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By measuring lipid abundance across a tissue surface, 
one can create images composed of lipid type and con-
centration (7–10). Imaging lipids within the structure of 
the brain and other organs has been used extensively to 
understand response to injury (11) and to detect cancers 
(7, 8, 12). Here, we have used the desorption ESI (DESI) 
imaging technique. In DESI, a fine spray of charged drop-
lets in a high-velocity gas jet is directed toward a tissue 
sample (Fig. 1). Dissolved analytes from the tissue become 
ionized, and are pulled into the mass spectrometer (DESI-MS) 
(13, 14). The mass spectrometer records the mass-to-charge 
ratio and intensity as the spot where the spray hits the  
tissue is rastered over the tissue surface. By correlation of 
the time-dependent mass spectrometric data with the mo-
tion of the tissue on a computerized stage, an image can 
be constructed that displays the types and relative con-
centrations of analytes at specific positions in the tissue 
sample.

Changes in lipid types or concentrations allow bound-
aries between tissues, as well as regions within the tissue, to 
be identified (7–10, 12). The spectra from modern high-
resolution mass spectrometers are exceptionally informa-
tion rich; but even so, positive identification of all ions in a 
spectrum is rarely possible and it is often difficult to unam-
biguously assign peaks to individual lipids (15, 16). As a 
result, many studies have been published using changes in 
unidentified features to differentiate between areas of an 
image (8, 9). Even with this limitation, DESI-MS imaging 
has recently been shown to improve the efficacy of cancer 

Abstract  Compartmentalization of metabolism into spe-
cific regions of the cell, tissue, and organ is critical to life for 
all organisms. Mass spectrometric imaging techniques have 
been valuable in identifying and quantifying concentrations 
of metabolites in specific locations of cells and tissues, but a 
true understanding of metabolism requires measurement of 
metabolite flux on a spatially resolved basis. Here, we utilize 
desorption ESI-MS (DESI-MS) to measure lipid turnover in 
the brains of mice. We show that anatomically distinct re-
gions of the brain have distinct lipid turnover rates. These 
turnover measurements, in conjunction with relative con-
centration, will enable calculation of regiospecific synthesis 
rates for individual lipid species in vivo.  Monitoring spa-
tially dependent changes in metabolism has the potential to 
significantly facilitate research in many areas, such as brain 
development, cancer, and neurodegeneration.—Carson, R. 
H., C. R. Lewis, M. N. Erickson, A. P. Zagieboylo, B. C. Naylor, 
K. W. Li, P. B. Farnsworth, and J. C. Price. Imaging regiospe-
cific lipid turnover in mouse brain with desorption electro-
spray ionization mass spectrometry. J. Lipid Res. 2017. 58: 
1884–1892.

Supplementary key words  arachidonic acid • brain lipids • diet and 
dietary lipids • diagnostic tools • kinetics • molecular imaging

Lipid biosynthesis occurs in every cell and is a critical 
process for life. Lipids act as structural components, es-
sential nutrients, and signals for processes as diverse as 
cell proliferation or apoptosis (1). Many lipids within the 
body are synthesized locally (2, 3). Certain classes of lip-
ids, though, cannot be synthesized by mammals (4, 5) and 
some cells, like neurons, do not produce enough lipids 
to serve their needs. Therefore, dietary lipid availability 
and transport of lipids within the body are critical com-
ponents of metabolism. Lipid transport is closely linked to 
multiple diseases, including heart disease and Alzheimer’s 
disease (6).
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surgery by highlighting the boundaries between tumor and 
healthy tissue (7–10, 12).

An advantage of identifying and focusing on discrete 
lipid species, when they can be positively identified, is that 
we can assess the activity of biological pathways that pro-
duce those lipids. This is particularly useful in developing a 
rational intervention to prevent developmental defects and 
treat cancers or degenerative diseases. Trying to evaluate 

enzyme activity using only in vivo concentration is prob-
lematic because the body modifies synthesis and degrada-
tion rates to resist changes in concentration. Therefore, 
measurement of in vivo rates is the most sensitive method 
for detecting changes in metabolism (17) and may allow 
prognostic diagnosis of developing problems.

