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The origin of baleen whales (Mysticeti), the largest animals on Earth, is closely

tied to their signature filter-feeding strategy. Unlike their modern relatives,

archaic whales possessed a well-developed, heterodont adult dentition.

How these teeth were used, and what role their function and subsequent

loss played in the emergence of filter feeding, is an enduring mystery. In par-

ticular, it has been suggested that elaborate tooth crowns may have enabled

stem mysticetes to filter with their postcanine teeth in a manner analogous

to living crabeater and leopard seals, thereby facilitating the transition to

baleen-assisted filtering. Here we show that the teeth of archaic mysticetes

are as sharp as those of terrestrial carnivorans, raptorial pinnipeds and archae-

ocetes, and thus were capable of capturing and processing prey. By contrast,

the postcanine teeth of leopard and crabeater seals are markedly blunter,

and clearly unsuited to raptorial feeding. Our results suggest that mysticetes

never passed through a tooth-based filtration phase, and that the use of

teeth and baleen in early whales was not functionally connected. Continued

selection for tooth sharpness in archaic mysticetes is best explained by a feed-

ing strategy that included both biting and suction, similar to that of most living

pinnipeds and, probably, early toothed whales (Odontoceti).
1. Introduction
Bulk filter feeding has allowed baleen whales to become major consumers, and

the largest animals on Earth [1]. Unlike the vast majority of mammals, mysti-

cetes have no teeth. Instead, they owe their success to baleen: a keratinous,

comb-like filtering structure that grows from the upper jaw in the same place

where teeth developed ancestrally [2]. There are currently three hypotheses

as to how baleen whales transitioned from their original toothed condition to

such a radically different morphology. The first suggests that archaic mysticetes

used their denticulate teeth to (suction) filter feed like living leopard (Hydrurga
leptonyx) and crabeater (Lobodon carcinophaga) seals, thereby linking tooth func-

tion directly with the evolution of bulk feeding and baleen [3–5]. The second

hypothesis, which may follow from the first [5], envisages a period of overlap,

during which baleen and teeth would have functioned alongside each other [6].

Finally, the third hypothesis proposes that archaic whales first turned from rap-

torial into suction feeders, which then triggered tooth loss and, eventually,

facilitated the emergence of baleen [7,8]. Testing these competing ideas requires

a clearer understanding of what the teeth of early whales were actually capable

of. One of the most important indicators of how a tooth is used is its sharpness,
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Figure 1. Tooth sharpness in marine mammals varies among species. Comparison of the postcanine teeth of (a) an extant terrestrial carnivoran, the dingo Canis
lupus (NMV C25871, mirrored), with that of (b) an extant seal known to employ tooth-based suction filter feeding (crabeater seal, Lobodon carcinophaga, NMV
C7392), and (c) the extinct toothed mysticete †Janjucetus (NMV P252376; see electronic supplementary material for diagnosis). Note the sharp cutting edges in the
dingo and †Janjucetus. Three-dimensional surface models not to scale. Life reconstructions by Carl Buell.
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which can vary considerably between species (figure 1) and

determines the degree to which bite forces are concentrated

to break apart food [9]. Here, we quantify tooth sharpness as

a proxy of function, and use it to compare the feeding capabili-

ties of archaic mysticetes with those of living terrestrial

carnivorans and a variety of marine mammals.
2. Material and methods
To measure sharpness, we first generated high-resolution three-

dimensional surface models of the cheek teeth of five modern

pinnipeds (including leopard and crabeater seals), four terrestrial

carnivorans, and eight fossil cetaceans (five toothed mysticetes,

the fossil ‘shark-toothed dolphin’ †Squalodon, and two archaeo-

cetes). For each tooth, we then measured the sharpness of the

anterior, posterior, labial and lingual sides of the main cusp,

the tip of the main cusp and the first posterior notch. Next, we

scaled all measurements and subjected them to principal

component analysis (PCA) to determine which extant tooth mor-

phologies and feeding styles fossil cetaceans most closely

associate with. Finally, we used Discriminant Function Analysis

(DFA) to distinguish extant tooth morphologies used for raptorial

and suction filter feeding. Full details of all measurements and

analyses are provided in the electronic supplementary material.
3. Results and discussion
The first two principal components together account for 85.8%

of the total variance, and clearly separate out leopard and cra-

beater seals because of their relatively blunt intercusp notch
and rounded anterior/posterior edges of the main cusp

