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ABSTRACT
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is 

highly regulated by steroid hormones, particularly androgens, and the extracellular 
environment. Herein, we identify the secretion of CD9 positive extracellular vesicles 
(EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use 
nano-LC–MS/MS to identify the proteins present in these EV. Subsequent bioinformatic 
and pathway analyses of the mass spectrometry data identified pathologically relevant 
pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay 
confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and 
DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can 
induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous 
CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific 
antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating 
CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to 
be significantly higher in plasma from prostate cancer patients in comparison with 
benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved 
in mediating paracrine signalling and contributing toward prostate cancer progression.

INTRODUCTION

Androgenic steroid hormones are important for 
proliferation and maintenance of both normal prostate 
and prostate cancer cells. Upon binding with androgens, 
a nuclear receptor, the androgen receptor (AR) mediates 
the transcription of genes involved in cellular proliferation 
and survival [1]. Treatment for prostate cancer has long 

focused on targeting the activity of the AR [1–3], however 
prostate cancer is an heterogeneous disease where the 
underlying mechanisms for progression to castrate 
resistant prostate cancer are not clearly understood [4].

Cells, including cancer cells, secrete heterogeneous 
populations of vesicles, collectively referred to as 
extracellular vesicles (EV) [5–8]. EV are accepted as 
important mediators for inter-cellular communication due 
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to their ability to actively transport subsets of receptors and 
genetic information [9]. This ability to transport different 
proteins, as well as DNA and RNA, has also been linked 
to disease progression and cancer metastasis [10–12]. EV 
have been shown to induce a change of tumour fibroblasts 
to myofibroblasts and promote angiogenesis in the tumour 
microenvironment [13, 14]. The EV have also shown 
potential as delivery agents for therapeutic treatments as 
they are capable of evading the natural immune system 
with minimum cytotoxic effects [15] as demonstrated 
in melanoma, where treatment with EVs containing the 
MAGE3 peptide has shown promising results, with no grade 
II toxicity [16]. It has also been recently identified that a cell 
surface proteoglycan, glypican-1 (GPC1), is specifically 
enriched in pancreatic cancer-cell-derived EV [17], showing 
that EV may also have potential as cancer biomarkers.

It is currently understood that the exosome isolation 
methodologies (differential ultracentrifugation or gradient 
ultracentrifugation with/without 220 nm filtration) purify 
heterogeneous populations of small EV [18] and several 
sub-classes of small EV have been defined. Small EV that 
originate from intracellular budding at the multivesicular 
bodies (MVBs) have been commonly referred to as exosomes 
[18, 19]. Exosomes have a double layered membrane 
with a particular lipid composition rich in sphingomyelin, 
cholesterol, and glycerophospholipid [20], and contain MVB-
associated proteins and RNAs [9, 21]. Another subclass 
of EV, the ectosomes or microvesicles, are vesicles with 
diameter between 100 nm to 1 μm that bud from the plasma 
membrane [5, 7, 22]. Ectosome biogenesis is triggered 
by plasma membrane activity, including intracellular 
calcium influx and by ARF-6, and interactions between the 
cytoskeletal resident proteins actin and myosin [7, 8, 21, 23]. 
The ectosomes are enriched with phosphatidylserine and 
the exposure of phosphatidylserine on the cell surface is a 
characteristic of ectosome secretion [24]. Other members of 
EV include large vesicle oncosomes, prostasomes, exosome-
like vesicles, and virus-like vesicles [5, 25].

The EV marker CD9 is highly expressed in colorectal, 
breast, endometrial, and prostate cancer [26] and it has often 
been used as a common marker of exosomes in the past. 
However, current evidence suggests that CD9 is a more 
specific EV marker that may be found in a subset of small 
EV [5, 27]. CD9 is a member of the tetraspannin protein 
family and is involved in cellular migration, proliferation 
and adhesion in diverse cell types; it can oligomerise and 
bind various integrins and tubulin at the cell surface [28]. 
While antibodies against the CD9 antigen can also induce 
Ca2+ influx in platelets and stimulate phosphatidylserine 
exposure at the cell surface [29], CD9 positive EV do not 
appear to be a member of plasma membrane ectosomes, 
as they have not been reported to express the common 
ectosome markers CD35, GPA, CD86, CD47 [5].

Exposure to extracellular stimulants will prompt 
tumour cells to secrete various factors to the external 
environment, where they can further contribute towards 

paracrine signalling and mediate cellular interactions 
with the tumour microenvironment. In this study, we have 
characterised the role of androgens specifically DHT, in 
regulating EV secretion from prostate cancer cells and 
demonstrate that CD9-enriched EV can modulate cellular 
proliferation when the availability of androgen is limited as 
may occur during androgen deprivation therapy. The outcome 
of these studies demonstrate that CD9 positive EV can 
mediate paracrine signalling in prostate cancer proliferation 
in the absence of androgens and that CD9 positive EV are a 
potential candidate as a prostate cancer biomarker.

RESULTS

DHT increases the CD9 positive EV secretion in 
LNCaP and DUCaP cells

Depletion of androgens can suppress the secretion of 
proteins by AR positive prostate cancer cells, as is seen in 
secretion of the prostate cancer clinical biomarker prostate 
specific antigen (PSA) [30]. Small EV were isolated by 
sequential ultracentrifugation from conditioned media 
from androgen responsive LNCaP and DUCaP cells in 
androgen deprived conditions (in CSS), in the presence 
of the physiological androgen, dihydrotestosterone 
(DHT) or the AR antagonist MDV3100 (Enzalutamide). 
We found that secretion of EV is not inhibited by DHT or 
androgen deprivation as markers of EV Alix, TSG101 and 
CD9, were detected by western blot in isolated vesicles 
from LNCaP (Figure 1A and Supplementary Figure S1), 
and DUCaP (Supplementary Figure S2), irrespective of 
their treatment. While there was no observed increase or 
decrease of TSG101 or Alix in EV, the amount of CD9 
present in isolated EV was increased when LNCaP and 
DUCaP cells were treated with DHT (androgen) and 
was reduced in cells treated with androgen antagonist 
(MDV3100/Enzalutamide) or when cells were grown in 
androgen-deprived conditions (in charcoal stripped serum, 
CSS). The increase of CD9 positive EV in conditioned 
medium was also shown by measurement using a CD9 
TR-FIA assay (Figure 1B).

