Skip to main content
. 2001 Jul 15;29(14):2905–2919. doi: 10.1093/nar/29.14.2905

Table 1. Sequences of natural EREs from estrogen-responsive genes, ER binding affinities and transcriptional activity in transfected cells.

Name
Sequence
ERα binding (Kd in nM)
ERβ binding (Kd in nM)
Activation by 10 nM E2 (unless otherwise indicated) in the given cell type
Xenopus vitellogenin A2 (vitERE) 5′-GTCAGGTCACAGTGACCTGATCAAAGTTAATGTAACCTCA-3′ (19 bp ERE) 0.2 (136); 0.39 (137); 0.31 (138); 1.2 (139); 2 (140); 1.8 (141); 1.0 (142); 2 (143); 0.8–1 (74); 10 (74); DBD alone, 1 (51) 8 (143); ERβ binds but Kd ND (144) 25-fold in MCF-7 (28)9.3-fold in MCF-7 transfected with ERα (136)16.7-fold in T-47D (145)5.2- and 5-fold in COS-1; 6- and 3-fold in HeLa transfected with ERα and ERβ, respectively (143)6.3-fold in CHO (142)5-fold in HeLa with 1 nM E2 (146)19-fold in HepG2 expressing ERα with 100 nM E2 (104)1.4-fold in rat calvarial osteoblast cells with 100 nM E2 (145)2.5-, 3.3- and 5-fold with ERα and 3.9, 2.6 and 3.6-fold with ERβ in CEF, HeLa and COS-1, respectively (143)30-fold in HeLa transfected with HEO ERα vector (147)17.8-fold in MCF-7 (148)4.8-fold in MCF-7 (22)
Chicken vitellogenin A2 5′-GTCCAAAGTCAGGTCACAGTGACCTGATCAAAGTT-3′ (19 bp ERE) Ka = 80–100 µM (149)   5-fold induction with 100 nM E2 in P19 EC (150)6-fold in HepG2 transfected with ERα with 1 µM moxestrol (151)12-fold in T-47D (152)
Xenopus vitellogenin B1 5′-GATCTGAGTAAGTCACTGTGACCCAACCCAAGTTATGATGACC-3′ ERα binds with ∼4.3-fold lower affinity than EREc (153)   14.3-fold in MCF-7 with 200 nM E2 (154)3-fold induction with Xenopus ERα in Xenopus fibroblast cells (153)
Xenopus vitellogenin B1 (ERE2) 5′-GATCTGAGTAAGTCACTGTGACCTGTAAT-3′ (15 bp imperfect ERE) 28.46 (142); DBD alone 10 (51)   2-fold in CHO (142)No induction in Xenopus fibroblast cells (153)1.5-fold induction (102)
Xenopus estrogen receptor +480: 5′-GGTCAnnnTGACG-3′ 10× less binding versus consensus ERE (155)   4–5-fold (155)
Chicken apo very low density lipoprotein II (apoVLDL II) –221: 5′-GGGCTCAGTGACC-3′; then 44 bp and –178: 5′-GGTCAGACTGACC (ERE1) ERα binds quantitatively differently to each ERE (156)    
Chicken ovalbumin –47/–43: 5′-TGGGTCA-3′ which is half ERE and an AP-1 binding site (157) ND (158); ERα binds half-sites as a dimer with 50–100-fold lower affinity than consensus ERE (119)    
Human angiotensinogen 63-CCTGGGAACAGCTCCATCCCCACCCCTCAGCTATAAATAGGGCATCGTGACCCGGCCAGGGGA-1     Two-tandem copies increased reporter expression (159)
Human bcl-2 Two functional EREs: ERE-E-3 +195: 5′-GGTCGCCAGGACC-3′; ERE-E-4 + 276: 5′-GGTCCCCATGACC-3′ ND (160)   Each gives 2.5-fold induction in MCF-7Together E-3 and E-4 give a 4-fold induction (160)
Human BRCA1 +2023: 5′-TGGTCAGGCTGGTCTGGAACTCCTGACCTG -3′ ND ND 10 nM E2 induces 1.5-fold increase in MCF-7 (105)