(figure 2). Harp (Pagophilus groenlandicus) and harbour seals

(Phoca vitulina) also have relatively blunt notches, but retain

sharp blades on their main cusps. Extinct cetaceans, including

toothed mysticetes, largely fall within the morphospace defined

by extant terrestrial carnivorans and non-filtering pinnipeds, all

of which use their teeth to pierce and hold prey (i.e. for raptorial

feeding). Surprisingly, toothed mysticetes are closer to terres-

trial carnivorans and archaeocetes than either †Squalodon or

any of the pinnipeds. The DFA also separates leopard and cra-

beater seals from all other extant carnivorans and, based on the

resulting discriminant function, groups the fossil cetaceans with

the modern raptorial species (figure 2).

Together, our results reveal a spectrum of tooth morpho-

logies that seems to parallel function. Terrestrial carnivorans

and most living pinnipeds use their sharp cusps and/or inter-

cusp notches to cut or pierce prey [10,11]. By contrast, these

functions are lost in leopard and crabeater seals, which primar-

ily use their intricate postcanines as a specialized filter [12,13].

The absence of cutting blades on the main cusp in these species

probably reflects relaxed selection for sharpness, whereas their

open, rounded notches are presumably adaptive in facilitating

water flow out of the oral cavity. Harp and harbour seals are

not generally known to be filter feeders [13], but nonetheless

have relatively intricate tooth crowns, blunt notches and—in

the case of the harp seal—consume small crustaceans [14].

Whether these traits may indicate facultative, previously

unrecognized filtering behaviour remains unclear.

Archaic mysticetes, archaeocetes and †Squalodon closely

match terrestrial carnivorans and raptorial pinnipeds in tooth



−2 −1 0 1

PC1: notches

PC
2:

 b
la

de
s 

on
 p

ri
m

ar
y 

cu
sp

−3

−2

−1

0

1

2

3

0

0.5

1.0

1.5

−7.5 −5.0 −2.5 0 2.5 5.0
LD score

0

0.5

1.0

1.5

co
un

t

raptorial feedingsuction filter feeding

blunter sharper

bl
un

te
r

sh
ar

pe
r

Lobodon

Hydrurga

Phoca

Pagophilus

†Squalodon

Arctocephalus

Panthera
†Janjucetus

†Aetiocetus

Canis latrans

Puma

†Dorudon
†Fucaia

†Llanocetus

†Zygorhiza

raptorial feeding

suction filter feeding

Hydrurga

Lobodon

†Dorudon
(USNM 392075)

†Zygorhiza
(USNM 11962)

†Squalodon
(USNM 498743)

†Aetiocetus
(USNM 25210)

†Fucaia
(UWBM 84024) 

†Janjucetus
(NMV P252376)

†Llanocetus
(USNM 183022)

†Coronodon

†Coronodon
(CCNHM 166)

(a) (b)

(c)

Canis lupus

Figure 2. Tooth sharpness separates feeding modes in modern mammals, indicating no fossil cetaceans were tooth filter feeders. (a) Principal component analysis
based on 10 measurements describing the sharpness of the main cusp and notch of postcanine teeth. Extant terrestrial carnivorans are denoted by black squares,
extant pinnipeds by black circles, and fossil cetaceans by grey triangles. The morphospace defined by species that use their teeth only for raptorial feeding is shown
in red, whereas that of the suction filter-feeding leopard and crabeater seals is shown in blue. Extinct cetaceans, including toothed mysticetes, cluster with non-
filtering raptorial species. (b) Discriminant function analysis of extant taxa with known feeding habits only (top), followed by a classification of fossil specimens
based on the resulting discriminant function (bottom). The suction filter-feeding seals (blue bars) are well separated from terrestrial carnivorans and raptorial seals
(red), as well as all of the fossil cetaceans (grey). (c) Overview of the tooth morphology of the fossil cetaceans included in this study. Phylogeny follows [5]. Some
teeth were mirrored to ensure consistent orientation. See electronic supplementary material for details. Not to scale.
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sharpness, suggesting continued selection for piercing and cut-

ting capabilities. Moreover, they lack the blunt, open intercusp

notches of extant filter-feeding seals, and hence show no trend

towards a filtering morphology. Based on these results, we con-

clude that none of the extinct cetaceans investigated here

possessed teeth that are specialized for filtering [3–5], and

reject the idea that tooth shape and function in archaic mysticetes

were ever specifically linked to the evolution of bulk feeding.