Although DHT stimulates PSA secretion from cells 
(Figure 1A), the presence of DHT did not significantly 
increase the yield of proteins found in EV from LNCaP 
or DUCaP (Figure 1C), however when LNCaP were 
cultured in CSS, the yield of EV proteins increased three-
fold (Figure 1C, p<0.05), a degree of response that was 
not observed in DUCaP. Comparatively, when cells were 
grown in FBS, EVs from DUCaP cells contained 1000-
fold higher protein concentration compared to LNCaPs 
(Figure 1C).

Androgen exposure also induced changes in 
the diameter of LNCaP-derived EV. The majority of 
EV isolated from LNCaP grown in FBS or CSS in the 
presence of DHT (DHT-EV) were approximately 150 nm 
in diameter, however when grown in androgen-deprived 
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conditions, in CSS (CSS-EV) or in the presence of 
antagonist MDV3100, there was a significant increase in 
the population of 120 nm EV concomitant with a reduction 
in the population of 150 nm EV (Figure 1D). Although 
similar changes could be observed, in DUCaP cells the 

change were not significant (Supplementary Figure S2). 
Representative TEM images show the changes in the size 
of secreted vesicles from LNCaP upon androgen treatment 
(Figure 1E), while closer observation showed the EV as 
cup- or round-shaped vesicles (Supplementary Figure S3).

Figure 1: Characterisation of EV in prostate cancer cell lines treated with physiological androgen DHT or under androgen 
ablation. A. A representative western blot illustrates the EV markers, Alix, TSG101 and CD9 in vesicles isolated from conditioned medium 
of LNCaP grown in FBS, CSS (+ EtOH, vehicle) or 10 nM DHT with or without 10 μM MDV3100 (10 μg vesicular proteins or 30 μg cell 
lysates). Cellular PSA expression was increased by DHT and reduced by MDV3100, used as a marker for AR manipulation. GAPDH was 
used for loading control of cell lysates. B. Treatment with 10 nM DHT showed increased amount of secreted CD9 in conditioned medium 
of LNCaPs (n = 3, *p<0.05), but not DUCaPs (n = 3). 150 μg proteins of conditioned medium were used for CD9 based TR-FIA assay. C. 
Effect of androgen on the protein yield of secreted vesicles. The secreted vesicles were isolated from conditioned media from LNCaP and 
DUCaP cells and analysed by BCA assay. Prostate cancer cells were grown in FBS (+ EtOH, vehicle), CSS (+ EtOH, vehicle), or CSS+10 
nM DHT. CSS-grown medium increased the amount of secreted vesicular proteins in LNCaP cells (*p<0.05), but not in DUCaP cells. Protein 
concentrations from each treatment were normalized by cell number (end of experiment) and by protein concentration of vesicles secreted 
by respective cells in FBS (n = 4, data were represented as mean ± SEM). D. Androgen manipulation alters the secretion of LNCaP-derived 
EV. qNANO measurement and images of vesicles secreted by LNCaP and DUCaP cells. The diameters of isolated vesicles from prostate 
cancer cells grown in FBS (+ EtOH, vehicle), CSS (+ EtOH), CSS + 10 nM DHT and CSS+10 nM DHT + 10 μM MDV3100 were measured 
by qNANO using NP100 filter (n = 3-4 biological replicates, minimum of 500 vesicles per measurement, *p<0.05). Data were represented 
as mean ± SEM. E. Representative images captured by Transmission Electron Microscopy of vesicles secreted by LNCaP cells (scale bar: 
i=200nm). LNCaP cells were grown in FBS (+ EtOH), CSS (+ EtOH), CSS + 10 nM DHT and CSS + 10 nM DHT + 10 μM MDV3100.
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Pathway analysis indicates activation of cellular 
proliferation related pathways in EV secreted by 
DHT treated cells

Using nano-LC–MS/MS following 1D SDS-
PAGE separation, we analysed the effects of DHT on the 
proteome of LNCaP and DUCaP EV and identified a total 
of 473 and 713 proteins respectively. We did not identify 
ectosomal (CD35, GPA, CD86 and CD47) or oncosomal 
(CK18) markers in CSS-EV or DHT-EV from either 
cell line. For comparative analysis, proteins that were 
identified in only one out of three biological replicates 
were not considered for further analysis, leaving a total of 
227 and 469 proteins remaining for subsequent analysis 
for LNCaP and DUCaP EV, respectively. Quantitative 
analysis was performed using normalized eMPAI ratios 
for the 145 EV proteins that were commonly found in 
both cells lines irrespective of treatment (Figure 2A, 
Supplementary Table S1, with p-value ≤ 0.05 deemed as 
significant). Unsupervised hierarchical clustering of these 
proteins illustrated that more than 50% of these proteins 
were not similarly modified in DHT-treated LNCaP and 
DUCaP cells (Figure 2B).

In LNCaP cells, 76.6% (174/227) of EV proteins 
were found in both CSS-EV and DHT-EV, with ~10% 
(22/227) and ~14% (31/227) of the proteins unique 
to DHT-EV or CSS-EV respectively (Figure 3A). In 
agreement with previous reports [31, 32], we did not 
find AR in the list of EV proteins identified by mass 
spectrometry or by western blot (data not shown). The 
effect of DHT on DUCaP EV proteins was different 
to that of LNCaP EV with ~10% (44/469) of proteins 
from DUCaP EV uniquely present in DHT-EV, ~43% 
(201/469) unique to CSS-EV and 47.8% (224/469 
proteins) present in both. To identify potential functional 
processes and pathways that may be influenced by EV 
proteins, comparative analysis was performed by sorting 
the identified functions indicated by Ingenuity Pathway 
Analysis. We found that the most significantly enriched 
processes in EV from DHT treated LNCaP and DUCaP 
cells were ‘cellular movement’, ‘cancer’, ‘cell growth and 
proliferation’; as well as ‘cell death and survival’ (Figure 
3B and 3C, Table 1A). In CSS control cells; ‘cancer’ was 
the most enriched functional process (Table 1B).