Here, we show that by using DESI in conjunction with 
metabolic labeling, we can measure turnover of individ-
ual lipid species in the mouse brain (Fig. 2). Further, we 
show that the turnover rates vary between physiologi-
cally recognizable structures within the brain. Although 
a large number of compounds can be detected in the 
mass spectra, in this proof-of-principle study, we limited 
the analysis to four identified lipids. In principle, this 
analysis can be conducted on large numbers of lipids si-
multaneously and will be particularly useful in detecting 
fast-growing tissues like cancer within the context of 
healthy tissues.

MATERIALS AND METHODS

Metabolic labeling
All experiments were performed under the approval of the In-

stitutional Animal Care and Use Committees of Brigham Young 
University in conformity with the Public Health Service Policy on 
Humane Care and Use of Laboratory Animals. Female mice 
(C57/Bl6:Spt2) between the ages of 13 and 16 months were 
housed in groups of five. To initiate the experiment, all mice re-
ceived an intraperitoneal (IP) injection of saline deuterium oxide 

Fig.  2.  The workflow is shown here in chronological order. First, mice are fed 8% deuterated water over a course of different time periods 
to increase their deuterium concentration in the lipids within their bodies. Then the mice are euthanized, their organs are sliced to 50 m 
thick, and the slices are thaw mounted on glass slides. The DESI source is rastered over each tissue slice over a period of approximately 2 h. 
The mass spectral data files are converted initially from .d files to a MATLAB data cube. Individual m/z peaks are selected to see the spatial 
and regioselective nature of individual lipids. Isotope ratio images reveal differing lipid turnover rates within the organ structure for indi-
vidual lipids, which are measured using incorporation curves.Q12

Fig.  1.  DESI is an ambient ionization mass spectrometric imaging 
technique. Electrospray droplets are formed when high voltage is 
applied to the solvent. Desorbed analyte is vacuumed into the mass 
spectrometer inlet, separated by m/z, and detected. After the sam-
ple is slowly rastered beneath the DESI source and mass spectrom-
eter inlet, an image of the sample surface can be recreated from the 
mass spectral data.
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(0.9% w/v NaCl, 99.8% D2O) and 15 l saline per gram body 
weight. After the IP bolus, mice were provided free access to food 
and deuterium-enriched drinking water (8% molar enrichment) 
for the remainder of the experiment (Fig. 2). This method caused 
an initial jump in deuterium enrichment up to two molar percent 
excess (MPE) to initiate the experiment, followed by a rise to five 
MPE over the next 10 days. Urine was collected up to 10 days dur-
ing the labeling period to build a profile of deuterium enrich-
ment in each animal (supplemental Fig. S1). At the designated 
time points (0, 1, 5, 10, 20, and 40 days post-IP injection), mice 
were anesthetized with carbon dioxide and then euthanized via 
cardiac puncture to collect blood. Brain tissue was immediately 
collected. Cells were removed from the blood plasma via centrifu-
gation (10 min at 800 g at 4°C). Brain tissue and blood plasma 
were flash-frozen on dry ice and stored at 80°C until needed.

Measurement of deuterium enrichment
Blood plasma and urine isotopic enrichments were measured 

in duplicate for all time points. In preparation for this measure-
ment, aliquots of each sample were diluted in duplicate (1:300 in 
18 M water) and placed into the caps of inverted sealed screw-
capped vials for overnight distillation at 80°C. Similar to previous 
studies, the MPE deuterium in the distilled water was measured 
against a D2O standard curve using a cavity ring-down water iso-
tope analyzer (Los Gatos Research, Los Gatos, CA) according to 
the published method (18).

Cryosectioning
Brains were cut coronally immediately after dissection and 

flash-frozen on dry ice. To obtain slices for DESI, frozen fore-
brains were adhered using VWR clear frozen section compound 
to the chuck of a cryostat, Thermo Scientific Microm HM550, and 
flash-frozen in liquid nitrogen. Fifty micron sections were sliced  
at 15°C. Sections were thaw-mounted onto VWR Superfrost Plus 
glass slides, flash-frozen on dry ice, and stored at 80°C. Prior to 
DESI imaging, the glass slides were dried at slight negative pres-
sure for approximately 20 min at room temperature, as previously 
described (19).

DESI-MS data acquisition
Sample images were gathered using a MicrOTOF II (Bruker 

Daltonics, Billerica, MA) and a laboratory-constructed DESI 
source. DESI parameters are presented in Table 1. Together, 
those parameters created a solvent spot that desorbed lipids and 
fatty acids from the brain tissue, releasing them into the atmo-
sphere, where they were sampled by an extension to the capillary 
inlet of the mass spectrometer.