An alternative path to tooth-based filter feeding was

recently proposed for the archaic mysticete Coronodon haven-
steini. Unlike previous hypotheses about tooth-based filtering

in pinnipeds and cetaceans [3], which emphasized the elabor-

ate morphology of individual teeth, feeding in Coronodon
envisages two different types of filtration: one via large,

diamond-shaped gaps between the upper and lower tooth

rows; and one via narrow, denticle-rimmed slots between

the imbricated lower teeth. Such ‘interdental’ filtering could

theoretically be envisaged without specific adaptations

to tooth crown morphology. Nevertheless, water still has to

pass the denticles and notches framing each gap during both

types of filtration, with the denticles themselves thought to
maximize prey retention [5]. Despite their different tooth

crown morphologies, a similar situation exists in leopard and

crabeater seals, where the tooth filter consists of highly elabor-

ate teeth held in occlusion [12,13] (electronic supplementary

material, figure S6). Even interdental filtration should thus

benefit from adaptations facilitating water flow, and hence

plausibly result in a measurable change in dental morphology.

Our analyses unequivocally cluster Coronodon with terres-

trial carnivorans, non-filtering pinnipeds and other toothed

mysticetes (figure 2). Coronodon retains sharp cutting edges,

suggesting continued selection for sharpness. This is consist-

ent with the presence of caniniform incisors and abrasion of

the right P2 in the holotype [5], and suggests that the teeth

continued to be used for prey processing. At the same time,

there are no obvious adaptations that could facilitate water

flow, and thus no evidence in support of filtering.

Besides the absence of dental adaptations (i), we note

further problems with the tooth filtration hypothesis in

Coronodon, including: (ii) stable carbon isotope data suggesting

that a potential juvenile of C. havensteini (ChM PV4645), and its

sister taxon (ChM PV5720), fed on large prey at a high trophic
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level, similar to odontocetes [15]; (iii) the presence of radially

oriented accessory denticles, proposed to aid filtering by

enhancing prey retention, in clearly non-filter-feeding archaic

mysticetes like Mystacodon [16], but not in filter-feeding seals;

(iv) the inconsistency of the tooth wear pattern in Coronodon
with both benthic feeding and tooth-filter feeding pinnipeds;

and (v) the fact that water expulsion via the tooth row, as pro-

posed for Coronodon, is not per se indicative of filtration: all

mammals feeding underwater need to expel excess water, irre-

spective of their feeding strategy [8]. Overall, we thus propose

that Coronodon probably did not filter, and instead interpret

its sharp and emergent teeth, enlarged gums and comparatively

broad rostrum as indicative of both raptorial and suction feed-

ing. See electronic supplementary material for a full discussion.

Sharp teeth are consistent with both of the two remaining

scenarios for the teeth-to-baleen transition, namely, a period

of overlap between a functional dentition and baleen [6], and

suction-assisted raptorial feeding, which would have preceded

the emergence of true suction feeding and filtering [7,8]. Never-

theless, it seems likely that pronounced piercing or even cutting

movements (e.g. in the aetiocetid †Fucaia buelli) would have

interfered with, and damaged, any incipient baleen rack [7].

By contrast, suction-assisted raptorial feeding would not

have imposed any such limits on the functionality of the

teeth, making it a more likely scenario under which selection

for tooth sharpness was maintained.

The teeth of living raptorial odontocetes, such as dolphins

and porpoises, are generally homodont, conical and lack

obvious cutting blades, casting doubt on our proposed associ-

ation between suction-assisted feeding and tooth sharpness.

Nevertheless, early odontocetes did possess well-developed

postcanines like those of †Squalodon [17], and many living

seals retain sharp cheek teeth to this day. Both of these

groups may thus provide a suitable analogue for how archaic
mysticetes fed prior to the emergence of specialist suction feed-

ing and bulk filtering. In terrestrial carnivorans and some seals,

sharp postcanines function in processing [10,11], which in turn

suggests that the (occasional) need to bite or chew large prey

persisted among archaic odontocetes and mysticetes [17]. The

absence of sharp multi-cusped teeth in living odontocetes

may be explained by a subsequent reduction in prey size that

allowed most items to be swallowed whole.

In summary, the teeth of archaic toothed mysticetes were

capable of raptorial feeding, but seemingly not filtering. In con-

trast to filter-feeding seals, mysticete bulk feeding required the

evolution of an entirely novel filtering structure, either in par-

allel with or—perhaps more likely—following the loss of

functional teeth.
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