LNCaP is a well characterised prostate cancer 
cell line, extensively used as a model for androgen 
response [33]. Using Ingenuity Pathway Analysis 
(IPA), 103 proteins in LNCaP derived DHT-EV and 99 
proteins in CSS-EV were identified as involved in cell 
proliferation, with 91 proteins in common (Table 2). 
Thirteen proteins were found uniquely in EV from DHT-
treated LNCaP cells, including members of the RAS 
oncoproteins (HRAS, NRAS, RRAS), Phosphatidic Acid 
Phosphatase Type 2A (PPAP2A) and the A Disintegrin 
and Metalloproteinase (ADAM) protein family (ADAM9 
and ADAM15), expression of which is regulated by 

AR [34–37]. The EV markers CD9, TSG101 and Alix 
(PDCD6IP), were also identified by IPA as part of this 
cellular proliferation pathway. Quantitative analysis on EV 
proteins identified by mass spectrometry and analysed by 
eMPAI normalisation shows that consistent with Western 
Blot results the EV marker, CD9, was increased by DHT 
in isolated EV by >1.5-fold, while other MVB-derived EV 
markers, Alix and TSG101 were not affected (Table 3).

CD9 EV is higher in plasma prostate cancer

The highly sensitive time resolved-fluorescence 
immunoassay (TR-FIA) for capture/detection of CD9 EV 
and CD63 EV has been previously employed to assess the 
content of CD9 positive and CD63 positive EV in urine 
of prostate cancer patients [38], where levels of CD9 
and CD63 positive EV were found to be higher in urine 
samples from prostate cancer patients. EV can mediate 
cancer progression by delivering information to distant 
cells by exploiting the systemic blood circulation, as seen 
in murine xenografts [39]. EV can also serve as biomarkers 
for diseases such as cancer [40, 41]. To assess whether 
CD9 EV can serve as biomarker in prostate cancer, we 
examined the level of CD9 positive and CD63 positive 
EV in prostate cancer in plasma derived from prostate 
cancer patients (n=6) and benign prostate hyperplasia 
(BPH) patients (n=10). Patient characteristics are shown 
in Table 4. Higher CD9 positive EV were evident in in 
prostate cancer patients compared to men diagnosed with 
BPH (Figure 4A), while measurement of CD63 positive 
EV and PSA did not show significant differences between 
the cohorts (Figure 4B and 4C).

CD9 enriched EV increased cellular proliferation 
in androgen deprived LNCaP cells

We further questioned whether CD9 expression 
and secretion in EV is a result of the activation of AR 
by DHT. It has been reported that CD9 expression 
was increased in LNCaP cells treated with a synthetic 
androgen, R1881 at 10 nM [42], however, we found that 
at a more physiologically relevant concentration of 10 nM 
DHT, CD9 mRNA levels did not increase in LNCaP cells 
(Figure 5A). Androgen manipulation also did not alter the 
CD9 cellular protein levels (data not shown). In contrast, 
levels of TSG101 and CD63 in LNCaP were significantly 
reduced by treatment with 10 nM DHT (~30% reduction). 
This reduction was antagonized by the presence of 10 μM 
MDV3100 (Figure 5A).

While it is currently accepted that cells secrete various 
populations of EV and that CD9 could be a marker of a 
distinct population of small EV [43], the EV contents are 
dependent on the cellular context [5, 23, 27, 44]. CD9 has 
also been reported to be localised at the plasma membrane in 
various cell lines [5]. We further investigated the differences 
on EV markers CD9, TSG101 and Alix in prostate cancer 
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Figure 2: Treatment with DHT changed the relative abundance of vesicular proteins. A. Venn diagrams visualising the proportion 
of vesicular proteins found in both LNCaP and DUCaP cells grown in CSS (+ EtOH, vehicle) or CSS + 10 nM DHT. B. Unsupervised 
hierarchical clustering of commonly identified vesicular proteins from both LNCaP and DUCaP cells (n = 145 proteins) based on their ratio of 
quantified CSS+DHT/CSS (+ EtOH, vehicle) using eMPAI (n = 2-3). Relative protein abundance is colour-coded with red corresponding to a 
relatively high abundance, green corresponding to a relatively low abundance, and grey indicating missing abundance values.



Oncotarget52242www.impactjournals.com/oncotarget

Figure 3: Comparative analysis of vesicular proteins isolated from LNCaP and DUCAP cells. A. Venn diagrams of proteins 
identified in at least two biological replicates by mass spectrometry, visualising the proportion of vesicular proteins found in LNCaP 
or DUCaP when cells were grown in CSS (+ EtOH, vehicle) or CSS+10 nM DHT. B. Ingenuity pathway analysis shows the identified 
“Diseases and Biological Functions” categories of identified proteins in vesicles secreted by LNCaP cells grown in CSS (+ EtOH, vehicle) 
and after treatment with 10 nM DHT (CSS + 10 nM DHT). C. Ingenuity pathway analysis shows the identified “Diseases and Biological 
Functions” categories of identified proteins in vesicles secreted by DUCaP cells grown in untreated CSS (+ EtOH, vehicle) and after 
treatment with 10 nM DHT.
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Table 1: The effects of androgen manipulation on the composition of LNCaP EV proteins
Table 1A: List of 10 most significant pathways in DHT-EV as indicated by IPA

RANK Categories Diseases or functions 
annotation

Molecules # Molecules

1 Cellular growth and 
proliferation

proliferation of cells ADAM15,ADAM9,ARF1,DNAJA1,FGFRL
1,HRAS,KIF23,NRAS,PEBP1,PPIA,RRAS,S
CAMP4,SCARB1

