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Abstract

In recent years, arrays of extracellular electrodes have been developed and manufactured to record 

simultaneously from hundreds of electrodes packed with a high density. These recordings should 

allow neuroscientists to reconstruct the individual activity of the neurons spiking in the vicinity of 

these electrodes, with the help of signal processing algorithms. Algorithms need to solve a source 

separation problem, also known as spike sorting. However, these new devices challenge the 

classical way to do spike sorting. Here we review different methods that have been developed to 

sort spikes from these large-scale recordings. We describe the common properties of these 

algorithms, as well as their main differences. Finally, we outline the issues that remain to be solved 

by future spike sorting algorithms.
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1. Introduction

Progress in neuroscience relies to a large extent on the ability to record simultaneously from 

large populations of cells, in order to understand how information is represented among 

neurons. One of the most popular techniques to measure such an activity is the use of arrays 

of extracellular electrodes. With these devices, each electrode records the extracellular field 

in its vicinity and can detect the action potentials emitted by the neighboring neurons. In 

contrast to intracellular recording, those extracellular recordings do not give a direct access 

to the neuronal activity: one needs to process the recorded signals to extract the spikes 

emitted by the different cells around the electrode. This process is termed spike sorting, and 

many algorithms have been suggested to do it efficiently (see Lewicki (1998) or Rey et al. 

(2015) for a review).
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The first extracellular recordings were performed with a single electrode, and could only 

give access to 3–5 neurons (Gerstein and Clark, 1964). A recent study (Pedreira et al., 2012) 

highlighted that the maximal number of accessible neurons should lie between 8 and 10 in 

that case. Over the last decades, there has been a strong effort to increase the number of 

electrodes, and therefore the number of recorded neurons. Spike sorting algorithms had to be 

adapted to process this increasingly large amount of data. At first, electrodes were spaced by 

hundreds of microns such that the spike of one cell could only be detected on a single 

electrode (Jones et al., 1992; Shoham et al., 2003). In that case, spike sorting on a large 

amount of electrodes could simply be done by processing each electrode independently. The 

parallelization of the problem for large amount of independent electrodes was relatively easy 

to address.

However, devices where electrodes are packed with a high density have also been developed. 

The spacing between electrodes is much smaller (tens of microns). As a consequence, a 

spike from a single cell can be detected on several electrodes. Conversely, each electrode 

will detect the activity of many cells, a property already encountered in the case of single 

electrode. This increased density helps a lot to resolve single cells (Gray et al., 1995; Franke 

et al., 2015a), but electrode signals could not be processed independently. Spike sorting 

algorithms had to be adapted to this new type of data. While for small numbers of electrodes 

(e.g. tetrodes), methods that could be seen as adaptations of single electrode sorting worked 

very well (McNaughton et al., 1983; Harris et al., 2000; Gao et al., 2012), this is not the case 

with new devices designed with hundreds of electrodes all densely packed. CMOS-based 

devices with thousands of electrodes have been tested and are now frequently used 

(Berdondini et al. (2005); Fiscella et al. (2012); Müller et al. (2015); Hilgen et al. (2016)), 

calling for new algorithmic methods, largely different from the usual sorting methods.

Here we review the different spike sorting algorithms that have been proposed to process 

recordings from these novel high-density devices. We will first explain the limitations of 

classical spike sorting approaches to process these large-scale, dense recordings. Then, we 

will outline the main changes introduced by these new algorithms compared to classical 

spike sorting approaches. We will emphasize that most of these new methods follow the 

same global strategy, although they have been developed independently by different groups. 

Therefore, we will outline the common properties shared by these algorithms, before 

explaining and discussing their main differences. Finally, we will discuss the issues that still 

need to be resolved by future spike sorting algorithms.

2. The challenge posed by large-scale multi-electrode recordings to 

classical approaches

Most of the classical approaches to spike sorting can be decomposed in two main steps. 

First, some specific features of the spike waveforms are extracted from the raw data. This 

allows each spike to be characterized by a small set of numbers/features. Using these 

features, each spike can now be seen as a point in a low dimension space, and the second 

step consists in clustering all the points in this reduced space.
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For the first step, earliest methods only extracted the spike amplitude (Hubel et al., 1957), 

and width (Meister et al., 1994) of each spike. More recently, some methods use the full 

waveform directly when the number of electrodes remains small (Pouzat et al., 2002). 

