
Atropos: specific, sensitive, and speedy
trimming of sequencing reads

John P. Didion1, Marcel Martin2 and Francis S. Collins1

1National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
2 Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University,

Stockholm, Sweden

ABSTRACT
A key step in the transformation of raw sequencing reads into biological insights is

the trimming of adapter sequences and low-quality bases. Read trimming has been

shown to increase the quality and reliability while decreasing the computational

requirements of downstream analyses. Many read trimming software tools are

available; however, no tool simultaneously provides the accuracy, computational

efficiency, and feature set required to handle the types and volumes of data generated

in modern sequencing-based experiments. Here we introduce Atropos and show

that it trims reads with high sensitivity and specificity while maintaining leading-

edge speed. Compared to other state-of-the-art read trimming tools, Atropos

achieves significant increases in trimming accuracy while remaining competitive in

execution times. Furthermore, Atropos maintains high accuracy even when

trimming data with elevated rates of sequencing errors. The accuracy, high

performance, and broad feature set offered by Atropos makes it an appropriate

choice for the pre-processing of Illumina, ABI SOLiD, and other current-generation

short-read sequencing datasets. Atropos is open source and free software written in

Python (3.3+) and available at https://github.com/jdidion/atropos.

Subjects Bioinformatics, Genomics, Computational Science

Keywords NGS, Sequencing, Read, Trimming, Preprocessing, Adapter, Cutadapt, Illumina

INTRODUCTION
All current-generation sequencing technologies, including Illumina, ABI SOLiD, and

Ion Torrent, require a library construction step that involves the introduction of short

adapter sequences at the ends of the template DNA fragments. Depending on the

sequencing platform and the fragment size distribution of the sequencing library, an often

substantial fraction of reads will consist of both template and adapter sequences (Fig. 1A).

Additionally, the error rates of these sequencing technologies vary from 0.1% on Illumina

to 5% or more on long-read sequencing platforms. Error rates tend to be enriched at the

ends of reads (where adapters are located), thus exacerbating the effects of adapter

contamination. Adapter contamination and sequencing errors can lead to increased rates

of misaligned and unaligned reads, which results in errors in downstream analysis

including spurious variant calls (Del Fabbro et al., 2013; Sturm, Schroeder & Bauer, 2016).

Certain sequencing protocols may introduce other artifacts in sequencing reads.

For example, some methylation sequencing (Methyl-Seq) protocols result in artificially

How to cite this article Didion et al. (2017), Atropos: specific, sensitive, and speedy trimming of sequencing reads. PeerJ 5:e3720;

DOI 10.7717/peerj.3720

Submitted 5 January 2017
Accepted 31 July 2017
Published 30 August 2017

Corresponding author
John P. Didion,

john.didion@nih.gov

Academic editor
Elena Papaleo

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj.3720

Distributed under
Creative Commons CC0

https://github.com/jdidion/atropos
http://dx.doi.org/10.7717/peerj.3720
mailto:john.�didion@�nih.�gov
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.3720
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://peerj.com/

Figure 1 Adapter detection and trimming. (A) When a fragment (or insert; green) is shorter than the read length, the read sequence will contain

partial to full-length adapter sequences (blue and purple). (B, C) Methods for detecting adapter contamination using semi-global alignment.

Adapter-match (B) identifies the best alignment between each adapter and the end of its corresponding read. Insert-match (C) first identifies the

best alignment between read 1 and the reverse-complement (rc) of read 2; if a valid alignment is found, then adapters are matched to the remaining

overhangs. (D) If a match is found, the overlapping inserts can be used for mutual error correction. The consensus base is the one with the highest

quality, or, if the bases have equal quality, the one from the read with highest mean quality. (E) If insert-match fails (for example, with an adapter

dimer) adapter-match is performed. Reads that are too short after trimming are discarded.

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 2/19

http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

methylated bases at the 3′ ends of reads that can lead to inflated estimates of methylation

levels (Bock, 2012).

Read trimming is an important step in the analysis pipeline to mitigate the effects of

adapter contamination, sequencing errors, and other artifacts. The development of tools

for read trimming is an active area of bioinformatics research, thus there are currently

many options. In terms of adapter trimming, these tools fall into two general categories:

(1) those that rely solely on matching the adapter sequence (adapter-match trimming)

using semi-global alignment (which is the only option available for single-end reads;

Fig. 1B); and (2) those that leverage the overlap between paired-end reads to identify

adapter starting positions (insert-match trimming; Fig. 1C) (Sturm, Schroeder & Bauer,

2016). Cutadapt (Martin, 2011) is a mature and feature-rich example of a tool that provides

adapter-match trimming, while SeqPurge (Sturm, Schroeder & Bauer, 2016) is a recent

example of a highly accurate insert-match trimmer designed specifically for paired-end

data. Additionally, hybrid tools are available that optimize their choice of read trimming

method based on the type of data. Skewer (Jiang et al., 2014) and AdapterRemoval

(Version 2) (Schubert, Lindgreen & Orlando, 2016) are fast and accurate hybrid

trimmers that work with both single-end and paired-end data. However, choosing a

read-trimming tool currently requires a trade-off between feature set, efficiency, and

accuracy. Furthermore, even state-of-the-art tools still have a relatively high rate of

over-trimming (removing usable template bases from reads) and/or under-trimming

(leaving low-quality and adapter-derived bases in the read sequence) (Sturm, Schroeder &

Bauer, 2016).