13

2 Cellular movement cell movement ADAM15,ADAM9,ARF1,DNAJA1,HRAS,N
RAS,PEBP1,PPAP2A,PPIA,RRAS,SCARB1

11

3 Molecular transport transport of molecule ADAM9,ARF1,DNAJA1,HRAS,KPNB1,RA
B7A,RAB8A,SCARB1,STXBP3

9

4 Infectious disease Viral infection ARF1,DNAJA1,HRAS,KPNB1,LRRC8E,PPI
A,RAB7A,RAB8A,SCARB1

9

5 Cellular movement migration of cells ADAM15,ADAM9,ARF1,HRAS,NRAS,PPA
P2A,PPIA,RRAS,SCARB1

9

6 Cellular development, 
cellular growth and 
proliferation

proliferation of tumor cell 
lines

ADAM15,ADAM9,ARF1,FGFRL1,HRAS,N
RAS,PEBP1,SCARB1

8

7 Cancer carcinoma ADAM9,ARF1,DNAJA1,HRAS,NRAS,PPA
P2A,PPIA,RRAS

8

8 Cellular movement cell movement of tumor 
cell lines

ADAM15,ADAM9,ARF1,HRAS,NRAS,PE
BP1,PPIA

7

9 Cardiovascular 
system development 
and function

development of 
cardiovascular system

ADAM15,ADAM9,FGFRL1,HRAS,NRAS,P
PIA,SCARB1

7

10 Tissue Development growth of epithelial tissue ADAM15,HRAS,NRAS,PPIA,RRAS,SCA
RB1

6

Table 1B: List of 10 most significant pathways in CSS-EV as indicated by IPA

RANK Categories Diseases or functions 
annotation

Molecules # Molecules 

1 Cancer Cancer ADK,ANXA4,ANXA6,CCT4,CD97,CNDP2,E
PHX1,F13A1,FN1,GALK1,H2AFY,ITGA6,IT
GB3,PAICS,RALB,RAN,RPLP0,WDR1

18

2 Cell death and survival cell death ADK,ANXA4,APOB,CCT4,EPHX1,F13A1,F
N1,ITGA6,ITGB3,MDH1,PCBP2,RALB,RAN, 
RPLP0

14

3 Infectious disease Viral infection ADK,ANXA6,APOB,CD97,COL5A1,F13
A1,FN1, HLA-C,ITGB3,PACSIN3, PCBP2, 
RALB,RAN

13

4 Cancer abdominal neoplasm ANXA4,CCT4,CD97,F13A1,FN1,H2AFY,ITG
A6,ITGB3,MDH1,PAICS,RAN,RPLP0

12

5 Cell death and survival necrosis APOB,CCT4,EPHX1,F13A1,FN1,ITGA6,ITG
B3,MDH1,PCBP2,RALB,RAN,RPLP0

12

6 Cancer abdominal cancer ANXA4,CCT4,F13A1,FN1,H2AFY,ITGA6,IT
GB3,PAICS,RAN,RPLP0

10

(Continued )
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cell lines and in prostate tissue. Irrespective of treatment, we 
found that CD9 localised at the plasma membrane in LNCaP 
(Figure 5B) and that CD9 is also found localise predominantly 
at the plasma membrane in human prostate adenocarcinoma 
tissue samples (Figure 5C, www.proteinatlas.org; [26]). In 
contrast, the regulators of MVB-derived exosome biogenesis, 
TSG101 and Alix, are both found ubiquitously in human 
prostate adenocarcinoma (Figure 5C), with strong expression 
in the cytoplasm of human prostate cancer specimens, and in 
the cytosol of LNCaP (data not shown).

Pathway analysis indicated that DHT-induced secretion 
of EV may be capable of influencing cell proliferation. We 
investigated whether EV from CD9-enriched LNCaP cells 
could be involved in modulating the proliferation of LNCaP 

cells grown under androgen-deprived conditions. When 
grown in CSS, the confluency of LNCaP cells treated with 
CD9-enriched EV increased by 5.3-fold in comparison 
with LNCaP cells treated with control CSS-EV (p<0.0001, 
in 48h, Figure 5D), implying that CD9-enriched EV can 
promote growth of androgen-deprived LNCaP cells. Steroid 
hormones, such as DHT, are not retained inside vesicles, as 
they are able to diffuse through cell membranes [45]. The 
observed DHT from treated EV was confirmed by ELISA 
measurement (data not shown).

To investigate whether the AR plays a major role 
in altering EV protein content upon DHT treatment, 
we compared our EV data with in-house microarray 
gene expression profiling on DHT-treated LNCaP 

Table 2: EV secreted from DHT-treated LNCaP cells indicate the role of EV in cellular proliferation

CSS-EV 
specific

DHT-EV 
specific

Common elements in CSS-EV and DHT-EV:

ADK ADAM9 A2M CD59 DNAJA2 ITGB1 PDCD6IP SERPINF1

CD97 ADAM15 ADAM10 CD81 EEF1A1 ITIH4 PGK1 SLC29A1

FN1 DNAJA1 ADAMTS1 CD151 EIF4A1 JUP PKM SLC2A1

H2AFY FGFRL1 AFP CD276 ENO1 KRT2 PLG SLC3A2

ITGA6 HRAS AHCY CDC42 EPCAM KRT10 PLXNB2 ST14

ITGB3 NRAS AHSG CFL1 F2 KRT14 PRDX1 STEAP2

RALB PEBP1 ALB CLEC11A F11R LDHA PRDX2 TFPI

RAN PPAP2A ANXA7 CLIC1 FBLN1 LTF RAC1 TFRC

PPIA ANXA11 CLTC FLOT1 LUM RALA THBS1

RRAS APOE CNP GNAI1 MARCKSL1 RAP1B TSG101

SCAMP4 BSG COL6A1 GNAS MFGE8 RHOA TUBB

SCARB1 C3 COMP GNB1 NAP1L1 RNF20 VCL

C5 CTNNA1 GSN NRP1 SDCBP VCP

C9 CTNNB1 HSP90AB1 PARK7 SELENBP1 VPS28

CD9 CTNND1 HSPA8 PDCD6 SERPINC1 YWHAG

YWHAQ

RANK Categories Diseases or functions 
annotation

Molecules # Molecules 

7 Cell death and survival apoptosis ANXA4,CCT4,EPHX1,FN1,ITGA6,ITGB3,M
DH1,PCBP2,RALB,RPLP0

10

8 Dermatological 
diseases and 
conditions

psoriasis CD97,EPHX1,F13A1,FN1,H2AFY,HLA-
C,ITGA6,PCBP2,RAN

9

9 Organismal survival organismal death ADK,APOB,COL5A1,F13A1,FN1,ITGA6,ITG
B3,RALB,WDR1

9

10 Cancer breast or colorectal 
cancer

ADK,ANXA4,CCT4,CNDP2,FN1,H2AFY,ITG
A6,PAICS,WDR1

9
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Table 4: Clinical characteristics of patients included in this study

Men with prostate cancer (n=6) n=6

Age 67.7 (63-76)

PSA 28.4 (5.3-67)

Gleason score

7 n=1

9 n=5

Men diagnosed with benign prostate hyperplasia n=10

Age 74.3 (65-79)

PSA 8.6 (0-45)

Table 3: The relative abundance of identified proteins and their cellular localisation 
Symbol Entrez Gene Name UniProt/Swiss-Prot 

Accession
Fold Change  

(DHT-EV)/(CSS-EV)
Location Family

FBLN1 fibulin 1 FBLN1_HUMAN -2.308 Extracellular Space other

F11R F11 receptor JAM1_HUMAN -1.901 Plasma Membrane other

SELENBP1 selenium binding 
protein 1

SBP1_HUMAN -1.624 Cytoplasm other

YWHAQ tyrosine 
3-monooxygenase/
tryptophan 
5-monooxygenase 
activation protein, 
theta polypeptide