Another standard technique is to project each waveform on a set of basis functions (Litke et 

al., 2004; Quiroga et al., 2004), that are either found by performing a principal component 

analysis (PCA) on the entire set of waveforms (Egert et al. (2002); Pouzat et al. (2002); 

Einevoll et al. (2012); Swindale and Spacek (2015)), or by choosing a wavelet basis (Letelier 

and Weber (2000), Hulata et al. (2002), Quiroga et al. (2004)). For a comparison between 

PCA and wavelet based analysis, see Pavlov et al. (2007). Note that the two can be 

combined (Bestel et al., 2012).

Once the dimensionality has been reduced, to tackle the problem of the clustering step, 

several approaches have been used, but the most standard approach is to fit the clusters with 

a mixture of Gaussians (Wood et al., 2004; Rossant et al., 2016; Kadir et al., 2014). 

However, one could also find in the literature approaches such as paramagnetic clustering 

(Quiroga et al., 2004), mean-shift clustering (Swindale and Spacek, 2014) or even k-means 

clustering (Atiya, 1992; Chah et al., 2011). Another interesting approach is to consider the 

most consensual clustering across an ensemble of k-means solutions (Fournier et al., 2016).

Not all standard methods strictly follow this workflow. For example, linear filtering is an 

alternative approach which identifies the optimal linear filter to distinguish one signal, of 

unknown temporal position but of known waveform, from a finite number of other signals of 

known waveforms, observed on noisy electrodes. This approach was first proposed by 

Roberts and Hartline (1975), then by Gozani and Miller (1994) and more recently by Franke 

et al. (2010). This method is similar to template matching approaches that we will describe 

later. An alternative approach is independent component analysis (ICA) where the first step 

demix blindly the data and extract the individual source signals from which spikes are 

identified (Takahashi et al., 2003; Brown et al., 2001; Jäckel et al., 2012). Note that variants, 

such as the convolutional independent component analysis (cICA) of Leibig et al. (2016), 

has been developed. However, there is no guarantee that the independent components found 

by those algorithms are indeed isolated neurons.

While all of these methods can be successful when one electrode captures the signals from a 

only few cells, and when one cell is only recorded by one or a small number of electrodes, it 

is not trivial to scale them up to process a large number of densely packed electrodes. In 

recordings performed by large and dense multi-electrode arrays, the spike waveforms live in 

a high dimensional space, and this makes the clustering challenging. We will review below 

some suggested improvements to enable clustering on a large number of electrodes.

Finally, a more fundamental problem with clustering-based approach is that the extraction of 

features from one spike can be distorted by the presence of other spikes nearby. As a 

consequence, most of the overlapping spikes are not captured by clustering approaches, 

because they correspond to points in the feature space that are far from the centers of the 

corresponding clusters. This is a major challenge for clustering techniques (Bar-Gad et al., 

2001), that we will explain in more details below. In large scale and dense multi-electrode 

recordings, overlapping spikes become the rule rather than the exception. Solving this issue 
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is one of the motivation behind new algorithms, based on template matching, that we will 

review and discuss in a second part.

3. Improvements of the clustering

In order to be able to scale up and perform spike sorting for large number of channels with 

the classical algorithms mentioned above, several refinements of the clustering have been 

proposed by various groups.

3.1. Improved spike detection

Rossant et al. (2016) have proposed a method that pre-processes the data to make clustering 

easier for multi-electrode sorting. As explained above, the spike of a single cell can be 

detected on multiple electrodes. Conversely, spikes from several cells can be seen on the 

same electrode. They designed a flood fill method to group together spikes detected on 

different electrodes that correspond to a single cell. For this they connect together spikes 

detected synchronously on adjacent electrodes. The exact algorithm to connect adjacent 

events bears some similarity with standard image processing algorithms, like the Canny 

contour detection. Spikes are therefore defined as spatiotemporal events, with a given spatial 

extent, called a mask, for each of them.

In a second step, for each of these events, they remove any voltage deflection outside of the 

mask, and replace it with noise. This masking removed part of the distortion induced by 

other spikes when estimating the features, and improved the performance of the clustering. 