Human calbindin-D9k 5′-GATCCAGGTTAGTGTGATTTG-3′ No binding (161)    
Human cathepsin D (–270 to –249) 5′-GGGCCGGGCTGACCCCGCGGG-3′ (called the E2 site) 3 (136) 136 nM at 200 mM KCl (108) Lower apparent affinity of ERβ versus ERα (144) 0.6-fold in MCF-7 transfected with ERα (136)
Human choline acetyltransferase 5′-GATCCAGGAGGCCACGATGACATGCTC-3′ ND (144) Lower apparent affinity of ERβ versus ERα (144)  
Human complement C3 –236: 5′-GTGTTCACCAGGTGGCCCTGACCCTGGGAG-AGTCCA-3′; +25: 5′-TGTCCCTCTGTCCCTCTGACCCTGCACTGTCC-CAGCAACCATG(start)-3′; for EMSA: 5′-CACCAGGTGGCCCTGACC-3′ (162) ERα bound, but not all supershifted with ERα antibody, Kd ND (162)   5.6-fold in HepG2, 4-fold in HeLa and 10-fold in T47D transfected with ERα (162)2-fold in MCF-7 (22)The –240 ERE is functional, but the +33 ERE is not (162)
Human cytochrome c oxidase subunit VIIa-related protein (COX7RP) + 443 (intron): 5′-TCACTGCAGGGGTCAAGGTGACCCCCGGGGTCA-3′ ERα binding identical to vitERE (163)   6-fold induction with 100 nM E2 in MCF-7 (163)
Human ERβ –1510: 5′-TGGTCAGGCTGGTC(N9)TGACC-3′ ND (106) ND (106)  
Human estrogen responsive finger protein (efp) 3′ non-coding region: 5′-TTCAGGGTCATGGTGACCCTGAT-3′ ND (164166)    
Human Ha-ras Exon1 +1713: 5′-GCGCTGACCATCCAGCTGATCCAGAACC-3′ ND (167)   3.7-fold increase in MCF-7 (167)
Human hepatic α2u globulin –606: 5′-GATCCAAAAGAGGGTCATTTCCTGTGACTGGAG-3′ ND (168)   Negatively regulated by E2 (168171)
Human lactoferrin –374: 5′-AAGAAGATAGCAGGTCAAGGCGATCTGTAAAGACCCTCTGCTCT-3′     6.5-fold in RL-95-2 cells (172)7-fold in HEC-1B transfected with ERα (57)
Human progesterone receptor (hPR) Form B is initiated at +744: +540: 5′-ATGGAGGCCAAGGGCAGGAGCTGACCAGCGCCGCCCT-3′ Form A is initiated at + 1236: +1148: 5′-TCCTGCGAGGTCACCAGCTCTTGGT-3′ (173) ‘Weak but detectable’ (174)   Induction equal to vitERE in COS-7 transfected with ERα (164)
  +565: AGGAGCTGACCAGCGCCGCCCTCCCCCGCCCCCGACC-3′ Foot-prints (175)   1.7-fold in CHO transfected with ERα (175)
Human quinone reductase –476: 5′-AATTAAATCGCAGTCACAGTGACTCAGCAGAATCTGAGCCTAGG-3′ ND (176) ERβ binds, Kd ND (176) E2 does not induce4-OHT activates 2- and 4-fold induction in HEC-1 transfected with ERα and ERβ, respectively (176)
Human pS2 5′-CTTCCCCCTGCAAGGTCAGCGTGGCCACCCCGTGAGCCACT-3′ 0.40 (E2) and 1.14 (no ligand) (138); 22.1 (142) ERβ binds but Kd ND (144) 4.5-fold in HeLa transfected with HEO ERα vector (147)2.5-fold in CHO (142)
Human VEGF –1560: 5′-AATCAGACTGACTGGCCTCAGAGCC-3′ ND (177)   Two tandem copies give a 4.2-fold increase with 100 nM E2 in Ishikawa cells transfected with ERα (177)
Human genome Alu ERE 5′-TGGTCAGGCTGGTCTCAAACTCCTGACCTCGTGATCTCA-3′     100 nM E2 activates 8-fold induction in HepG2 (178)
Rat calbindin-D9k 5′-GATCCAGGTCAGGGTGATCTG-3′ ND (161,179)    
Rat creatine kinase B –569: 5′-GGGAAGGTCAGAACACCCTGGGTGCTTCCCC-3′ ND (180)   7-fold in HeLa (180)8-fold induction in ECC-1 (181)
