Engineering the production of MVA-derived metabo-
lites such as sesquiterpenes (C15) or tritepernes (C30) in
the plastids using specifically MEP-derived IPP and
DMAPP precursors may require the corresponding
enzymes (normally localized to the cytosol or to the
endoplasmic reticulum) to be engineered to get tar-
geted to the plastids (Fig. 5).
Triterpenes, the C30 family, are of particular interest

for their substantial carbon content, making them good
targets for biofuel production (Gübitz et al., 1999; Khan
et al., 2014) as well as for pharmacological purposes.
The biosynthesis of triterpenes requires several enzy-
matic steps (for review, see Phillips et al., 2006;
Thimmappa et al., 2014). The production of squalene is
the limiting regulatory step to produce triterpenes.
Modifying the production and fate of squalene, a key
precursor of phytosterols, is risky if this modification
affects the whole plant, as it can lead to dwarfism and
loss of fertility (for review, see Clouse, 2002; Schaller,
2003, 2004). Using the CBTS promoter, the production
of squalene was achieved in N. tabacum trichomes (Wu
et al., 2012). The production was greater when the two
enzymes for squalene production, squalene synthase

and farnesyl diphosphate synthase, were targeted to
the chloroplast. Even though the expression of the
transgenes was expected to be restricted to trichomes,
those transgenic plants that expressed squalene at the
highest level displayed strong phenotypes such as
dwarfism and chlorosis, which are similar to the phe-
notypes observed upon ubiquist expression of trans-
genes impacting the pool of IPP precursors (Wu et al.,
2006; Saxena et al., 2014; Gwak et al., 2017).

Using the same approach, the production of linear
triterpenes typical of the green alga Botryococcus braunii
was achieved in N. tabacum trichomes (Jiang et al.,
2016). Once again, the best production rate was when
the enzymes were targeted to the plastid, which sug-
gests that the best strategy for triterpene production is
to exploit the plastidial pool of IPP/DMAPP. However,
as for squalene production (Wu et al., 2012), the syn-
thesis of triterpenes led to chlorosis and dwarfism.
Plastidial membranes are quite fragile, and the balance
of sterols is important for the stability of the plastids
(Babiychuk et al., 2008). Thus, the production of squa-
lene or other triterpenes in the plastids might disrupt
the chloroplast integrity and lead to chlorosis. Since
trichomes are thought to be dispensable, the break-
down of chloroplasts is not expected to have major
consequences on the whole plant. A possible explana-
tion for this phenotype is that the promoter was not
completely trichome specific, probably due to the
presence of 35S enhancers upstream of the promoter
(Wu et al., 2012; Jiang et al., 2016) or to some positional

Figure 5. Terpenoid metabolism in engineered tobacco trichomes for triterpene production in plastids. The gray pathway rep-
resents the normal biosynthetic route for triterpenes and sterols. The enzymes are targeted to directly produce the triterpenes in
the plastids. Overexpressed enzymes are denoted in dark blue. New products deriving from the engineering metabolism are
denoted in light blue. The sinking plastidial isoprenoid pool might provoke undesirable consequences. Potentially affected
metabolites are denoted in orange. ABA, Abscisic acid; CYP450, cytochrome P450; FDS, farnesyl diphosphate synthase; FPP,
farnesyl diphosphate; GGPP, geranylgeranyl diphosphate; GPP, geranyl diphosphate; OSC, 2,3-oxidosqualene cyclase; SQE,
squalene epoxidase; SQS, squalene synthase.
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effects of the transgene affecting the specificity of the
promoter. The cell type specificity of transgene(s) ex-
pression, therefore, should be strictly ascertained in
transgenic lines and not based solely on the assessment
of the cell type specificity of the promoter via the analysis
of transcriptional reporter lines. Another plausible ex-
planation for such a phenotype could be that, although
trichomes are not essential, they may transmit a stress
signal to other leaf tissues, leading to the observed
phenotypes in the transgenic lines (Wu et al., 2012).

Metabolic engineering in tobacco has great potential.
The amount of terpenoids that the plant can naturally
produce is impressive. Using the plastidial pool for the
production of terpenoids seems much more efficient
than using the cytosolic one (Wu et al., 2006). However,
ubiquist expression alters plant development and di-
rectly impairs the yield. To be economically viable, the
yield of terpenoids should be increased with no or only
a slight impact on the plant phenotype. Lack of excre-
tion of the potentially cytotoxic metabolites is another
issue (discussed in Box 3). In addition, comprehension
of the exchange of prenyl diphosphates between the

plastids and the cytosol (Box 2) also should be investi-
gated so as to reroute the plastidic flux toward the cytosol
and avoid disrupting the stability of the chloroplastwith a
change in sterol profile (Babiychuk et al., 2008).

CONCLUSION

At present, plant biologists are trying to go beyond
the Arabidopsis model and to move to nonmodel plant
species. In this respect, the study of glandular trichome
biology is benefiting greatly from such a change of
model system. Recent advances in DNA sequencing,
omics technology, and reverse genetics, including plant
genome editing, now offer new technical resources to
investigate such biological aspects in a wide variety of
species.

Our current understanding of both the development
of glandular trichomes and of the biosynthetic path-
ways going on in these structures is improving, but at
this point it is still quite fragmentary. However, an in-
creasing number of research groups are now focusing
on various aspects of glandular trichome biology, in-
cluding developmental aspects and bioengineering.

Understanding the way glandular trichomes develop
to finally turn into highly efficient biochemical factories
in the epidermis of nonmodel plant species is of key
importance and could lead to more applied outcomes.
This calls for basic research to address these fascinating
aspects. It is now time to consider the real biotechno-
logical potential of glandular trichomes as biochemical
factories and use up-to-date technology to fully exploit
the cellular machinery. Increased knowledge of these
fundamental aspects will, in the mid term, allow re-
searchers to tap the up-to-now largely unexploited
biotechnological potential of glandular trichomes to
engineer plants that would exhibit increased resis-
tance to pests or that would produce compounds of
immense industrial/pharmaceutical interest (molecu-
lar pharming).
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