While this improvement is of great help for overlapping spikes that are distant enough in 

space, it is less clear how it will help for spikes coming from two cells that are physically 

close. In that case, some electrodes will detect spikes from the two cells, and their masks 

will strongly overlap. Therefore this masking process may only help avoiding temporally 

overlapping spikes from distant cells.

3.2. Pre-clustering

Marre et al. (2012) and Swindale and Spacek (2014) use a method to break down the 

clustering problem into multiple smaller parts. After detecting all the spikes in the recording, 

waveforms are grouped in different subsets according to the electrode where the highest 

voltage peak was found. Instead of performing a single clustering algorithm on all the 

waveforms, this grouping outputs N subsets, if N is the number of electrodes. Each subset 

contains all the spikes peaking on the same electrode. A clustering is then performed on 

each of these subsets independently.

Note that this pre-grouping does not assume that the spikes are only detected on a single 

electrode, which would amount to multiple single electrode sorting. Here, after this pre-

grouping, a clustering is performed for each group, and this clustering used the information 

available on all the electrodes. This simplification allows reducing drastically the number of 

spikes that have to be processed together. It also allows a simple parallelization of the 

clustering, which is crucial for large-scale recordings with hundreds or thousands of 

electrodes.
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The main issue with this method is that a cell that is located between two electrodes might 

emit spikes that peak alternatively on one or the other electrode. In that case, the cell will be 

split between two different groups, and subsequently in two different clusters. This strategy 

has therefore to be combined with a later step where all the clusters that correspond to the 

same cell are merged together. This method is therefore on the side of overclustering the 

spikes, and merging the different clusters later on. However, merging clusters is usually 

easier than splitting them since there is one possible result for the first operation whereas the 

second one presents many possible solutions.

3.3. Main issues associated with clustering

A complete review of all the clustering algorithms used for spike sorting is beyond the scope 

of this review. However, we would like to outline the main issues associated with the 

clustering step, that are common to almost every clustering algorithm.

3.3.1. Mathematical definition and non-linear optimization—Two of the main 

issues associated with any spike sorting solution relying on a clustering approach can be 

found in the roots of the clustering per se. Mathematically, the clustering suffers from a lack 

of problem statement and problem resolution. First, one need to agree on a mathematical 

definition of the notion of cluster to state the problem. Because there exists many different 

cluster models (e.g. centroid models, distribution models, density models), there are 

numerous notions of what a cluster is. It is not obvious if one of these notions would fit 

appropriately to the biological reality. Hence, the first problem is that the stated problem is 

an approximation of the true problem. Thus, the solution to this clustering problem is an 

approximated solution to the true problem. This is why it often requires the user to spend a 

rather large amount of time in manual curation, because the solution to the true problem is in 

the neighborhood of the approximated solution.

Second, solving a clustering problem brings additional issues. The different methods used to 

do clustering involve finding the minimum of an objective function, and the solution 

landscape almost surely presents local minima. As a consequence, running twice the same 

clustering algorithm with two different set of parameters (i.e. internal parameters such as 

initial centroids for the k-means algorithm) can lead to different results. The reason is that 

the two runs can be trapped in two different local minima. In many cases it takes several 

trials before converging to the global minimum, which increases the computational cost. In 

practice, the algorithm may stop before convergence because the more complex/challenging 

is the solution landscape, the less likely is the convergence in a reasonable time.

3.3.2. Overlapping spikes—More importantly, as mentioned above, a major issue with 

clustering is that it will miss many overlapping spikes. If two spikes are overlapping on the 

same electrode, there will be a distortion in the feature estimation, that will drive the spike 

beyond the limits of the cluster defined on isolated spikes. Note that the superposition 

problem has been known for a long time (Prochazka et al., 1972; Roberts and Hartline, 

1975). The issue was apparent in Harris et al. (2000): they showed that the error rate of the 

spike sorting is strongly increased during spindle waves, which are epochs of synchronous 

firing. False positive errors could change from 5% to almost 80%, and false negative were 
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also increased by at least 20%. The issue was more extensively studied by Pillow et al. 

(2013), where they show that synchronous spikes will be missed by a pure clustering 

approach. An additional study of Franke et al. (2015a) confirms that clustering-based 

methods perform poorly for overlapping spikes, as shown by Lewicki (1998) and Quiroga et 

al. (2004). Template matching approaches have been developed in order to deal with these 

overlapping spikes.