1433T_HUMAN -1.587 Cytoplasm other

CD9 CD9 molecule CD9_HUMAN 1.530 Plasma Membrane other

KRT10 keratin 10 K1C10_HUMAN 2.038 Cytoplasm other

RRAS related RAS viral 
(r-ras) oncogene 
homolog

RRAS_HUMAN D Cytoplasm enzyme

ADAM15 ADAM 
metallopeptidase 
domain 15

ADA15_HUMAN D Plasma Membrane peptidase

ADAM9 ADAM 
metallopeptidase 
domain 9

ADAM9_HUMAN D Plasma Membrane peptidase

NRAS neuroblastoma 
RAS viral (v-ras) 
oncogene homolog

RASN_HUMAN D Plasma Membrane phosphatase

PPAP2A phosphatidic acid 
phosphatase type 2A

LPP1_HUMAN D Plasma Membrane enzyme

The amount of proteins is normalised by eMPAI method. The fold change is calculated by normalising the average of 
quantified DHT-EV proteins (n=2-3) with the average of quantified CSS-EV proteins (+ EtOH, vehicle, n=2-3).
D: specifically found in DHT-EV
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cells. We compiled a list of 341 genes identified whose 
expression is known to be increased/decreased by AR, 
the AR Regulated Genes (ARG, Supplementary Table 
S2). Comparing our mass spec data with the ARG list, 
we identified 10 vesicular proteins whose expression may 
be directly regulated by AR (Figure 6A), implicating AR 
in determining at least some of the proteins in secreted 
EV. Two proteins known to be regulated by AR were 
identified in EV: Fibronectin 1 (FN1) was found in CSS-
EV and PPAP2A was found in DHT-EV (Figure 6A, 
Supplementary Table S2). Pathway analysis using IPA 
also indicated the association of CD9 with other proteins 
such as the oncoproteins of the RAS family, as well as 
the PPAP2A and FN1 (Figure 6B). The phosphatidic acid 
phosphatase 2a (PPAP2A/PAP-2a) is involved in de novo 
synthesis of glycerolipids by converting phosphatidic acid 
to diacylglycerol [36]. FN1 has been used as a marker for 
cellular motility and shown to inhibit proliferation in AR 
negative PC3 cells [46–48]. FN1 has also been reported to 
bind to CD9 and their interaction inhibits cell adhesion to 
fibronectin [49, 50], which may be indicative of the role of 
EV-derived FN1 and CD9 in this process.

The role of endogenous CD9 in cellular proliferation 
appears to depend on cellular context; it has been reported 
to activate EGFR signalling pathways (pro-proliferative) 
in gastrointestinal cancer cells [28], but to be anti-
proliferative in human colon carcinoma [51]. We examined 

the proliferative role of CD9 in LNCaP by siRNA driven 
knockdown of endogenous CD9 (Figure 6C), which resulted 
in a significant reduction in cell growth. Interestingly 
siRNA driven knockdown of CD9 also reduced the 
expression of mRNA for AR, the AR-regulated gene 
PSA, and the EV markers TSG101 and Alix (Figure 6D, 
n=4-5, p<0.05), which suggests that CD9 may have a key 
role in modulating AR activity and the secretion of MVB-
derived EV activated by Alix and TSG101. Interestingly, 
knockdown of endogenous AR, while reducing the mRNA 
expression of AR and PSA, with or without the presence of 
DHT, did not alter the expression of CD9 mRNA (Figure 
6E, n=3, p<0.05), suggesting a role of CD9 upstream of the 
AR signalling axis.

DISCUSSION

The role of androgens in prostate cancer proliferation 
and progression is widely documented [30, 52, 53]. In 
this study, for the first time, we report the effect of the 
physiological androgen, DHT, on EV secretion and protein 
content in androgen responsive LNCaP and DUCaP 
prostate cancer cells. Treatment with CD9 enriched EV 
was able to increase the cellular proliferation of androgen-
deprived LNCaP cells independently of DHT, thereby 
demonstrating a role of CD9 through EV in prostate cancer 
cell proliferation. We also found that the content of CD9 

Figure 4: CD9 (A.) and CD63 positive EV assays (B.) as well as PSA levels (C.) on plasma samples from men with prostate cancer (n=6) 
or diagnosed with benign prostate hyperplasia (n=10). Each point represents an average of duplicate measurements. Variance was estimated 
with the standard deviation of means for each groups.
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positive EV in plasma of prostate cancer patients was 
higher than for BPH patients, warranting further analysis 
in larger patient cohorts to validate plasma derived CD9 
positive EV as potential prostate cancer biomarkers.

Treatment of serum by charcoal-stripping, eliminates 
serum-derived androgens and other small molecules, 
resulting in cells becoming more sensitive towards 
androgens [54] however it has also been shown that 
prolonged LNCaP culture in androgen-deprived media can 
cause the cells to become androgen-independent, while still 
expressing unchanged amounts of AR [55]. While androgen 
manipulation did not alter the expression of CD9; TSG101 

expression was reduced by DHT treatment, and androgen 
deprivation increased its expression. We did not identify 
known ectosome markers in our isolated EV, however, CD9 
in LNCaP was primarily localised at the plasma membrane, 
where the biogenesis of ectosomes is described to occur 
[23], confirming reports by others that CD9 EV is distinct 
from TSG101 and Alix positive EV [18, 43].

The function of CD9 seems to be dynamic, it can 
interact with CD63, a tetraspanin MVB-localised protein 
in platelets [56], suggesting that the CD9 can interact with 
MVB in other cells [8, 22]. Furthermore, CD9 knockdown 
reduced the expression of TSG101 and Alix (Figure 6D), 