We sought to develop a read-trimming tool that would combine the best aspects of

currently available software to provide high speed and accuracy while also offering a rich

feature set. To accomplish this aim, we used Cutadapt as a starting point, as it provides the

broadest feature set of currently available tools and is published under the MIT license,

which allows modification and improvement of the code. We focused on making three

specific improvements to Cutadapt: (1) improve the accuracy of paired-end read trimming

by implementing an insert-match algorithm; (2) improve the performance by adding

multiprocessing support (as Cutadapt is currently only able to use a single processor); and

(3) add important additional features such as automated trimming of Methyl-Seq reads,

automated detection of adapter sequences in reads where the experimental protocols

are not known to the analyst, estimation of sequencing error, and generation of quality

control (QC) metrics. Because these modifications required substantial changes to the

Cutadapt code base, and because there are software tools that depend on the current

implementation of Cutadapt, we chose to “fork” the Cutadapt code base and develop our

software, Atropos, as a separate tool. Here, we show that we have accomplished our three

aims. In addition to extending the already rich set of features provided by the original

Cutadapt tool, Atropos demonstrates paired-end read trimming accuracy that is superior

to other state-of-the-art tools, and it is among the fastest read trimming tools when a

moderate number of parallel execution threads are used (4). Furthermore, Atropos

achieves a performance increase that is roughly linear with the number of threads used,

making it the fastest tool when eight or more threads are available.

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 3/19

http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

MATERIALS AND METHODS
Implementation
Atropos is developed in Python (3.3+) and is available to install fromGitHub or via one of

several package managers (see Data Availability).

Semi-global alignment
Traditionally, the overlap between two sequences is detected by computing an optimal

semi-global alignment (Gusfield, 1997, Section 11.6.4), which is the same as global

alignment except that neither initial nor trailing gaps are penalized. This allows the

sequences to shift relative to each other. An optimal semi-global alignment maximizes the

sum of alignment column scores, thus tending to favor longer over short overlaps. Since

score-based optimization is often not intuitively understood, the adapter alignment

algorithm uses edit operations instead, which has the advantage that it gives the user the

ability to specify a “maximum error rate” as an intuitive parameter. For a given alignment

between read and adapter, the error rate is computed as the number of edits (mismatches,

insertions, deletions) divided by the length of the matching part of the adapter.

Minimizing the edit distance while at the same time not penalizing end gaps would lead

to optimal but meaningless zero-length overlaps; thus, a hybrid approach is chosen.

The adapter alignment algorithm computes edit distances for all allowed shifts of the

adapter relative to the read. Among those having an error rate not higher than the

specified threshold, the shift (and therefore alignment) with the highest number of

matches is chosen.

We summarize the algorithm here; seeMartin (2013), Section 2.2 for details. Let a and r

be the nucleotide sequences of the adapter and sequencing read, respectively, and

let m = |a|, n = |r|. Adapter alignment computes edit distances D(i,j) between the i-length

prefix of a and the j-length prefix of r for all i = 0, : : : ,m and j = 0, : : : ,n with the standard

dynamic-programming (DP) recurrence

Dði; jÞ ¼ minfDði � 1; j � 1Þ þ ½ai 6¼ rj �;Dði � 1; jÞ;Dði; j � 1Þg (1)

The base cases are D(i,0) = 0 or D(i,0) = i and D(0,j) = 0 or D(0,j) = j, depending on the

adapter type, allowing to skip a prefix of a and/or r at no cost. The algorithm additionally

keeps track ofM(i, j), which is the number of matches between the prefixes of a and r, and of

the “origin”O(i, j), which is the number of skipped characters in r in the optimal alignment

(if negative, characters in a are skipped instead). All three DP matrices D,M, O are filled in

at the same time, after which the cells of the bottom row (i = m) are inspected. They

represent possible end positions of the adapter sequence within the read. For each position j,

the error rate is computed from D(m, j) and O(m, j), and positions with a too high error

rate are discarded. If positions remain, the one with the highest number of matchesM(m, j)

is returned as the position J of the adapter sequence. Together with the start of the adapter

sequence at O(m, J), the adapter sequence can then be removed from the read.

Observing that no backtrace within the DP matrix is required, the actual

implementation keeps only a single column of the matrices in memory for better cache

locality. Significant runtime improvements are achieved by employing the optimization

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 4/19

http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

described by Ukkonen (1985) of stopping the computation of a column as soon as the

costs are too high and provably cannot decrease for the remainder of the column. When

the user supplies an anchored adapter and disables insertions and deletions (indels) at the

same time, the algorithm also switches to a much simpler variant that computes only the

Hamming distance between the adapter and a prefix or suffix of the read.

Insert match algorithm
For each read pair, the insert-match algorithm uses the same semi-global alignment

algorithm described above (with indels disabled) to find all possible alignments between

the first read and the reverse complement of the second read that satisfy specificity

thresholds (Fig. 1C). Specificity is determined by the combination of up to three user-

configurable thresholds: (1) minimum number of overlapping bases; (2) maximum

number of mismatch bases; and (3) random mismatch probability (Sturm, Schroeder &

Bauer, 2016). The probability of a random match at k bases out of the n bases being

compared is computed using the binomial distribution:

P ¼
Xn

i¼k

n!

i!ðn� iÞ! p
ið1� pÞn�i

(2)

The candidate alignments are tested in order of decreasing length until one is found in

which the overhanging sequences on either end match the user-specified adapter

sequences. Comparison between the adapter and overhang sequences is done using a

constrained adapter-match approach. Briefly, starting at the end of the insert overlap, a

pairwise comparison is made between the adapter and the read at each possible offset. The

offset that best satisfies the user-configurable specificity thresholds (the same three

described above) is taken to be the location of the adapter sequence, and all bases from

that position to the 3′ end of the read are removed. If an adapter is only found in one of

the two reads, then the same offset is used to trim both reads, under the assumption that

the location of the adapter sequence must be symmetric across the read pair.

Optionally, the overlapping inserts can be used for mutual error correction (Fig. 1D).

Where the aligned inserts have mismatches, the base with the highest quality score is

chosen as the consensus. When the bases have equal quality, there is an option to leave the

bases unchanged, convert them both to N, or to choose the base from the read with the

highest mean quality as the consensus. There are additional options to (1) completely

overwrite one read in the pair if its quality is very poor; and/or (2) merge the overlapping

read pair into a single read, which avoids double-counting overlapping read pairs in read

depth-based analyses.

If no insert match is found, or if an adapter is not found in an overhang, then an

unconstrained adapter-match approach is attempted separately in each read (Fig. 1E).