4. Template matching approaches

Several template matching approaches have been developed for spike sorting (Pillow et al., 

2013; Pachitariu et al., 2016; Marre et al., 2012; Yger et al., 2016; Prentice et al., 2011). 

Note that historically the use of template matching (Gerstein and Clark, 1964) predates the 

use of clustering (Simon, 1965) and then experienced renewed interest. All these methods 

usually assume that the extracellular signal can be decomposed as a sum of so-called 

“templates” (one template is the average extracellular waveform triggered by one neuron) 

plus some noise:

(1)

where s⃗(t) is the signal recorded over the electrodes of the multi electrode array and over 

multiple time points. w⃗j (t − ti) is the spatiotemporal template associated with each cell, 

which represents the average waveform triggered on the electrodes by cell j (example in 

figure 1B). ti are all the putative spike times over all the electrodes, aij is the amplitude factor 

for spike time ti for cluster j, and e⃗(t) is the background noise.

In this notation, the spike train associated with cell j is the set of times ti where aij is 

different from zero. The template matching approach aims at finding the right values for w⃗j 
(t) and aij, i.e. to find where each cell spiked. Almost all the template-matching based 

methods try first to find the value of the templates, and then the values of aij. Depending on 

the algorithm, the amplitude values can only be 0 or 1, or can take any continuous value. We 

will review these methods in subsections 4.3 and 4.4.

4.1. Template extraction

To estimate the templates, most methods usually rely on clusters extracted from the 

recording using one of the methods described above. Each cluster corresponds to a set of 

snippets in the extracellular data. The snippets of a given cluster are supposed to be 

realizations of action potential of a single cell. We want to extract a canonical representative 

(i.e. a template). A naive method would be to consider the average waveform of these 

snippets. However, because averaging is very sensitive to outliers, if some of the snippets 

also include overlapping spikes from other cells, they might distort the estimate of the 

template. Two solutions have been developed to circumvent this issue. The simplest (and 

fastest) one is to take the median at each time point instead of the mean (Marre et al., 2012; 

Yger et al., 2016). The median is way less sensitive to outliers than the mean. This method 

usually solves the issue of overlapping spikes.
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Another solution is to model the extracellular signal from the clustering result:

(2)

Notations are similar to equation 1, except that bij are binary variables such that bij is set to 1 

if ti is associated to cluster j, and to 0 otherwise. Here the unknown variables are the 

templates w⃗j (τ). Under these conditions, it is possible to find the templates that will fit the 

extracellular data best, by minimizing the following square difference (Pillow et al., 2013; 

Ekanadham et al., 2014):

(3)

The two methods seem to give similar results1 although, in theory, the first approach is less 

sensitive to noise, whereas, the second one is less sensitive to strong correlations between 

cells (i.e. overlapping spikes). This is due to the fact that taking the median is a way to 

minimize the ℓ1-norm between the different snippets and the template, while equation 3 is a 

minimization of a ℓ2-norm.

4.2. Finding the spike trains

Once the templates are found, we need to find when they appear on the extracellular signal. 

For this, template matching methods usually use algorithms similar to projection pursuit 

(Friedman and Tukey (1974), although with different criteria for acceptance and stop). Most 

of them can be summarized as an iterative greedy approach with the following steps, for a 

given time chunk (illustrated in figure 1A):

1. Find the template that matches best the raw data. If amplitude is allowed to be 

different from 1, find the best matching amplitude.

2. Define a criterion to accept the template. It can either be about the quality of the 

fit to the raw data, or about the value of the best amplitude, or both.

3. If the template is accepted, subtract it from the raw data. Then go back to the first 

step.

The different algorithms that have been proposed differ mostly in the acceptance criterion, 

and in the possibility to have amplitude different from 0 and 1 or not.

One common issue that needs to be mentioned before comparing the approaches is sampling 

jitter. When a cell emits a spike, the spike time may peak at a time t + dt, where t is the 

closest time point sampled by the data acquisition, and dt is the time difference between the 

true spike time and t, smaller than the acquisition period. As a result, in template matching 

approaches, a template will be matched at time t to explain a spike that occurred at t + dt. 