DESI image quality considerations
Acquisition of high-quality DESI images requires careful atten-

tion to a large number of experimental parameters and inevitably 
requires a compromise between sensitivity and spatial resolution 
(20, 21). The experimental parameters presented in Table 1 rep-
resent such a compromise. The nominal pixel size was 75 × 150 
m. Additional important considerations included the complete 
elimination of gases from the solvent, the shape of the mass spec-
trometer inlet extension, and the age of the sample tissue (21). 
Because no preventive measures were taken to keep the brain 
cells intact at the surface of the tissue slices during cryosectioning, 
the DESI-MS data represent an average of all membrane and cyto-
solic lipid populations.

Analysis workflow (Image Inspector)
Acquisition files from the Bruker MicrOTOF were converted 

from .d files to .imzML using ProteoWizard MSconvert (22, 23). 
The imzML was then converted to a data cube using a MatLab 
script adapted from the read_imzML script that was included as 
part of the omniSpect package published by the Fernandez group 
at Georgia Institute of Technology (24). It is worth noting that, 
despite attempts to ensure that imzML is a universal format, the 
imaging files derived from different proprietary manufacturers’ 
formats have idiosyncrasies that require attention when reading 
them into a custom software package. For example, the number 
of spectra in chronograms acquired by the Bruker instrument var-
ies by one because of a lack of synchronization between an exter-
nal start signal and the internal clocking of the data acquisition. 
We provide the imzML-to-cube script as a template for other 
users, but it has only been tested with Bruker data.

After creation, the brain data cube was then assembled into an 
image using a MatLab script we developed, called Image Inspec-
tor (Fig. 2). Image Inspector allows flexible manipulation of the 
data cube to examine and export mass spectra from individual 
pixels or regions of interest, to view and export concentration 
maps for selected masses, and to view and export maps of neu-
tromer ratios. Portions of Image Inspector were also adapted 
from the omniSpect library. Areas defined by a region of interest 
tool were summed for export and calculation of isotope labeling. 
Turnover kinetics of individual brain regions in each image were 
calculated from the time-dependent ratio of labeled to unlabeled 
lipids. The code and readme for installation and usage of the Im-
age Inspector tool are provided as supplemental information.

Identification of individual lipids
In order to verify the lipid identities, purified lipids were or-

dered from Sigma-Aldrich and used as standards: arachidonic 
acid (AA) (A3611-10MG); cis-4,7,10,1,16,19-DHA (53171-10MG); 
1,2-diacyl-sn-glycero-3-phospho-L-serine (P7769-5MG); and L--
phosphatidylinositol (PI) ammonium salt solution (P2517-5MG). 
While the AA, DHA, and PI standards were exact matches for the 
lipid identifications we tested, it is worth noting that the phospha-
tidylserine (PS) standard turned out to be a different PS species, 
with a lower molecular weight than the one we observed in our 
DESI brain scans. For DESI scanning, a few drops of standard  
in solution (10 mg/ml in chloroform) were placed onto VWR 
glass slides via pipette and fragmentation was accomplished as  
described below for the brain slices.

MS/MS fragmentation spectra (supplemental Fig. S3) were 
collected in negative ion mode for ions at m/z 303.25, 327.25, 
834.5, and 885.6, using an Agilent QTOF mass spectrometer 
equipped with a DESI source. A metabolically unlabeled 50 m-
thick brain slice was scanned in targeted MS/MS mode three 
times at each of three different collision-induced dissociation 
fragmentation energies (10, 20, and 40 EV). Nitrogen was the 

TABLE  1.  Instrumental parameters for DESI image acquisition

DESI source
  Emitter voltage 5 kV
  Solvent 100% methanol
  Solvent flow rate 2.5–3.0 l min1

  N2 gas pressure 160 psi
  Emitter angle 55 degrees
  Emitter tip to surface distance 1 mm
  Emitter tip to inlet distance 4 mm
Stage parameters
  x axis scan rate 75 m s1

  y axis row spacing 150 µm
Mass spectrometer parameters
  Ion mode Negative
  Mass range m/z 200–900
  Acquisition rate 1 spectrum s1