Rat hsp70-related gene 5′-GGTCACTCCGACC-3′     Not estrogen responsive (182,183)
Rat luteinizing hormone B 5′-TCACATGGACACCATCTGTCCCGATCGGCTCCAAGGTTACATTGACCAC-3′ ND (184)   2.5-fold in GH3 cells (184)
Rat c-jun +1021 (exon): 5′-CTGAAGCAGAGCATGACCTTGAACTGAAGCAGAGCATGACCTTGAA-3′ 10–20 (148) ERβ binds; Kd ND (144) 2.7-fold in H301 cells (148)
Rat c-jun (JUN5) 5′-GATCCTGAAGCAGAGCATGACCTTGAA-3′ No direct binding, but competed for ERα–vitERE binding (185)   4-fold induction in a yeast reporter assay (185)
Rat oxytocin (–115 to –85) 5′-AGTGTGGAACAGTTTGACCCAAGAGACCTGCTGTGACCA-3′ C-3′ (imperfect 13 bp ERE)(–147 to –177): 5′-GATCCAGGCGGTGACCTTGACCCCAGC-3′     8-fold with 100 nM E2 in P19 EC cells (150)
Rat prolactin –1713: 5′-TCCAGGTCACCAGCTGCTTCAGATGATC-3′ 70 (188)   No effect of E2 (189)
  –1573: 5′-GATCCTTGTCACTATGTCCTAGAGTGGATC-3′ (186,187) 602 (188)    
  –1547: 5′-AGCTATAGATCATGAGGTCATAACGATTTATG-3′ ND (59,188)    
  –1786: 5′-AGCTAGAACCAGGTCATCTGTCAGTCCAAATG-3′ –1573: 5′-AGCTGCTTTGGGGTCAGAAGAGGCAGGCAGAG-3′      
Rat vasopressin –4324: 5′-TGCTTCTGCAGGGCCAGCCTGACCGTGTGT-3′ ND (190) ND (190) E2–ERα induces 1.6-fold; E2–ERβ induces 1.3-fold500 nM 4-OHT- ERα induces 2.9-fold; 500 nM ICI 182,780-ERα induces 3.4-fold (190)
Rat VEGF5′ VEGF5′ between TATA box and +1: +: 5′-GATCGACAGGGCAAAGTGACTGACCT-3′ ERα < ERβ binding (191)   Two tandem copies in the forward orientation inhibit ERα activity by >50%, but show a 2-fold induction if cloned in reverse orientation. Two tandem copies in the forward orientation are inactive with ERβ, but show 2-fold activation with ERβ if cloned in reverse orientation; however ICI 182,780 doesn’t block E2–ERβ activity. This is the first report of an orientation-dependent effect on ERα transcription (191).
Rat VEGF3′ In 3′UTR: 5′-GATCTGCAAGAGCACCCTGCCCTCTGG-3′ Binding of ERα and ERβ is approximately equal (191)   Two tandem copies give 3- and 1.5-fold increase with ERα and ERβ, respectively, in transfected HeLa (191)
Mouse c-fos –278: 5′-GCGGAAGGTCTAGGAGACCCCCTAG-3′ ND ERβ binds; Kd ND (144) 2–5-fold (192)
  3′ to gene: 5′-TTTATCCAGGTCACCACAGCCCAGGCCATG-3′ 1–10 (148)   4.5-fold (148)
Mouse oviduct-specific glyoprotein –115: 5′-GTCAGCGGTCATTGTGATCTTGAATCATTGTTTCT-3′ ND (193)   2.5-fold in MCF-7 cells treated with 100 nM E2 (193)
Rabbit uteroglobin –275: 5′-GCAGGTGGCCAGGTCACCATGCCCTCGGGGGGCAGGCACC-3′ ND (194); 3–4-fold < vitERE (195)   7-fold in Ishikawa (195)Role for Sp1 (7)
Guinea pig estrogen sulfotransferase gene 2 –2442: 5′-AGGTCATCCAACCA-3′ –982: 5′-AGGTCATGTTGTTC-3′ ND (196)    

The species and gene name are indicated. The underlined nucleotides constitute the consensus ERE half-site sequence and nucleotides in bold type are altered from the consensus ERE palindrome.

ND, not determined.