1See http://phy.cortexlab.net/data/sortingComparison/ for a direct comparison on some synthetic ground-truth datasets
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The compensation of this dt is necessary (McGill and Dorfman, 1984) when one does not 

use a high sampling frequency. For example, Prentice et al. (2011) use linear interpolations, 

Pillow et al. (2013) use local approximations based on Taylor expansions and Yger et al. 

(2016) use similar expansions (see also Marre et al. (2012) where this issue is mentioned). 

Additional solutions, such as polar expansions, were developed by Ekanadham et al. (2011).

4.3. Approaches with binary amplitudes

Segev et al. (2004), Pillow et al. (2013) and Franke et al. (2015b) assume that the amplitude 

of a template is always equal to 1 (aij ∈ {0, 1} in equation 1). Segev et al. (2004) keep a 

template if it improved the prediction of the extracellular signal by the sum of templates, i.e. 

if subtracting it to the raw data led to a reduction in variability that passes a given threshold. 

This threshold is needed to avoid overfitting the noise with small templates. Pillow et al. 

(2013) base the criterion of acceptance on an objective function: the value of the function 

had to be improved when fitting an additional spike. This function is the sum of two terms:

(4)

The first one is the square difference between the extra-cellular signal and the sum of 

templates, in the metric defined by the noise covariance. It will usually decrease if an 

additional spike is fitted to the signal. The second term is a regularization on the average 

firing rate of each cell, and corresponds to a cost per spike. This term decreases when an 

additional spike is fitted to the signal, and reflects the prior that cells are more likely to be 

silent (i.e. respect their firing rate) than to fire all the time. This second term is here to avoid 

overfitting the noise with small templates. Note that, while this term is called a prior by 

Pillow et al. (2013), it is based on the data (on the measured firing rate for each cell). We 

will call it a regularization term in the following. Conceptually, we can see that the two 

methods are quite similar. If we whiten the extracellular signal before template matching, 

then the first term in the objective function of Pillow et al. (2013) is equivalent to the square 

difference between the extra-cellular signal and the sum of templates, which is exactly what 

Segev et al. (2004) use. When Segev et al. (2004) then compare the reduction of this square 

difference to a threshold, this threshold can be compared to the change of the second term in 

the objective function of Pillow et al. (2013), which reflects the regularization on the firing 

rate. The method of Pillow et al. (2013) is more elaborate because the regularization term 

can change from one cell to the other, while the method of Segev et al. (2004) uses the same 

threshold for all cells. However, it seems that the exact regularization values does not change 

much the results of the spike sorting (Pillow et al., 2013). Therefore, we expect that these 

algorithms should give similar results. More recently, Franke et al. (2015b) used a relatively 

similar approach but allowed fitting two templates at the same time. This additional feature 

leads to a better estimation in the case of overlapping spikes.

4.4. Approaches with graded amplitudes

Other methods have assumed that a template can be scaled up or down every time the cell 

spikes: they assume that the amplitude aij can take other values than 0 or 1 in equation 1. 
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Prentice et al. (2011) assume that the spike amplitude for a given cell follows a Gaussian 

probability distribution, whose mean is equal to 1. The standard deviation of the distribution 

is estimated from the previously found cluster. Then, they maximized an objective function 

that has two terms: the first one is the same as the one of Pillow et al. (2013), i.e. the 

difference between extracellular signal and the sum of templates in the noise covariance 

metric. The second one is a regularization term that reflects two facts. First, an amplitude 

closer to 1 is more likely than a very small, or a very big one. Second, a template with a high 

firing rate is more likely than another one with a low firing rate. By balancing these two 

terms, the optimization process avoid to add a lot of templates with small amplitudes that are 

highly unlikely. It also avoid to add a lot of templates associated to units with low firing 

rates. This second term can thus be understood as a combination of two regularization 

constraints: one over the amplitudes, and another one over the firing rates.

Marre et al. (2012) and Yger et al. (2016) also allow amplitude variations, but the acceptance 

criterion was different: after having found the amplitude that best matches the extracellular 

signal, the template was kept if the amplitude was between thresholds, amin and amax. At first 

sight, this criterion seems surprising since it does not depend on the improvement in the 

quality of the fit. In fact, the process of finding the best amplitude is by itself an estimation 

of the improvement of the fit. For a given iteration, if we note r⃗(t) the extracellular signal 

that remains to be fitted (i.e. after subtraction of the templates fitted in the previous 

iterations), and w⃗(t) the new candidate template that needs to be fitted, then the best 

matching amplitude a will be found by minimizing (r⃗(t) − aw⃗(t))2. It can be shown that, if 

this template is accepted, the square difference will decrease by a2(w⃗(t))2. In other 

algorithms, this decrease of the square difference has to be larger than the increase of the 

regularization term for the template to be accepted. Setting a minimal amplitude is therefore 

equivalent to having a regularization term that is different for each cell, but constant as a 

function of the amplitude of the spike (similar to what was done by Pillow et al. (2013)). 