Parallel processing
The performance improvements in Atropos relative to Cutadapt and other read trimming

tools are based in two observations: (1) each read (or read pair) is trimmed separately, and

thus trimming can be parallelized across multiple processor cores; and (2) a significant

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 5/19

http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

fraction of the execution time is spent decompressing input files and re-compressing

results. Compression of sequencing data is increasingly becoming necessary due to the

large volumes of data generated in sequencing experiments.

To address the first bottleneck, we implemented a parallel processing pipeline based on

the Python multiprocessing module. Briefly, a single thread is dedicated to a “reader”

process that loads reads (or read pairs) from input file(s), with support for a variety of

data formats and automatic decompression of compressed data. Reads are loaded in

batches, and each batch is added to an in-memory queue. A user-configurable number of

“worker” threads (which is constrained by the number of processing cores available on the

user’s system) extract batches from the queue and perform trimming and filtering

operations on the reads in the same manner as Cutadapt.

Atropos addresses the second bottleneck by offering a choice of three modes for writing

the results to disk. The first two modes involve adding the results to a second in-memory

queue, from which a dedicated “writer” process extracts batches and performs the

serialized write operation. These two modes differ in how the trimmed reads are

compressed—in worker-compression mode, each worker is responsible for compressing

the results using the Python gzip module prior to placing the results on the queue,

whereas in writer-compression mode, the writer process performs compression using the

much faster system-level gzip program. The choice between these two modes is selected

automatically based on the number of worker threads used, with worker-compression

mode becoming faster than writer-compression mode work “typically” when at least eight

threads are available. The third output mode, called “parallel writing,” does not use a

dedicated writer process (and thus an additional worker process can be used in its place).

Instead, each worker process writes its results to a separate file. This can dramatically

reduce the execution time of the program (50% reduction in our experiments; see Results)

and is generally compatible with downstream analysis since many mapping and assembly

tools accept multiple input files (and for those that don’t, gzipped files can be safely

concatenated without needing to be decompressed and recompressed). An additional

speed-up is gained by recognizing that the reader process often finishes loading data well

before the worker processes finish processing it; thus, an additional worker thread is

started as soon as the reader process completes.

Adapter detection

Often, details of sequencing library construction are not fully communicated from the

individual or facility that generated the library to the individual(s) performing data

analysis. For example, the majority of datasets in the NCBI Sequence Read Archive lack

adapter sequence annotations. Manual determination of sequencing adapters and other

potential library contaminants can be a tedious and error-prone task. Thus, we

implemented in Atropos a command that automatically identifies adapters/contaminants

from a sample of read sequences. First, a profile is built of k-mers (where k is a fixed

number of consecutive nucleotides, defaulting to k = 12) within N read sequences

(where N defaults to 10,000). When at least eight consecutive A bases are detected,

those bases along with all subsequent bases (in the 3′ direction) are first trimmed, as that

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 6/19

http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

pattern is a strong indicator that the sequencer scanned past the end of the template

(i.e., the length of the fragment + adapter is less than the read length; Fig. 1E).

Additionally, low-complexity reads are excluded, where complexity X(S) is defined as

follows. Let C(i,S) be the number of elements of a nucleotide sequence S = s1, : : : , sn, that

are nucleotide i ∈ A,C,G,T.

XðSÞ ¼ �
XCði; SÞ � logðCði; SÞÞ

logð2Þ (3)

Sequences with X(S) < 1.0 are defined as low-complexity. All remaining k-mers

are counted, and each k-mer is linked to all of the sequences from which it originated.

This process continues iteratively for increasing values of k, with only those read

sequences linked to high-abundance k-mers in the previous iteration being used to build

the k-mer profile in the next iteration. k-mer K is considered high-abundance when:

jK j > N � ðl � k þ 1Þ � O
4k

(4)

where l is the read length and O = 100 by default. Finally, high-abundance k-mers of all

lengths are merged to eliminate shorter sequences that are fully contained in longer

sequences.

Atropos reports to the user an ordered list of up to 20 of the most likely contaminants.

Because adapter sequences have been designed not to match any known sequence in

nature, a sequence (or pair of sequences) that occurs at high frequency and matches a

known adapter sequence is likely to be the true sequence(s) used as adapters in the

dataset. Thus, our algorithm optionally matches the high-abundance k-mers to a list

of known adapters/contaminants. We provide a list of commonly used adapter

sequences, or the user can choose to supply their own. When a contaminant list is

not provided, or when the adapter does not match a known sequence, we advise the

user to take caution when using the results of this detection process, as a highly

abundant sequence might simply be derived from a frequently repeated element in

the genome.

Error rate estimation
Quality and adapter trimming is sensitive to the choice of several parameters.

For example, relative to datasets with typical rates of sequencing error, datasets with

higher error-rates require higher thresholds for mismatches and/or random-match

probability during insert- and adapter-matching to perform with the same level of

sensitivity. Thus, we implemented in Atropos a command that provides an estimate of

the error rate in each input file. The error command gives the choice between two

algorithms: (1) averaging all base qualities across a sample of reads, which is fast but

likely overestimates the true rate of sequencing error (Dohm et al., 2008; DePristo et al.,

2011); and (2) the shadow regression method proposed by Wang et al. (2012), which

more accurately estimates error rates at the cost of reduced speed and greater

memory usage.

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 7/19

http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

Quality control metrics
Examination of QC metrics is another important aspect of sequence analysis pipeline.

For example, the widely used FastQC (Andrews, 2010) tool generates statistics such as

per-sequence and per-base quality scores and GC content, sequence length distribution,

sequence duplication levels, and frequency of potential contaminants. QC is commonly

performed both before and after read trimming to identify any systematic data quality

issues, to observe the improvements in data quality due to trimming, and to ensure that

trimming does not introduce any unintended side-effects. Since both read trimming and

QC involve iterating over all reads in the dataset, we reasoned that implementing both

operations in the same tool would reduce the overall processing time, and also eliminate

the need to install two separate tools. Thus, we implemented an option in Atropos to

collect QC metrics before and/or after trimming.

