Figure 7.
(A) Relative fragmented sleep (short term sleep) of exercising AD flies (elav-GAL4 > UAS-Aβ42) was assessed by normalization to non-exercising AD control. Total short term sleep for 32 animals per group averaged for each day is shown over 20 days of data acquisition. Short term sleep of non-exercising controls is considered as 100%. Vertical line at day 12 marks the last day of exercise. Fragmented sleep was reduced by 31.6% from day 1 to 12 (***p < 0.001) and 22.2% (**p < 0.01) lower from day 13 to 20 compared to stationary AD control. (B) Sixteen days old exercising AD flies show lower Aβ42 mRNA expression level in comparison to non-exercising AD flies. Three biological triplicates (comprising 20 adult fly heads each) revealed residual Aβ42 mRNA expression of 67.8% (p > 0.05) in 16 days old Aβ42-expressing flies after undergoing 12 days of activity induction. (C) Five μm thick paraffin sections of 20 days old pan-neuronally Aβ42-expressing flies were stained using α-Aβ42 antibody (6F/3D). Amyloid-beta staining is shown in brown, nuclear hematoxylin staining in blue (160x). Round and crescent-shaped Aβ42 aggregations in the central brain. (D) Aβ42 aggregates were quantified in paraffin sections of exercising and non-exercising AD flies. Brain sections from a representative layer were chosen to quantify Aβ42 containing protein aggregations in adult brains of exercising and non-exercising AD flies (n = 6). Paraffin sections of 20 days old flies were stained using α-Aβ42 antibody (6F/3D). Non-exercising AD flies displayed 0.15 ± 0.01 aggregates/cell, exercising AD flies 0.15 ± 0.05 aggregates/cell.