The other threshold for maximal amplitude is less important, and only plays a role to avoid 

very high, unrealistic values.

The advantage of having an amplitude threshold as a parameter, instead of a threshold for 

improvement in the goodness of fit, is that this parameter is much more intuitive for the user: 

we can figure out reasonably well what a minimal amplitude of 0.4 or 0.8 means. Thresholds 

on goodness of fit are less easy to understand. Furthermore, by looking at the set of 

amplitudes fitted over time, we can get a sense of the right values for these amplitude 

thresholds. If the minimal amplitude threshold is too low, the template is also fitted on noise, 

with small amplitudes which are clearly different from the amplitude of real spikes, that are 

close to 1. When we labeled the pairs of spikes with refractory period violations, we often 

see that most of them involve one of these spurious fits. It is therefore easy to readjust the 

threshold to a correct value. These thresholds can also be made time dependent, as can be 

seen in figure 1C. This gives more flexibility to process non-stationary data while keeping 

understandable parameters. Of course, the disadvantage of this method is that the algorithm 

is not expressed as the minimization of a cost function.
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4.5. Different algorithms correspond to different assumptions about spike amplitude 
distributions

Can all these methods be expressed with an objective function having a similar structure? As 

we showed before, all the three methods discussed above (Prentice et al., 2011; Marre et al., 

2012; Pillow et al., 2013) aim at minimizing the square difference between the extracellular 

signal and the sum of fitted templates. The difference lies in the regularization term, which 

reflects an assumption about the possible amplitude for the spike. More formally, the 

quantity we want to minimize is:

(5)

where the first term is the square difference between the data and the reconstruction model, 

ℛ denotes the regularization function over the amplitude values aij and λ is a free parameter 

(i.e. trade-off between the two terms).

In Prentice et al. (2011), the regularization term reflects an assumed Gaussian distribution 

for the amplitude. In Marre et al. (2012), the amplitude thresholds might reflect an 

assumption of flat amplitude distribution between the minimal and maximal amplitudes, and 

0 elsewhere.

With a similar approach, Ekanadham et al. (2014) use a ℓ1-minimization algorithm to find 

the right amplitudes. This ℓ1-minimization is equivalent to assuming that the spike amplitude 

distribution that has the form of a power law, i.e. 1/(ε + a)p. The form of this distribution 

gives an advantage to small amplitudes. As a consequence, this algorithm outputs a lot of 

small amplitude spikes, and this is later corrected by removing all the spikes whose 

amplitude is smaller than a given threshold. The threshold is estimated a posteriori by fitting 

a Gaussian distribution to the amplitude distribution found empirically.

One way to summarize the difference between these three methods is therefore to say that 

they differ in their assumption on the amplitude distribution. Prentice et al. (2011) assume a 

Gaussian distribution, Marre et al. (2012) and Yger et al. (2016) assume a flat distribution 

between some thresholds, Ekanadham et al. (2014) and Pachitariu et al. (2016) assumed a 

power-law distribution in the core of the algorithm, but corrected it later on with a Gaussian 

distribution.

4.6. Caveats when minimizing an objective function

While this is an intuitive way to explain the differences between the different algorithms, it 

has to be noted that some sorting algorithms do not directly minimize the objective function 

described above. For example, in both Prentice et al. (2011) and Marre et al. (2012), during 

the iterative process, the amplitude was chosen as the one that best matches the data, without 

taking into account the regularization term on the amplitude values. Formally, the 

amplitudes were chosen to be the solution of:
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(6)

A direct minimization of the total objective function, including the regularization term, 

would have biased all the amplitudes towards 1 since the amplitudes would have been the 

solution of:

(7)

where λ is a free parameter and p(aij) is the probability density function of the amplitude 

values. This bias affects the quality of the fit, and can lead to fitting other templates where 

templates have been fitted with biased amplitudes. For example, figure 2A shows a 

comparison of several errors function used while optimizing the amplitude of a given 

waveform, displayed in figure 2B. As we can see, the choice of the error criteria can have a 

strong impact on the “optimal” amplitude, leading to more or less pronounced residuals (see 

figure 2C). To avoid this, it is necessary to take the amplitude value that best matches the 

data, without any regularization, and only use the regularization to decide afterwards 

whether this template should be kept or not.