Figure 5: CD9 expression in LNCaP and tissue samples. A. TSG101 and CD63 mRNA levels dropped in LNCaP cells treated 
with 10 nM DHT (*p<0.05), and increased after treatment with 10 μM of androgen receptor antagonist drug, MDV3100 (**p<0.05). 
AR expression was not changed across the treatment, while the level of PSA was increased up to eight-fold in DHT-treated cells and 
reduced by MDV3100. Gene expression was normalized to the housekeeping gene rpl32, and then expressed relative to the vehicle 
control (EtOH) at the same time point. Data were analysed with SDS 2.3 software using 2-ΔΔCt (n = 4). Data were represented 
as mean ± SEM. B. Subcellular localisation of CD9 in LNCaP cells imaged by confocal. In the overlay image (right panel), CD9: 
green, cytoskeletal marker F-actin (labelled by phalloidin): red, nucleus marker DAPI: blue. Potential co-localisation between CD9 
and F-actin is in yellow. Scale bar: i = 20 μm. C. Representative image of immunohistochemistry staining (brown) in a high-grade 
prostatic adenocarcinomas for CD9 (CAB002490, Male, age 70, Prostate (T-77100), Adenocarcinoma, High grade (M-814033), Patient 
id: 3191);TSG101 (HPA006161, Male, age 64, Prostate (T-77100), Adenocarcinoma, High grade (M-814033), Patient id: 250); and Alix 
(HPA011905, Male, age 61, Prostate (T-77100), Adenocarcinoma, High grade (M-814033), Patient id: 3486). Scale bar: i = 100 μm. 
D. Treatment of CSS-grown LNCaP cells with CD9-enriched EV isolated from LNCaP cells increased the rate of proliferation of 
androgen-deprived LNCaP cells. Data were represented as mean ± SEM.
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Figure 6: CD9 is an EV-derived regulator for prostate cancer proliferation. A. Venn diagram shows AR-regulated genes and EV 
proteins isolated from CSS and CSS DHT cultured LNCaP cells. B. Pathway analysis illustrates the interactions of CD9, CSS-EV and DHT-EV 
proteins. Pathway analysis identified CD9 could be the upstream regulator for DHT-EV content through various cancer related pathways. FN1 
is highlighted in yellow and PPAP2A in green. C. Knockdown of CD9 using siRNA reduced the cellular growth of LNCaP cells. LNCaP cells 
were treated with the indicated concentrations (5 nM) of siRNA or control (scRNA), and growth as a function of confluence was measured 
after 24 h in real-time by phase contrast microscopy on an IncuCyte HD system continuously for 72 h (n = 3, mean ± SE). Representative 
images of siRNA treated LNCaPs were taken after 48 h addition of siRNA. D. Knockdown CD9 reduced the mRNA expression of TSG101, 
Alix, as well as AR, and PSA, RNA samples were harvested 48 h after treatment with 5 nM CD9 siRNA. Gene expression was normalized to 
the housekeeping gene rpl32, and then expressed relative to the scRNA. Data were analysed with SDS 2.3 software using 2-ΔΔCt (n = 4-5, 
*p<0.05), represented as mean ± SEM. E. Knockdown AR reduced the mRNA expression of the AR classical regulated gene PSA as expected, 
but did not alter the mRNA level of CD9. RNA samples were harvested 72 h after treatment with 10 nM AR siRNA on cells grown in CSS 
treated with 10 nM DHT or EtOH (vehicle). Gene expression was normalized to the housekeeping gene rpl32, and then expressed relative to 
the scRNA. Data were analysed with SDS 2.3 software using 2-ΔΔCt (n = 3-4, *p<0.05), represented as mean ± SEM.
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well-characterized regulators of MVB-associated EV 
secretion [5, 57–60]. The EV regulator TSG101 has been 
reported to play a role in prostate cancer as abnormal 
transcripts of TSG101 have been identified [61]. TSG101 
has also been reported to have a role in AR signaling that 
appears to be dependent on recruitment of apoptosis-
antagonizing transcription factor (AATF) to the AR [62]. 
It has been proposed that TSG101 controls the level of 
AR ubiquitination to stabilise AR, allowing AR-regulated 
transcription in rat-1 and MCF-7 cells [63]. However in 
contrast, TSG101 has also been reported to repress AR 
in monkey kidney CV1 cells [64]. While these reports 
confirm dynamic interactions between TSG101 and AR, 
the role of TSG101 in AR signalling may be temporal in 
prostate cancer.

Exposure to DHT enriched for the presence of 
CD9 in vesicles and reversed the size of small EV 
population back to 150 nm in diameter in LNCaPs, but 
not DUCaPs, further suggesting that androgens are 
involved in pathway(s) involved in EV biogenesis, in 
particular production of CD9 positive EV in LNCaP cells. 
It is possible that the shift in size of EV was not detected 
in DUCaP cells due to the presence of viral particles 
produced by the cells. The DUCaP cells were derived from 
the dura mater of a prostate cancer patient and then were 
established by culturing isolated cancer cells in a mouse 
xenograft [65]. It has been reported that such practices can 
infect human-derived cancer cells with viral particles, such 
as the replication competent murine gammaretroviruses 
[66]. Viral particles can also be co-secreted with exosomes 
as seen in 22Rv1 prostate cancer cells [67]. We confirmed 
that DUCaP cells were positive for MuLV-like viral 
infection (Supplementary Figure S4). Due to their similar 
sizes, current methodologies using ultracentrifugation and 
filtration are not able to separate viral particles from EV 
[66]. The presence of viral particles can also be detected 
through the presence of viral RNA in EV, as we observed 
in EV from DUCaPs; while in contrast, LNCaP cells and 
LNCaP-derived EV were both shown to be negative for 
viral contamination (Supplementary Figure S4). A report 
has also shown that the envelope of HIV-1 virus contains 
common EV markers, CD9 and CD63 [68] and that EV 
can exploit the viral entry pathways for uptake in recipient 
cells [69]. To what extent the viral and EV pathways 
can overlap in prostate cancer cells which were infected 
by viral particles is not clear [70] and requires further 
investigation. Nevertheless, in both LNCaP and DUCaP 
cell lines, treatment with DHT increased the presence of 
CD9 in total isolated EV.

In prostate cancer, CD9 has been identified as 
a candidate gene involved in androgen-deprived cell 
proliferation through its interaction with IGSF8 [71], 
suggesting a role of CD9 itself in AR-mediated prostate 
cancer progression. However we found that knockdown 
of AR did not alter the expression of CD9, indicating that 
CD9 is not a classical AR-regulated gene. In urine, the 

level of CD9 positive and CD63 positive EV have been 
shown to be higher in men with prostate cancer [72], as 
well as in plasma (Figure 4), supporting the clinical utility 
of CD9 positive EV measurement in patients biofluids 
for men with prostate cancer. Our study has confirmed 
that DHT can increase the secretion of CD9 positive 
EV and DHT alters EV content and that CD9 positive 
EV measurement in patients’ blood based-biofluids may 
provide alternative biomarkers for prostate cancer patients.