Additionally, we implemented an Atropos module for MultiQC (Ewels et al., 2016),

a program that generates nicely formatted reports from metrics output by a variety of

bioinformatics tools for one to many samples. Given summary files generated by Atropos

(one per sample, in JSON format), the MultiQC module will generate interactive versions

of the same static plots offered by FastQC, as well as a summary table of the most

important metrics.

Shared Cutadapt and Atropos improvements
In addition to improvements in the semi-global alignment algorithm above, Atropos also

benefits from the following improvements that were made to Cutadapt subsequent to the

publication of Martin (2011), but prior to the Atropos fork, and are therefore features

in both programs.

� Adapters can now be anchored, which limits the read positions at which they will be

matched. An anchored 5′ adapter thus matches only if it is a prefix of the read, and a

3′ adapter only if it is a suffix of the read. This is useful, for example, when one or both

sequencing adapters are known to be ligated directly to a PCR primer.

� Linked adapters combine a 5′ with a 3′ adapter. Trimming multiple adapters from each

read was also supported previously, but linked adapters make it possible to require that

one of them is a 5′ adapter and one a 3′ one.

� IUPAC ambiguity codes are fully supported. Thus, adapter sequences containing

characters such as N (matching any nucleotide), H (A, C, or T), Y (C or T) work as

expected. They are useful when adapters contain barcodes or random nucleotides. The

nucleotides and ambiguity codes are internally represented as patterns of four bits, in

which each set bit corresponds to an allowed nucleotide. Comparisons are thus simple

“binary and” operations, resulting in no runtime overhead.

� Paired-end data can be trimmed with sequences specified for the forward and reverse

reads independently. Read pairs are guaranteed to remain in sync. Even interleaved data

(paired-end reads in a single file) is accepted.

� Quality trimming can now work in a NextSeq-specific mode in which spurious runs of

high-quality G nucleotides at the 3′ end of a read are correctly trimmed. NextSeq

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 8/19

http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

instruments use “dark” or “black” cycles for G nucleotides, making them unable to

distinguish between regular G and reaching the end of the fragment.

� Other additions include support for trimming a fixed number of bases from a read, support

for files compressed using the bzip2 and lzma algorithms, and improved filtering options.

Benchmarks
Simulated data
We evaluated both the speed and the accuracy of Atropos relative to other state-of-the-art

read trimming tools using both simulated and real-world data (Table 1). As trimming of

single-end reads is unchanged from the original Cutadapt method and is also decreasing

in relevance as most current experiments use paired-end data, we focused our

benchmarking on trimming of paired-end reads. Sturm et al. demonstrate that Skewer

(Jiang et al., 2014) and SeqPurge (Sturm, Schroeder & Bauer, 2016) stand out as having

superior performance in paired-end read trimming, and Schubert et al. also demonstrate

exceptional performance of AdapterRemoval (Schubert, Lindgreen & Orlando, 2016); thus,

we chose to benchmark Atropos against these tools. We also compared the new insert-

match algorithm against the adapter-match algorithm that is used by Cutadapt, and

which can be enabled in Atropos using the “--aligner” command line option.

To simulate paired-end read data, we use the ART simulator (Huang et al., 2012) that

was modified by Jiang et al. to add adapter sequences to the ends of simulated fragments.

ART simulates reads based on empirically derived quality profiles specific to each

sequencing platform. A quality profile consists of distributions of quality scores for each

nucleotide at each read position, expressed as read counts aggregated from multiple

sequencing experiments, where quality scores are in Phred scale (-10log10(e), where e is
the probability that the base call is erroneous). We developed an R script to artificially

inflate the error rates in an ART profile to a user-defined level. For each row in the profile

with quality score bins e1..en and corresponding read counts r1..rn, the overall error rate

can be computed as:

E ¼
Pn

i¼1 eiriPn
i¼1 ri

(5)

We use the R function optimwith the variable metric (“BFGS”) algorithm to optimize a

function that adds an equal number of counts C to each Phred-score bin in the

distribution and then compares the overall error rate to the user-desired error rate E′:

f ðC; E0Þ ¼
Pn

i¼1 eiðri þ CÞPn
i¼1 ðri þ CÞ � E0 (6)

We simulated ∼800k 125 bp paired-end reads using the Illumina 2500 profile at error

rates that were low/typical (∼0.2%, the unmodified profile), intermediate (∼0.6%), and

high (∼1.2%). We evaluated the accuracy of the tools on the simulated data by comparing

each trimmed read pair to the known template sequence. We counted the frequency of

following outcomes: the fragment does not contain adapters but is trimmed anyway

(“wrongly trimmed”), or the fragment does contain adapters but either too few bases or

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 9/19

http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

too many bases were removed (“under-trimmed” or “over-trimmed”). We also counted

the total number of under- and over-trimmed bases.

Real data
We also benchmarked the tools on two real-world datasets. First, we sampled ∼1 M read

pairs from a whole-genome bisulfite sequencing (WGBS) library generated from the

GM12878 cell line. Second, we used 6.1 M paired-end mRNA-seq reads generated from

the K562 cell line. Both of these datasets were generated by the ENCODE project

(ENCODE Project Consortium, 2012). Since the genomic origins of the templates are

not known a priori, we instead compared the read trimming tools based on improvement

in the results of mapping the trimmed versus untrimmed reads. We used STAR

(Dobin et al., 2013) to map the mRNA-seq reads to GRCh38, and we used bwa-meth

(Pedersen et al., 2014) to map the WGBS reads to the bisulfite-converted GRCh38. We also

compared the results of only adapter trimming to the results of adapter trimming plus

additional quality trimming using a minimum quality threshold of 20 (Phred-scale).

One characteristic of the mRNA-Seq dataset is that average read 2 quality is

substantially lower than read 1 (estimation by the “atropos error” subcommand: 6.7%

versus 2.0%). In practice, when encountering a read pair in which one end is of much

lower quality than the other, the Skewer algorithm essentially overwrites the former with

the later, leading to more precise alignment. Atropos provides a specific option for this

case (“--w”), which we make use of in our benchmark in order to fairly compare Atropos

with Skewer. However, this gives these tools a perhaps unfair advantage over

AdapterRemoval and SeqPurge which do not have such an option.