  Averaging 2 spectra
  Inlet voltage 500 V
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collision gas. Each scan lasted approximately 3 min; during the 
scans, the brain slice was manually moved under the DESI spray 
(100% methanol at 3 ml/min) in order to maximize total ion 
counts. The capillary voltage was set at 1,000 V, and MS1 and MS2 
data were collected at a maximum rate of four spectra per second 
(other settings: 250 MS per spectrum, narrow isolation width 
m/z 1.3). Fragmentation data at each collision energy were aver-
aged to collect the MS/MS spectra (supplemental information); 
experimentally observed fragments for tissue and standards were 
initially compared against the literature (14) and then further 
analyzed using online tools from LipidMaps.org (25) and Metlin.
Scripps.edu (26) to identify each of the lipid species.

Calculation of the number of deuterium sites
As we (27, 28) and others (29, 30) have previously described for 

peptides, independent turnover rates can be measured for multi-
ple analytes simultaneously using MS and D2O labeling. The three 
main variables to consider when calculating the turnover rate (k) 
are the number of sites in each lipid that can incorporate deute-
rium from water (n), the D2O enrichment of the body water at the 
time the lipid was labeled (p), and the time-dependent labeled 
fraction (f) of the lipid being measured (28).

The number of covalent deuterium sites (n) is unique for each 
lipid (Table 2). This value was calculated using the isotope pat-
tern for the metabolically labeled form of each identified lipid 
and the known D2O enrichment (Fig. 3). Highly labeled spectra 
for the individual lipids were collected by imaging brain tissue 
from mice collected after 40 days. We subtracted the unlabeled 
isotope pattern from the labeled spectra to isolate the specific 
changes due to the newly synthesized lipid. We found that using 
an experimentally determined unlabeled background improved 
the calculations. We then calculated the deviation, assuming a 
range of n values for the lipid. Three of the four lipids had a single 
best n, which minimized the deviation between theory and ex-
periment for each of the isotope peaks within the isotope pattern 
(Fig. 3), as previously described (27, 28, 31). DHA had a very 
small overall change in the isotope pattern that was affected by 
interference from nearby molecules. We were not able to find a 
unique best n value for DHA.

Calculating in vivo lipid turnover
Every time a new lipid is synthesized, it will incorporate protons 

and deuterons from the body water pool. The relative percentage 
of deuterium incorporated is dependent on the enrichment of 
the water at that time. The changing deuterium enrichment of 
the body water in these mice required that the effective deute-
rium enrichment be calculated based on the half-life of the ana-
lyte. Because human studies usually have an increasing nonlinear 
body water enrichment (28, 30), this study provided a good proof-
of-principle test for the calculations that would be required for 
analyzing metabolically D2O-labeled human tissue samples. The 
enrichment of the body water for this calculation was defined as 
the average of the urine and plasma values for all mice at a time 

point (supplemental Fig. S1). This body water curve provided the 
time-dependent precursor enrichment for the calculation of the 
f values. The time-dependent change in normalized intensity Ix 
for each mass in the neutromer pattern was calculated according 
to equation 1, for both experimental and theoretical spectra. As 
the initial point for the Bayesian calculation of k, we calculated 
the theoretical Ix for the labeled molecule using the body water 
measured that day. The daily f values were then calculated using 
the single pool rise to plateau kinetic shown in equation 2. The 
half-life from this initial k value was then used to calculate the ef-
fective body water at each time point as the integral over that time 
period, which was used to calculate new theoretical Ix and a new 
f, as described previously for protein (28). These f values were 
used to fit a new k, which was used to calculate the new effective 
deuterium enrichment for the next round. This recursive optimi-
zation was conducted until the lipid half-life changed by less than 
0.5 days.
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We compared k values in the cortex and caudoputamen of the 
brain by averaging the spectra in those regions using Image In-
spector, and then calculating k using the scipy package in python 
for the recursive nonlinear regression fit.

RESULTS

Establishment of lipid identities and n values
In the DESI spectra, four singly charged ions were con-

sistently observed with significant signal intensities (Fig. 3). 
We compared the parent m/z and MS/MS fragmentation 
data (supplemental information) observed here against a 
literature source (14) and tentatively identified them as AA 
(C20:4 

5,8,11,14, m/z 303.25, C20H32O2), DHA (C22:6 


4,7,10,13,16,19, m/z 327.3, C22H32O2), PS (C40:6, m/z 834.6, 
C46H77NO10P), and PI (C38:4, m/z 885.6, C47H82O13P). Sub-
sequent MS/MS fragmentation of purified lipid standards 
verified the identification of AA, DHA, PS, and PI (supple-
mental Fig. S3).