MATERIALS AND METHODS

Cell culture

LNCaP (from ATCC) and fibroblast-free DUCaP 
cells (from Dr Matthias Nees, VTT Technical Research 
Centre of Finland, Supplementary Figure S2C) were 
routinely cultured in phenol red-free RPMI 1640 
(Invitrogen, Melbourne, Australia) supplemented with 
5% foetal calf serum (FBS; Hyclone, Thermo Scientific, 
Scoresby, Australia). Cellular responses to androgens were 
assessed by culturing cells in 150 mm plates in RPMI + 5% 
FBS for 72 h. Media were then replaced with RPMI + 5% 
charcoal-stripped serum (CSS; Sigma, St Louis, US) for 48 
hours after which media were replaced with fresh RPMI + 
5% vesicle-depleted CSS + 20% EtOH (vehicle) or 10 nM 
dihydrotestosterone (DHT) with or without an androgen 
antagonist 10 μM MDV3100 (Enzalutamide) for 48 h. For 
FBS control cells, after 120 h, medium was replaced with 
fresh RPMI + 5% vesicle-depleted FBS. Vesicle-depleted 
serum was prepared by ultracentrifugation of 20% serum 
at 100,000 xg overnight followed by filtration using a 0.22 
μm vacuum filter (Invitrogen, Melbourne, Australia). All 
chemicals and reagents are obtained from Sigma, unless 
indicated otherwise.

Isolation of EV

Small extracellular vesicles were prepared from 
the conditioned medium by a series of differential 
centrifugation steps, as described [73]. The conditioned 
medium was harvested, centrifuged at 2000xg for 20 min 
to eliminate cells and dead cells, at 10,000xg for 30 min 
to eliminate cell debris, followed by ultracentrifugation at 
100,000xg for 2 h to pellet EV. The EV pellet was washed 
once in PBS and spun at 100,000xg for 1.5 hour. EV 
were then resuspended in PBS for further experiments or 
resuspend in 0.5% depleted CSS for functional analysis and 
stored at -80°C until analysis. Protein content was measured 
using the BCA protein assay kit (Pierce, Rockford, US).

Western blot

Cells were lysed at the end of the experiment in 10 
mM Tris pH 7.8, 1 mM EDTA, 150 mM NaCl, 1% NP40, 
cOmplete protease inhibitor cocktail EDTA-free (Roche, 
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Basel, Switzerland) on ice for 15 min and then spun for 
15 min at 10,000xg 4°C to eliminate cellular debris. 
Isolated EV samples (10 μg protein in PBS) or cell lysate 
(30 μg protein) were analysed using Trans-Blot Turbo 
Transfer System (Biorad, Berkeley, USA). Membranes 
were probed with primary antibodies TSG101 (1:1,000; 
BD Biosciences), Alix (1: 1,000, Cell Signalling, Danvers, 
USA), CD9 (1:250; Santa Cruz, Dallas, USA), CHC (1: 
200; Abcam, Cambridge, UK; secondary antibody, HRP-
conjugated donkey anti-rabbit IgG or HRP-conjugated 
donkey anti-mouse IgG (1: 10,000; Millipore, Darmstadt, 
Germany) and visualized using the ChemiDoc™ MP 
System.

Transmission electron microscopy

Isolated EV were fixed with equal volume of 3% 
glutaraldehyde in 0.1 M sodium cacodylate buffer for 
15 min at room temperature, and loaded onto carbon-
coated copper grids. Samples were negatively stained 
with 1% aqueous uranyl acetate, and observed using a 
JEOL JEM-1400 Transmission Electron Microscope, at 
an accelerating voltage of 80kV. Images were acquired on 
a TVIPS F416 16MP CCD camera.

Vesicle measurement

The diameter of EV was measured by Tunable 
Resistive Pulse Sensing (TRPS) technology (qNANO, 
IZON, Christchurch, New Zealand) using an NP100 
nanopore filter and 115 nm polyethylene glycol standard 
beads. Data were analysed using IZON Control Suite 
v2.2.64 and frequency distribution of vesicle diameter was 
analysed using Excel with 15 nm bin interval. Statistical 
analysis was performed using GraphPad Prism 5 v5.03. 
Significant differences in the frequency of EV between 
groups were identified with p ≤ 0.05 (2-way ANOVA 
Bonferroni post-test, n=3-4).

Mass spectrometry

Three independent biological replicates of EV (25 
μg) from LNCaP and DUCaP treated with DHT (DHT-
EV) or control sample (CSS-EV, grown in CSS + EtOH 
(vehicle)) were processed by SDS-PAGE fractionation, 
liquid handler-assisted in-gel digest and LC-MS/MS as 
described [74].

Extracted data were searched against the 
SwissProt human database (release-2013_05) with fixed 
carbamidomethylated cysteine and variable oxidized 
methionine modifications using Spectrum Mill (Agilent, 
B.04.00.127). The parameters were: up to two missed 
tryptic cleavages, precursor tolerance 20ppm, product 
mass tolerance 50ppm, protein score > 11, peptide score 
> 10, scored peak intensity > 60%. The global false 
discovery rate was less than 0.5%. Scaffold v4.3.0 was 
utilised for relative quantification and analysis of Gene 

Ontology Terms. Protein probabilities were verified using 
the Protein Prophet algorithm [75]. T-Test statistical 
analysis was performed on quantitative values normalised 
using the eMPAI method [76].

Proteins identified only once were excluded from 
further pathway analysis using QIAGEN’s Ingenuity® 
Pathway Analysis (IPA®, QIAGEN Redwood City, www.
qiagen.com/ingenuity). A non-supervised hierarchical 
clustering was performed on common proteins found in at 
least two samples of each treatment across treatments. The 
ratio of (DHT-EV) / (CSS-EV) data were log2 transformed 
calculated; and hierarchical clustering was applied to 
the ratio values via the heatmap.2 function of the plots 
package in R.

Detection of murine leukaemia virus-related 
virus

Detection of murine virus was conducted using the 
nested PCR protocol and primers previously used to detect 
Xenotropic Murine leukaemia virus-related virus (XMRV) 
contamination in prostate cancer samples [77].