Computing environments
Although sequence analysis is sometimes performed using a desktop computer, analysis of

the volumes of data currently being generated increasingly requires the use of high-

performance computing facilities (“clusters”). The hardware architecture of a cluster is

often different from that of a desktop computer. Most importantly, storage in a cluster is

typically centralized and accessed by the compute nodes via high-speed networking. Such

an architecture inevitably adds latency to file reading and writing operations (“I/O”).

Cluster nodes also typically have more processing cores and memory available than

Table 1 Description of data sets.

Dataset Error rate (%) Read

length

Total read

pairs

Reads

w/Adapters

Adapter bases

Simulated 1 0.20 125 781,923 325,982 12,447,262

Simulated 2 0.60 125 780,899 325,105 12,416,861

Simulated 3 1.20 125 782,237 325,860 12,464,235

GM12878 WGBS* 2.79 125 1,000,000 57,130 3,082,003

K562 mRNA-seq* 4.31 75 6,100,265 14,384 749,451

Note:
For the real data sets, * actual error rates are unknown—we estimate error rates from base qualities over a sample of
10,000 read pairs; and total adapter content is unknown—we provide the number of reads containing exact matches for
the first 35 adapter bases, and the number of adapter bases present.

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 10/19

http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

desktop computers. This means that the performance of software with intensive I/O usage

(such as read trimming) is likely to be quite different on a desktop versus a cluster. To

examine the impact of these architectural differences, we ran the benchmarks for

simulated data on both a desktop computer (a Mac Pro) having a 3.7 GHz quad-core Intel

Xeon E5 processor and 32 GB RAM, and on a cluster node having 64 2.4 GHz Intel Xeon

E5 cores and 256 GB memory, and with all data being read from and written to network-

accessible storage over a 1 Gbit ethernet connection.

Reproducibility and reusability
With increasing importance being placed on both the reproducibility of results in

scientific publications and the reusability of software and pipelines, we endeavored to

provide a benchmark workflow that can be easily executed and extended by anyone with

access to modern computing resources.

First, we “containerized” all of the software tools used in this paper—including

trimming tools, read mapping tools, and supplementary tools used to evaluate results and

generate tables and figures (Table S1). We also created minimal containers for all of the

data used in this paper—including benchmark datasets, reference genomes, annotation

databases, and indexes used by the mapping tools. Specifically, we created Docker

(Boettiger, 2015) image specifications (“Dockerfiles”), generated the images, and uploaded

them to a public repository on the Docker Hub (see Data Availability).

Second, we implemented our benchmark workflow using the Nextflow (Di Tommaso

et al., 2017) framework. Importantly, Nextflow enables workflows to be run either locally

or in most cluster environments, and supports running containerized software via either a

Docker or Singularity (Kurtzer, 2016) client (depending on the operating system).

Instructions for running our workflow, along with all of the source scripts, are available

in our GitHub repository (see Data Availability).

RESULTS
Simulated data

Performance
On a desktop computer with four processing cores, we found that AdapterRemoval had

the fastest overall execution time, followed closely by SeqPurge, Atropos (in parallel write

mode), and Skewer (Fig. 2A; Table S2).

As expected, execution times on a cluster node using four threads were approximately

20% greater than those observed on a desktop computer (Fig. 2B; Table S3). We expect

that much of this disparity is due to the increased latency involved in network-based I/O

on the cluster, although some may also be explained by CPU differences (3.7 GHz Intel on

the desktop versus 2.4 GHz on the cluster node).

When increasing the number of parallel execution threads from 4 to 8 and 16, Atropos

achieves a roughly linear decrease in execution time. Interestingly, the execution times of

AdapterRemoval, SeqPurge, and Skewer do not substantially decrease when increasing

the number of the threads from 8 to 16. With 8 and 16 threads, Atropos using the

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 11/19

http://dx.doi.org/10.7717/peerj.3720/supp-1
http://dx.doi.org/10.7717/peerj.3720/supp-1
http://dx.doi.org/10.7717/peerj.3720/supp-1
http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

adapter-match algorithm in parallel-write mode is the fastest of the tools, and with 16

threads Atropos using the insert-match algorithm in parallel-write mode is also faster

than the other three tools (Table S3).

Atropos uses substantially more memory than the other tools (Fig. S1; Table S4).

We expect this is partially due to overhead of automatic memory management in Python

compared to C++ (in which AdapterRemoval, SeqPurge, Skewer are implemented), but in

larger part results from Atropos’ use of in-memory queues to communicate between

parallel processes. For all four programs, memory usage increases slightly with increasing

number of threads. We note that Atropos provides parameters to limit memory usage

(although typically at the expense of reduced speed).

For most datasets and thread counts, Atropos and Skewer typically achieve the highest

mean CPU utilization, indicating that they are less I/O-bound than AdapterRemoval or

SeqPurge (Fig. S2).

Accuracy
We found that the four trimming algorithms had different biases toward under- and

over-trimming (Table 2). Across the three sequencing error rates, Skewer had the

lowest frequency of wrongly trimming reads while AdapterRemoval had the highest.

The Atropos adapter-match algorithm exhibited almost no over-trimming of reads, but

also had a very high frequency of under-trimming. The Atropos insert-match algorithm

and SeqPurge had similarly low frequencies of under-trimming reads. Overall, the

Atropos insert-match algorithm demonstrated the lowest error rates at the read level

(0.01%).

In terms of numbers of over- and under-trimmed bases, the Atropos insert-match

algorithm and SeqPurge clearly had the best performance (Table 2) at all sequencing error

rates. The two algorithms had similarly low numbers of under-trimmed bases, but the

A) B)

Threads

Figure 2 Trimming execution time for simulated data. Execution time on simulated datasets for

programs running on (A) a desktop computer with four parallel processes (threads), and (B) a cluster

node with 4, 8, and 16 threads. Each program was executed multiple times, and Atropos was run with

combinations of alignment algorithm (insert-match or adapter-match) and output mode (worker-

compression, writer-compression, or parallel-write). The mean execution times for each program are

shown with 95% CI.