The calculated n value for each of the lipids (Fig. 3) is 
consistent with their individual biosynthetic pathways. AA 
and DHA are both conditionally essential fatty acids. They 

TABLE  2.  The common name, observed ionic mass, and elemental composition of the four major singly charged 
ions observed in our DESI-MS spectra

Lipid m/z Formula n k in CA k in CO Percent

AA* 303.25 C20H32O2 6 0.046 ± 0.005 0.055 ± 0.007 40
DHA 327.25 C22H32O2 8 0.057 ± 0.019 0.045 ± 0.010 32
PS* 834.6 C46H77NO10P 21 0.041 ± 0.003 0.053 ± 0.001 100
PI 885.6 C47H82O13P 27 0.072 ± 0.005 0.081 ± 0.005 73

The asterisk (*) next to the name indicates a statistically significant difference in the turnover rate (k) of lipids 
between the caudoputamen (CA) and cortex (CO). The number of deuteriums (n) was the same regardless of the 
area of the brain. There were large differences in the amount of biosynthesized versus dietary lipid (percent) for 
different lipid species.
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are synthesized from the essential fatty acids, linoleic acid 
(C18:2 D9,12) and linolenic acid (C18:3 D9,12, 15), re-
spectively, but can also be obtained through the diet. Our 
results suggested that the addition of the C2 unit to make 
AA from linoleic acid included the covalent addition of six 
protons from water (supplemental Fig. S2). During the 
deuterium enrichment, these six positions incorporated 
deuterium, leading to the n = 6 value for this lipid. (Fig. 3). 
DHA was less clear because the spectra were noisier and 
the experimental I was very small. The change at M2 for 
DHA was confounded in many spectra by overlapping 
peaks from unidentified species. Although there were 
multiple n values mathematically (Fig. 3), the similarity to 
the AA biological pathway suggested that an n = 8 value 
would be most appropriate (supplemental Fig. S2). It is 
highly likely that the PS and PI spectra represent two fami-
lies of related structures where the unsaturated bonds are 
at multiple different positions in the fatty acyl tails. Our 
DESI fragmentation method was not capable of distin-
guishing between specific isomers that differed only in the 
placement of double bonds. However, in spite of this po-
tential structural variation, we were able to calculate an n 
value of 21 for PS and 27 for PI (Fig. 3). The glycerol back-
bone and the head groups of these lipids are synthesized 

from glucose, which would allow each of the carbon hydro-
gen bonds to incorporate a deuterium (2). For PS, this 
means that up to eight deuterium positions are within the 
glycerol and serine. The 13 other deuterium sites are pre-
sumably distributed between the two fatty acyl tails. The 
inositol head group in PI and two fewer desaturations in 
the fatty acyl tails could easily account for the six more deu-
terium positions observed in this molecule (supplemental 
Fig. S2).

Spatially distinct changes in isotope ratio are specific to 
individual lipids and independent of concentration

In DESI images, signal intensity at a given m/z value is a 
measure of the relative concentration of a particular com-
pound (the neutromer distribution is a measure of the 
turnover of that compound). In addition to depending on 
the concentration of a compound in the tissue, DESI sig-
nals can be affected by a range of factors, including the 
tissue type, microscopic surface roughness, and changes in 
ambient conditions during image acquisition. Even with 
this inherent variability, the spatial distribution of lipid signal 
intensity was distinct for each targeted lipid and followed 
boundaries of the classical brain structures in a manner that 
was consistent with changes in concentration. Measurement 

Fig.  3.  Comparison of experimental and optimized 
simulations of labeled and unlabeled spectra (left). 
The number of deuterium sites was derived by mini-
mizing the deviation between the simulated and ex-
perimental spectra when the number of covalant 
deuterium sites was allowed to vary (right).
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of PS intensity in tissues collected throughout the metabolic 
labeling time course (Fig. 4, right column) showed that its 
concentration was consistently relatively high in the cortex 
and the caudoputamen and lower in the corpus callosum.