4.7. Assumptions behind the template decomposition

An important question is whether template matching algorithms can always replace 

clustering algorithms, or if they have some intrinsic limitations that make them less flexible 

than clustering. This is still an open question, and only direct comparisons between the 

different approaches, in cases where the true solution is known, will tell us what is the best 

approach (Yger et al., 2016). Here we would like to give some intuition about how the main 

assumptions of template matching approaches can translate in the feature space that 

clustering approaches use.

In the template matching approach, the noise is supposed to be independent of the templates. 

In the case where no amplitude variation is allowed, it means that the variability in the 

snippets always comes from the same noise source. In a given feature space, it means that all 

the clusters should be elongated in the same directions. This is illustrated in figure 3A: while 

the clusters have different centers, they are all ellipses extended in the same directions.

If the spike amplitude is allowed to change, this means that, in a feature space, each cluster 

has two sources of variability: a common one, which corresponds to the noise, and another 

one that is specific to each template. The second one is constrained to be in the direction of 

the template, which is approximately the cluster center. Therefore, in a feature space, it 

means that the clusters have now noise in common directions, but also an elongation that 

will follow the arrow that connects the point 0 in the feature space, and the center of the 

cluster (figure 3B). This is more realistic than the previous assumption, but it is not clear 

whether this gives a good account of all the variability found for each cluster.
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If we were to use template matching only on isolated spikes, we could also define areas in 

the feature space where a point is assigned to a given template. A snippet is always assigned 

to the best matching template. In some algorithms (Pillow et al., 2013), it means this 

template is closest in the sense of the least square difference. In the feature space, this means 

that a point will always be assigned to the closest centroid. We can use this rule to define 

equivalent cluster borders (figure 3C). In other algorithms (Prentice et al., 2011; Marre et al., 

2012), only the spike shape is used to define the best matching template, and then the 

algorithm decides whether the best matching amplitude is plausible or not. This defines 

different shapes for the border: a straight line from the 0 point to separate the regions of 

preferred spike shape and some circles to define the allowed amplitudes, following the 

approach of Marre et al. (2012). Figure 3D illustrates these shapes.

So the competition between the different templates defines some natural borders. There is no 

guarantee that this is the best and proper definition for the cluster borders. Future works will 

need to address this issue by comparing the results of template matching and clustering 

algorithms. However, the intuitions we have drawn here can be used to compare more 

intuitively pure clustering-based versus template matching approaches.

5. Conclusion: challenges ahead

The methods described here have enabled to sort spikes from a large number of cells and 

electrodes (Yger et al., 2016; Pachitariu et al., 2016). However, there are still several 

challenges that need to be overcome. First, most of the algorithms described here have been 

tested on in vitro data, in the retina (but see Ekanadham et al. (2014), Franke et al. (2015b) 

or Yger et al. (2016) for in vivo tests). In vivo tests on silicon probes with a large number of 

recording sites close apart will be necessary. A possible required improvement is a better 

description of the cluster (Yger et al., 2016). As we explained above, the template matching 

makes some assumptions about the shape of the clusters, and it is not clear if these 

assumptions are verified or not in vivo. A related issue with spike sorting is the need to have 

more ground truth data, i.e. recordings where at least one cell is recorded with another 

technique, so that we know when the spikes occur. These data are essential to test spike 

sorting algorithms (Neto et al. (2016)).

A second point is that template matching does not replace clustering. All the methods 

described require a set of clusters, from which the templates can be extracted. The clustering 

can do mistakes that can be tolerated, as long as they do not distort the template estimation. 