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 12/19

http://dx.doi.org/10.7717/peerj.3720/supp-1
http://dx.doi.org/10.7717/peerj.3720/supp-1
http://dx.doi.org/10.7717/peerj.3720/supp-1
http://dx.doi.org/10.7717/peerj.3720/supp-1
http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

Atropos insert-match algorithm had a lower number of over-trimmed bases, giving it the

lowest overall error rate (0.0002%). On the other hand, Skewer and the Atropos adapter-

match algorithm left substantial numbers of under-trimmed bases while AdapterRemoval

was again biased toward over-trimming.

Additionally, we found that all tools discarded very similar numbers of reads (1.8%)

that were below the minimum length threshold of 25 bp after trimming. These were reads

with short insert sizes, which have a high rate of spurious mapping, and thus it is common

practice to discard them.

Real data
We first tested Atropos’ adapter detection module on the real datasets. Using the first

10,000 reads in each pair of FASTQ files, Atropos correctly detected the exact sequences of

the adapters used in constructing each library. For three of the four adapters, the

sequences were found in a list of known contaminants (WGBS read 1: “TruSeq Adapter,

Index 7”; WGBS read 2 and mRNA-seq read 2: “TruSeq Universal Adapter”);

the mRNA-seq read 1 adapter appears to have a custom-designed sequence.

Table 2 Trimming accuracy on simulated data with three different base-call error rates.

Program Reads Bases

Wrongly trimmed Over-trimmed Under-trimmed Total

error (%)

Over-trimmed Under-trimmed Total

error (%)

Error rate 0.2%

AdapterRemoval 664 (0.09%) 29 (0.00%) 65 (0.01%) 0.10 6,043 2,511 0.005

Atropos (adapter) 51 (0.01%) 1 (0.00%) 28,991 (3.77%) 3.78 490 102,133 0.057

Atropos (insert) 60 (0.01%) 24 (0.00%) 31 (0.00%) 0.01 186 94 0.000

SeqPurge 94 (0.01%) 24 (0.00%) 31 (0.00%) 0.02 1,574 94 0.001

Skewer 18 (0.00%) 13 (0.00%) 146 (0.02%) 0.02 39 8,309 0.005

Error rate 0.6%

AdapterRemoval 666 (0.09%) 19 (0.00%) 69 (0.01%) 0.10 5,547 2,032 0.004

Atropos (adapter) 72 (0.01%) 6 (0.00%) 28,843 (3.76%) 3.77 733 101,839 0.057

Atropos (insert) 52 (0.01%) 15 (0.00%) 42 (0.01%) 0.01 151 146 0.000

SeqPurge 78 (0.01%) 16 (0.00%) 41 (0.01%) 0.02 822 145 0.001

Skewer 8 (0.00%) 8 (0.00%) 180 (0.02%) 0.03 16 11,732 0.007

Error rate 1.2%

AdapterRemoval 680 (0.09%) 16 (0.00%) 65 (0.01%) 0.10 5,795 2,667 0.005

Atropos (adapter) 76 (0.01%) 5 (0.00%) 30,152 (3.92%) 3.94 721 117,027 0.065

Atropos (insert) 49 (0.01%) 13 (0.00%) 35 (0.00%) 0.01 111 85 0.000

SeqPurge 71 (0.01%) 13 (0.00%) 35 (0.00%) 0.02 1,524 85 0.001

Skewer 11 (0.00%) 8 (0.00%) 182 (0.02%) 0.03 19 14,261 0.008

Note:
Wrongly trimmed: reads that do not contain adapters but were trimmed anyway; Over-trimmed: reads that contain adapters but from which too many bases were
removed; Under-trimmed: reads that contain adapters but from which too few bases were removed. Both read-level and base-level error rates are shown. Fractions of
total reads/bases are in parentheses. The best tool(s) in each category is highlighted.

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 13/19

http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

Performance
We performed adapter trimming on the real datasets in the same cluster environment.

Again, we found that AdapterRemoval had the fastest execution time (Fig. 3; Tables S5 and

S6). When trimming the WGBS data with 16 threads, Atropos (using the insert-match

algorithm in parallel-write mode) was nearly as fast as AdapterRemoval (Fig. 3A;

Table S5), while on the mRNA-Seq data Skewer, SeqPurge, and Atropos were all 30%–50%

slower than AdapterRemoval (Fig. 3B; Table S6).

We also performed read mapping on the cluster with 16 cores. Mapping times were

very similar for all algorithms on both theWGBS and mRNA-Seq datasets, and were much

faster than for the untrimmed reads (Fig. S3).

Effectiveness
We assessed read trimming effectiveness in practical terms. For the WGBS data, we

computed the number of trimmed reads mapped at a given quality (MAPQ) cutoff,

relative to the number of untrimmed reads mapped at that cutoff. We found that

trimming by Atropos resulted in the greatest increase in number of mapped reads at all

quality cutoffs (Fig. 4A). Trimming with SeqPurge, Skewer, and AdapterRemoval resulted

in similar, but smaller, gains in mapping quality. At the highest MAPQ thresholds (45, 50,

55), Atropos substantially outperforms the other three tools.

We also found that additional quality trimming in addition to adapter trimming has a

substantial negative effect on read mapping, at least for bisulfite reads mapped using bwa-

meth (Fig. 4B). Quality trimming by Skewer had the least negative effect on mapping

quality of the four programs, and quality trimming by AdapterRemoval had the greatest

negative effect on mapping quality.

For the mRNA-seq data, we additionally compared each alignment to GENCODE

(v26) gene annotations (Harrow et al., 2012) to determine the number of reads mapped to

expressed regions of the genome. We found that trimming with Atropos resulted a greater

A) B)

Threads

Figure 3 Trimming execution time for real data. Execution time on (A) WGBS and (B) mRNA-Seq

datasets for programs running on a cluster node with 4, 8, and 16 threads. Each program was executed

multiple times, and Atropos was run with the insert-match algorithm and parallel-write output mode.

The mean execution times for each program are shown with 95% CI.