Comparison of the change in intensity with the change 
in isotope ratio for the four test compounds across an im-
age showed that they are not necessarily linked for the dif-
ferent lipid species (Fig. 4, supplemental Fig. S4). Using PS 
as an example, if the change in isotope pattern was scaled 
linearly over the 40 days of the experiment (Fig. 4, global 
scaling), we saw similar changes across the entire brain. 
This similarity suggested that newly synthesized lipid is 
present across the entire organ. Changing the scaling of 
the image to emphasize the range within a single image 
(independent scaling) showed that there was a small, but 
measurably faster, rate in a subsection of the cerebral cor-
tex and the septal nucleus. Importantly, the symmetry of 
the image was in agreement with the structure of the brain, 
reducing the possibility that this was a transient fluctuation 
in the image. The turnover measurement of each lipid 
was much more resistant to variations in ionization effi-
ciency, because the heavy and light versions of the lipid are 
chemically identical and change similarly, preserving 
the ratio between them. This means that the turnover 

measurement is, in principle, more robust across an im-
age than simple concentration measurements.

The other lipids all showed similar, yet unique, distri-
butions in both concentration and turnover rate. AA, 
for example, was found at relatively high concentrations 
everywhere in the brain except the caudoputamen area 
(supplemental Fig. S4A). The rate of turnover was also 
slower in the caudoputamen. This is consistent with the 
idea that AA is synthesized and degraded locally. DHA was 
found at relatively high concentrations in the cortex, but 
there was a very small and somewhat noisy change in the 
isotope ratio, suggesting that turnover was minimal any-
where in the brain (supplemental Fig. S4B). This is not sur-
prising, given that DHA is conditionally essential in the 
diet, but these results suggest that 65% of the DHA in the 
brain is sourced directly from the diet. PI has a similarly 
wide distribution of relatively high concentrations in the 
brain, except in the approximate area of the corpus cal-
losum (supplemental Fig. S4C). Interestingly, the turn-
over of this lipid was fastest in the corpus callosum where 
the concentration was very low. This suggests that the 
lipid was either synthesized and immediately degraded 
in the area of the corpus callosum or synthesized and dis-
tributed to the rest of the brain from the corpus callosum.

Fig.  4.  Concentration/isotope ratio images for PS. A 
representative stained tissue slice is shown (top left), 
with the areas of the cortex and caudoputamen (CA) 
highlighted in the cartoon (top right).
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Turnover calculations highlight differences in metabolism 
between lipids

Using the lipid-specific n value and the measured body 
water, we calculated the time-dependent percentage of 
the molecules that had been labeled. This allowed us to 
directly compare metabolic rates between the different 
lipids. We found that using the average body water curve 
and combining all the time-dependent measurements from 
the individual mice to constrain the turnover calculation 
dramatically improved the confidence in the fit. This 
was consistent with the fact that these mice were all ge-
netically identical and of a similar age. Therefore, they 
could be considered biological replicates for these met-
abolic measurements.

As suggested by the images (Fig. 4, supplemental Fig. S4), 
we found that there was a small, but measureable, differ-
ence in turnover rate between different regions of the 
brain for the lipids AA and PS (Fig. 5, cortex vs. caudoputa-
men). PI turned over more rapidly than the others and did 
not have a significant difference between the cortex and 
caudoputamen (Table 2). Interestingly, the turnover kinet-
ics also highlighted differences in the source of the lipids. 
For example, the incorporation curve for PS had a rate of 
approximately 5% per day and increased over the 40 day 
experiment such that 100% of the lipid was new by the 
final measurements. PS is evidentially formed from fully 
biosynthesized precursors, while the majority of AA and 
DHA are sourced from the diet. PS, AA, and DHA curves 
had similar rates of incorporation (5% per day), but the 
amount of labeled AA and DHA saturated at much lower 
amounts than PS (Table 2). The saturation percentage re-
flects the relative contributions of biosynthesis and dietary 
sources for each lipid species. De novo synthesis and di-
etary sources of lipids are known to both be critical for the 
development and health of the brain (4). The uniform ki-
netic plateau across the image for each lipid also suggests 
there is no spatial differentiation in the source, i.e., diet 
versus de novo synthesis.