But a decent performance in clustering is nonetheless required. So one still needs an efficient 

way to cluster. Ekanadham et al. (2014) and Pillow et al. (2013) have proposed to do back 

and forth between template estimation and finding the amplitudes. This is an extension of 

the approach we described previously: after finding the amplitudes, they are used to estimate 

the templates again with a least square method. Then this new set of templates is fitted once 

again to the data. Note that this global iteration does not remove the need for an initial 

clustering, so that the templates are properly initiated (at the very least, they need to be in 

sufficient numbers). The interest of doing multiple iterations of template estimation and 

matching is not completely clear. While Ekanadham et al. (2014) claim that it is crucial, 

Pillow et al. (2013) mention that there is only a marginal improvement after the first pass. 
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Another modification of the iterative approach can be found in a work of Franke et al. 

(2015b), where solutions beyond this iterative approach have been developed that can lead to 

a better sorting of synchronous spikes.

Another challenge is the time spent on manual curation. Even the best clustering makes 

mistakes, and some cells will be represented by more than one template. Finding all the pairs 

that need to be merged require a significant amount of time for hundreds of electrodes. 

Methods need to be developed to make this kind of tasks as automated as possible, so that 

the time spent by the user is reduced to a minimum (Yger et al., 2016).

Nowadays, new devices with CMOS components now allow recordings from thousands 

electrodes simultaneously (Berdondini et al. (2005); Fiscella et al. (2012); Müller et al. 

(2015); Hilgen et al. (2016)), and it remains to be seen it these algorithms can scale up and 

process such a large amount of data. We need to be sure that the time spent on manual 

curation can remain small enough that we can get thousands of spike trains in a decent 

amount of time (see preliminary evidence that it might be the case by Yger et al. (2016)).

Finally, one problem that needs to be properly tackled by the new generation of spike sorting 

algorithms appears during long lasting chronic recordings (Nicolelis et al., 2003). It is 

indeed well known that because of tissue changes, or because of experimental protocols, 

recordings can be non-stationary and drifts in the neuronal waveforms can appear over long 

time scales. For any template matching based approach, one should rather consider 

spatiotemporal kernels that could evolve over time, and be distorted. To some extent, some 

of these deformations can be dealt with by allowing graded amplitudes for the templates (see 

for example figure 1C, where the amplitude evolves over time). However, a more robust 

framework is required for a better understanding of the drifts, especially because latest 

algorithms (Yger et al., 2016; Pachitariu et al., 2016) seem to pave the way toward real-time 

spike sorting. Such an understanding would be crucial in the context of accurate online spike 

sorting.
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Large and dense arrays of electrodes require new spike sorting methods.

Novel methods have been designed that rely on template matching.

Most of them follow the same general strategy.

We review their common points and differences.
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Figure 1. 
The template matching approach. A: illustration of the iterative template matching approach. 

The extracellular signal (in blue, shown for 20 electrodes) is matched iteratively with a sum 

of templates. At each step, a template is added to the signal (red) to match better the data. At 

the end, all the spikes are fitted by a template, and the sum of templates (red) predict very 

well the data (blue). B: example of a single template over 16 electrodes. C: example of 

amplitude values fitted to the data for one template, as a function of time. Gray lines 

represent the average amplitude over time, and the minimal amplitude over time (see text for 

details).
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Figure 2. 
Illustration of biased amplitudes toward 1 when minimizing the log-likelihood. A: 
Comparison of the error function used for the optimization of the amplitudes. Mean squared 

error of the residual, as described in equation 6 (blue). Penalty which comes from a 

regularization with a Gaussian distribution on the amplitude values (red). Log-likelihood, as 

described in equation 7 (green). The dotted vertical lines indicate the minimium of each of 

these error functions. B: Illustration of the results of the fit, with optimal scaled waveforms 

for each error function superimposed onto the raw data (gray), colorcoded as in A. C: 
Residuals (fit minus raw data) for each of those error functions, colorcoded as in A.

Lefebvre et al. Page 19

J Physiol Paris. Author manuscript; available in PMC 2018 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Illustrations of the assumptions of the template matching in the clustering space. A: 
Example of two clusters in the feature space, when assuming that they are generated by 

templates with no amplitude variation. B: Same than A, but now with the assumption that 

the template can vary in amplitude according a Gaussian distribution. C: Equivalent borders 

(see text) for the clusters for a template matching that chooses the template closest to the 

spike. D: Equivalent borders in the case where the template is chosen based on the spike 

shape, and that only a certain range of amplitude is allowed. See text for details.
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