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 14/19

http://dx.doi.org/10.7717/peerj.3720/supp-1
http://dx.doi.org/10.7717/peerj.3720/supp-1
http://dx.doi.org/10.7717/peerj.3720/supp-1
http://dx.doi.org/10.7717/peerj.3720/supp-1
http://dx.doi.org/10.7717/peerj.3720/supp-1
http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

number of mapped reads aligned to expressed regions compared to the other tools at all

MAPQ thresholds (Fig. 5).

CONCLUSION
Our results demonstrate that adapter trimming tools are approaching optimal accuracy,

at least for the (currently) most common type of data—paired-end short reads with

3′ adapters. On synthetic data with varying error rates, Atropos (using our new

Figure 5 Atropos trimming results in the greatest increase in mRNA-seq reads mapped to

GENCODE regions. Reads were adapter-trimmed with all four programs without additional quality

trimming. We mapped both untrimmed and trimmed reads to the genome using STAR. When para-

meter outSAMmultNmax = 2, STAR produces only four MAPQ values: 255 = unique alignment, 3 = two

alignments with similar but unequal score; 1 = two alignments with equal score; and 0 = unmapped. For

each MAPQ cutoffM ∈ {0,1,3,255} on the x-axis, the number of trimmed reads that align to GENCODE

regions with MAPQ >= M less the number of untrimmed reads with MAPQ >= M is shown on the

y-axis for each program.

A) B)

Figure 4 Atropos trimming best improves mapping of real WGBS sequencing reads. Reads were

adapter-trimmed with all four programs (A) without additional quality trimming (Q = 0) and (B) with

quality trimming at a threshold of Q = 20. We mapped both untrimmed and trimmed reads to the

genome. For each MAPQ cutoff M ∈ {0,5, : : : ,60} on the x-axis, the number of trimmed reads with

MAPQ >= M less the number of untrimmed reads with MAPQ >= M is shown on the y-axis for each

program.

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 15/19

http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

insert-match algorithm) and SeqPurge both demonstrated overall error rates of 0.01% at

the read level, and Atropos has the lowest base-level error rate of 0.0002%.

On real WGBS and mRNA-seq data, we found that adapter trimming with Atropos

resulted in the greatest increase in read mapping quality. We also found that stringent

quality trimming has a negative effect onWGBS read mapping quality, at least when using

bwa-meth as the alignment tool. For reads trimmed with a quality threshold of 20, all

mapping statistics were worse than those for untrimmed reads.

In terms of performance, AdapterRemoval and SeqPurge had the best performance of

the four tools tested when only four threads were available, while Atropos had superior

performance on the simulated datasets and competitive performance on the real datasets

when there were at least eight threads available. Of the three write modes, Atropos

performed best in parallel-write mode. However, parallel-write mode has the trade-off of

producing a larger number of data files, which may make analyses of large projects more

complicated to manage. Atropos’ memory requirements were the highest among the four

programs (3–4 GB versus 0.5–1.5 Gb), but well within the capabilities of most modern

computer systems.

In summary, our results show that Atropos offers the best combination of accuracy and

performance of the tools that we evaluated. Furthermore, Atropos has the richest feature

set of the four tools, including Methyl-Seq-specific trimming options, automated adapter

detection, estimation of sequencing error, computation of quality-control metrics before

and after trimming, and support for data generated by many sequencing methods (ABI

SOLiD, Illumina NextSeq, mate-pair libraries, and single-end sequencing). Although we

have not optimized Atropos for long-read data (e.g., PacBio and Nanopore), it should

work on those datasets given appropriate parameter settings, and we plan to soon provide

explicit long-read support.

DATA AVAILABILITY

� The Atropos source code, including detailed instructions and all scripts needed to

execute the analyses in this paper, are available at https://github.com/jdidion/atropos.

The portions of Atropos developed by JPD are a work of the US government, and thus

all copyright is waived under a CC0 1.0 Universal Public Domain Dedication (https://

creativecommons.org/publicdomain/zero/1.0/).

� Atropos can be installed using Python 3.3+ and any one of the following methods:

– From source, using instructions at the aforementioned GitHub repository website.

– From the Python Package Index (pypi), using the pip tool: “pip install atropos.”

– From the Conda package manager: “conda install atropos.”

– From a Docker container, using a Docker or Singularity client: e.g., “docker run

jdidion/atropos.”

� The K562 mRNA-seq data (accession SRR521458) is available from the NCBI Sequence

Read Archive: https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR521458.

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 16/19

https://github.com/jdidion/atropos
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR521458
https://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR521458
http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

� The GM12878 WGBS data (accession ENCLB794YYH) is available from the ENCODE

project website: https://www.encodeproject.org/experiments/ENCSR890UQO/.

� We used human reference genomes GRCh37 and GRCh38, downloaded from http://

hgdownload.cse.ucsc.edu/downloads.html#human.

� We used GENCODE v26 annotations, downloaded from ftp://ftp.sanger.ac.uk/pub/

gencode/Gencode_human/release_26.

� All datasets, including the simulated DNA-Seq reads, have been packaged into Docker

containers, and are available in the Docker Hub (https://hub.docker.com/r/jdidion/).

Container definitions are available in the aforementioned GitHub repository.

ACKNOWLEDGEMENTS
We thank Jim Mullikin, Stephen Piccolo, and two anonymous reviewers for helpful

comments on an earlier version of this manuscript. We also thank the users of Cutadapt

and Atropos that have contributed bug reports and improvements.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
JPD and FSC are funded by the NIH intramural program. Additionally, JPD is funded by

the American Diabetes Association (1-17-PDF-100). MM is supported by a grant from the

Knut and Alice Wallenberg Foundation to the Wallenberg Advanced Bioinformatics

Infrastructure. The funders had no role in study design, data collection and analysis,

decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

NIH intramural program.

American Diabetes Association: 1-17-PDF-100.

Knut and Alice Wallenberg Foundation to the Wallenberg Advanced Bioinformatics

Infrastructure.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� John P. Didion conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables, reviewed drafts of the paper.

� Marcel Martin contributed reagents/materials/analysis tools, reviewed drafts of the

paper.

� Francis S. Collins reviewed drafts of the paper.