DISCUSSION

We have shown that DESI can be used to image spatial 
regulation of metabolism in the mouse brain. Although 
any imaging technique could potentially be used to mon-
itor metabolism using these methods (9). DESI is conve-
nient as an imaging system because the sample preparation 
is fast and inexpensive, with simple atmospheric pressure 
ionization. A disadvantage of DESI is the variation in ion-
ization due to chemical and/or physical variability in the 
tissue samples. Because the sniffer (Fig. 1) is held so close 
to the tissue surface, we have seen that if the 50 m tissue 
slice has ragged edges or variable thickness, the sniffer po-
sition relative to the sample surface changes during a scan, 
causing biases in the image.

Imaging lipids is convenient because they ionize well 
in DESI and because lipid metabolism lies at the core of 
multiple important diseases, such as neurodegeneration 
(3, 4, 6, 32) and cancer (8, 17, 33). Improved identification 

of lipids is an important direction for future development 
in biochemistry because of their roles in metabolism and 
signaling. Identification of lipids is difficult; grouping mass 
spectral features into (sometimes broad) lipid classes is the 

Fig.  5.  Deuterium enrichment of all four lipids included was com-
pared in different areas of the brain. The distribution of enrich-
ment in individual pixels in the cortex (gray inset) versus the 
caudoputamen (black inset) varied according to lipid and area of 
the brain (day 20 is shown). Turnover rates were calculated using 
kinetic curves composed of three separate images from two mice at 
each time point.
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current state of the art (15, 16). For this proof-of-principle 
study, we monitored the turnover of four previously identi-
fied lipids, but the techniques can be applied to any identi-
fiable molecule.

There have been many excellent studies investigating 
metabolism of lipids in the brain (34). To our knowledge, we 
are the first to image metabolism of specific lipids. By identi-
fying the individual lipids, we unlock the ability to investigate 
the metabolic pathways of each lipid. The in vivo turnover 
reports the rate-limiting step for metabolism. Interestingly, 
use of radiolabeled AA and DHA has shown that phos-
pholipid incorporation and turnover occurs over a range 
of about 2–8% per day (35), in agreement with our obser-
vations. The use of radioactivity in the previous study pre-
cluded the assessment of the percent of the total pool that is 
synthesized. Using stable isotopes, the experiment measures 
turnover rate, as well as the relative contribution of dietary 
sources to the metabolism of the tissue. We observed that the 
PI turnover is faster than the PS, but that there is a portion 
of the PI pool within the brain that does not display turn-
over. This could be due to a dietary supply of PI or to brain 
cells that are preserving the PI in a specific structure. We fa-
vor the dietary supply hypothesis because this 80% limit was 
uniform across the brain and both AA and DHA, which are 
known to be sourced from the diet to supplement biosyn-
thesis (4), show similar trends (supplemental Fig. S4).

Both biological and instrumental factors cause variations 
between images and in the symmetry of individual images. 
As mentioned above, changing ionization efficiency in the 
DESI source introduces variations that are particularly evi-
dent in the concentration images. The section of the brain 
that is imaged varies somewhat as well because it can be 
difficult to match the exact location of the tissue slice 
within the brain for each time point. The isotope analysis 
feature of Image Inspector is valuable for analysis of both 
biological and instrumental noise. In unlabeled samples it 
provides the analyst with an accuracy metric that can be 
used to evaluate image quality. Overlapping isotopic sig-
natures can be identified by looking at the intensity pat-
terns across the brain. For example, there was a significant 
change in the observed distribution of the m/z 888 neu-
tromer of PI across the brain relative to the monoiso-
topic m/z 885 (supplemental Fig. S5). This was indicative 
of an overlapping lipid species, i.e., the low purity of the 
mass spectrum. Therefore, the kinetics calculations didn’t 
include the m/z 888 or heavier m/z neutromers. We also 
found that by monitoring bias in the neutromer pattern, 
we have rational criteria for setting signal thresholds for 
each analyte in each image. This is a continuous quality 
analysis that can be used to rapidly identify noise in the 
instrument or bias from closely overlapping signals, which 
can vary with time or tissue composition.

The next step in developing this kinetic imaging method 
will be to focus on improved quantitation in combination 
with the turnover of the individual lipids. This would allow 
investigators to distinguish between changes in synthesis, 
transport, or degradation of lipids. Expanding the imaging 
to a wide variety of other analytes, including other metabo-
lites and proteins, would dramatically expand the utility of 

this method. This allows us to consider future experiments 
looking into the effect of diet on brain health and develop-
ment or investigating the effect of cancer therapies that 
target lipid metabolism.
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