Cell proliferation assay and functional analysis 
of EV

Live cell imaging was used to monitor changes in 
cell growth responses following treatment with DHT or 
EV. Cells were seeded in 96-well plates in RPMI + 5% 
FBS in RPMI 1640 at 3.0 x 103 and grown to 15-20% 
confluence. Media was replaced with fresh RPMI + 5% 
CSS for 48 h and then replaced with fresh RPMI 1640 
+ 5% CSS or +10 nM DHT (CSS DHT) or CSS (+ 
EtOH, vehicle), or for functional study, in RPMI 1640 
+ 0.5% vesicle-depleted CSS in fresh RPMI 1640 + 
0.25 mg/ml of isolated vesicles. Growth as a function 
of increasing confluence was measured in real-time by 
phase contrast microscopy with the IncuCyte HD system 
(Essen BioScience), as previously described [78]. Images 
were taken with a 10x objective at 2 h intervals from 
three independent experiments, and mean ± standard 
error measurement (SE) of confluence percentages was 
computed. Data were analysed and linear regression and 
statistical analysis were calculated using GraphPad Prism 
5 v5.03.

Transfection of small interfering RNA

To knock down endogenous CD9 expression, 
CD9-specific small interfering RNA (CD9 siRNA) 
was generated using published sequence ([79], 
5′-GAGCATCTTCGAGCAAGAA-3’). Cells were seeded at 
9 x 104 in six-well plates in RPMI + 5% FBS in RPMI 1640, 
and transfected with 5 nM CD9 siRNA after 72 hours with 
Lipofectamine RNAiMax (Invitrogen). Scrambled siRNA 
(CD9 scRNA; 5’-GGGAAUCGCCCAAAUAGAU-3’) 
was used as a negative control. Cellular proliferation was 
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observed using IncuCyte HD system as described above 
24 h after transfection. Forty-eight hours after transfection, 
cells were analyzed for knockdown efficiency by qRT PCR. 
To knock down endogenous AR expression, ON-TARGET 
plus AR siRNA (J-003400-07-0005, Thermo Scientific) was 
transfected on LNCaP grown in CSS for 24 h. Cells were 
treated with 10 nm AR siRNA or scRNA (D-001810-02) with 
Lipofectamine (Invitrogen) for 24 h, media were replaced 
and treated with 10 nM DHT or EtOH (vehicle) for 48 h.

qRT PCR

Primers were designed by Primer-BLAST 
(NCBI) and ordered from Sigma Proligo (Castle Hill, 
NSW, Australia) with sequences as follows: PSA (f)5’-
agtgcgagaagcattcccaac-3’, (r)5’-ccagcaagatcacgcttttgtt-3’; 
CD9 (f)5’-ccccaagaaggacgtactcg-3’, (r)5’-gccaaatatcatgaccac 
ggc-3’; Alix (f)5’-tactctccccaaggaggtgt-3’, (r)5’-tctgctgcatgctg 
taacctt-3’; TSG101 (f)5’-acagtcagacttgttggggc-3’, (r)5’-gttgcct 
ggtatggcggata-3’; CD63 (f)5’-cccttggaattgcttttgtcg-3’, (r)5’-cg 
tagccacttctgatactcttc-3’; CD81 (f)5’-cagaccaccaacctcctgtat-3’, 
(r)5’-gattcctggatggccccgta-3’; AR (f)5’-ctggacacgacaacaac 
cag-3’, (r)5’-cagatcaggggcgaagtaga-3’; and RPL32 (f)5’-
gcaccaccagtcagaccgatatg-3’, (r)5’-actgggcagcatgtgctttg-3’.

Gene expression was normalized to the housekeeping 
gene rpl32, and then expressed relative to the vehicle control 
at the same time point. Data were analysed with SDS 2.3 
software by means of the 2-ΔΔCt method [80]. RNA 
was isolated using RNeasy (Qiagen, Hilden, Germany) 
according to the manufacturer’s instructions at the end of the 
experiments. Statistical analysis was performed using Student 
T-test (Excel). Significant differences in gene expression 
between two groups were identified with p ≤ 0.05.

Plasma collection

Plasma from men with prostate cancer (n = 6) was 
isolated at the Epworth Hospital, Melbourne after written 
consent (Ethics Approval Epworth Study no.: 34506). 
Plasma samples from men were collected before digital 
rectal exam (DRE) at the time of day most convenient to the 
patient. For inclusion in the study, PSA levels and prostate 
biopsy results had to meet or exceed the following clinic-
pathological criteria (PSA> 20ng/mL, Gleason pattern 4 
or above (Gleason 7 (4+3) up to 9 (4+5)), clinical stage 
>/= T2c). All patients were treatment naïve, had had no 
detectable bony metastatic disease and no history of other 
malignancies for the previous 5 years. Plasma from men 
with benign prostate hyperplasia (n = 10) was collected 
by Australian Prostate Cancer Collaboration (APCC) 
Bioresource (after written consent, Ethics approval no.: 
1000001165) and used as controls. Blood was collected from 
patients and processed fresh. Using 10-mL serum tubes with 
clot activator (Vacutainer 367820; Becton Dickinson), serum 
was also isolated. The blood was allowed to clot at room 
temperature for 1 h. Plasma was prepared by centrifugation 
at 2000 ×g for 10 min at 25°C. The plasma supernatant was 

removed by pipette, leaving 0.5 cm to avoid disturbing the 
serum–clot interface and stored at −80° C.

EV measurement using time resolved-
fluorescence immuno assay (TR-FIA)

Conditioned media were collected at the end of each 
experiment and spun at 2,000 ×g for 20 min to eliminate 
dead cells and debris and stored at -80°C. Samples (150 μg 
protein) for cell conditioned medium were diluted in PBS and 
measured using CD9 or CD63 TR-FIA plates (Cell Guidance 
System, Carlsbad, USA) for three biological replicates, 
each in duplicate. Ratio of mean ± SE was calculated and 
statistical analysis was performed using Student T-test 
(Excel). Plasma samples (2500 μg protein) were diluted in 
PBS and measured in duplicate. Ratio of mean ± SD was 
calculated and statistical analysis was performed between 
groups using Student T-test (Excel). Significant differences 
between two groups were identified with p ≤ 0.05.

Confocal microscopy

Cells were seeded onto coverslips, fixed at 48 h 
after DHT treatment, labelled with anti-CD9 antibody 
(1:200, Santa Cruz), followed by secondary anti-mouse 
fluorescent probe Alexa Fluor 488 (1:500, Molecular 
Probes, Eugene, US) together with phalloidin-Alexa Fluor 
647 (1:50, Invitrogen, Waltham, US) as described [81]. 
Fixed specimens were imaged using a Zeiss Meta 510 
confocal laser-scanning microscope, with a 63X/1.40 Oil 
DIC M27 objective lens.
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