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 17/19

https://www.encodeproject.org/experiments/ENCLB794YYH/
https://www.encodeproject.org/experiments/ENCSR890UQO/
http://hgdownload.cse.ucsc.edu/downloads.html#human
http://hgdownload.cse.ucsc.edu/downloads.html#human
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_26
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_26
https://hub.docker.com/r/jdidion/
http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

Data Availability
The following information was supplied regarding data availability:

GitHub: https://github.com/jdidion/atropos;

Didion J. (2016, September 15). Jdidion/Atropos: Atropos V1.0.15. Zenodo

DOI 10.5281/zenodo.154097.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.3720#supplemental-information.

REFERENCES
Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data.

Version: 0.11.5. Available at http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Bock C. 2012. Analysing and interpreting DNA methylation data. Nature Reviews Genetics

13(10):705–719 DOI 10.1038/nrg3273.

Boettiger C. 2015. An introduction to docker for reproducible research, with examples

from the R environment. ACM SIGOPS Operating Systems Review 49(1)71–79

DOI 10.1145/2723872.272388.

Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM. 2013. An extensive evaluation of

read trimming effects on Illumina NGS data analysis. PLOS ONE 8(12):e85024

DOI 10.1371/journal.pone.0085024.

DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA,

del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY,

Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. 2011. A framework for variation discovery and

genotyping using next-generation DNA sequencing data. Nature Genetics 43(5):491–498

DOI 10.1038/ng.806.

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. 2017. Nextflow

enables reproducible computational workflows. Nature Biotechnology 35(4):316–319

DOI 10.1038/nbt.3820.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M,

Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

DOI 10.1093/bioinformatics/bts635.

Dohm JC, Lottaz C, Borodina T, Himmelbauer H. 2008. Substantial biases in ultra-short read

data sets from high-throughput DNA sequencing. Nucleic Acids Research 36(16):e105

DOI 10.1093/nar/gkn425.

ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human

genome. Nature 489(7414):57–74.

Ewels P, Magnusson M, Lundin S, Käller M. 2016. MultiQC: summarize analysis results for

multiple tools and samples in a single report. Bioinformatics 32(19):3047–3048

DOI 10.1093/bioinformatics/btw354.

Gusfield D. 1997. Algorithms on Strings, Trees and Sequences. Cambridge: Cambridge University

Press.

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D,

Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J,

Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T,

Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I,

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 18/19

https://github.com/jdidion/atropos
https://doi.org/10.5281/zenodo.154097
http://dx.doi.org/10.7717/peerj.3720#supplemental-information
http://dx.doi.org/10.7717/peerj.3720#supplemental-information
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://dx.doi.org/10.1038/nrg3273
http://dx.doi.org/10.1145/2723872.272388
http://dx.doi.org/10.1371/journal.pone.0085024
http://dx.doi.org/10.1038/ng.806
http://dx.doi.org/10.1038/nbt.3820
http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1093/nar/gkn425
http://dx.doi.org/10.1093/bioinformatics/btw354
http://dx.doi.org/10.7717/peerj.3720
https://peerj.com/

van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigó R,

Hubbard TJ. 2012. GENCODE: the reference human genome annotation for The ENCODE

Project. Genome Research 22(9):1760–1774 DOI 10.1101/gr.135350.111.

Huang W, Li L, Myers JR, Marth GT. 2012. ART: a next-generation sequencing read simulator.

Bioinformatics 28(4):593–594 DOI 10.1093/bioinformatics/btr708.

Jiang H, Lei R, Ding S-W, Zhu S. 2014. Skewer: a fast and accurate adapter trimmer for

next-generation sequencing paired-end reads. BMC Bioinformatics 15(1):182

DOI 10.1186/1471-2105-15-182.

Kurtzer GM. 2016. Singularity linux application and environment containers for science.

Version: 2.1.2. Zenodo DOI 10.5281/zenodo.60736.

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.

EMBnet.journal 17(1):10–12 DOI 10.14806/ej.17.1.200.

Martin M. 2013. Algorithms and tools for the analysis of high-throughput DNA sequencing data.

PhD thesis, Technical University of Dortmund.

Pedersen BS, Eyring K, De S, Yang IV, Schwartz DA. 2014. Fast and accurate alignment of long

bisulfite-seq reads. Available at http://arxiv.org/abs/1401.1129 [q-bio].

Schubert M, Lindgreen S, Orlando L. 2016. AdapterRemoval v2: rapid adapter trimming,

identification, and read merging. BMC Research Notes 9:88 DOI 10.1186/s13104-016-1900-2.

Sturm M, Schroeder C, Bauer P. 2016. SeqPurge: highly-sensitive adapter trimming for

paired-end NGS data. BMC Bioinformatics 17(1):208 DOI 10.1186/s12859-016-1069-7.

Ukkonen E. 1985. Finding approximate patterns in strings. Journal of Algorithms 6(1):132–137

DOI 10.1016/0196-6774(85)90023-9.

Wang XV, Blades N, Ding J, Sultana R, Parmigiani G. 2012. Estimation of sequencing error

rates in short reads. BMC Bioinformatics 13(1):185 DOI 10.1186/1471-2105-13-185.

Didion et al. (2017), PeerJ, DOI 10.7717/peerj.3720 19/19

http://dx.doi.org/10.1101/gr.135350.111
http://dx.doi.org/10.1093/bioinformatics/btr708
http://dx.doi.org/10.1186/1471-2105-15-182
http://dx.doi.org/10.5281/zenodo.60736
http://dx.doi.org/10.14806/ej.17.1.200
http://arxiv.org/abs/1401.1129
http://dx.doi.org/10.1186/s13104-016-1900-2
http://dx.doi.org/10.1186/s12859-016-1069-7
http://dx.doi.org/10.1016/0196-6774(85)90023-9
http://dx.doi.org/10.1186/1471-2105-13-185
https://peerj.com/
http://dx.doi.org/10.7717/peerj.3720

	Atropos: specific, sensitive, and speedy trimming of sequencing reads
	Introduction
	Materials and Methods
	Results
	Conclusion
	Data Availability
	flink6
	References

