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Appropriate response to others is necessary for social interactions. Yet little

is known about how neurotransmitters regulate attractive and repulsive

social cues. Using genetic and pharmacological manipulations in Drosophila
melanogaster, we show that dopamine is contributing the response to others

in a social group, specifically, social spacing, but not the avoidance of

odours released by stressed flies (dSO). Interestingly, this dopamine-mediated

behaviour is prominent only in the day-time, and its effect varies depending

on tissue, sex and type of manipulation. Furthermore, alteration of dopamine

levels has no effect on dSO avoidance regardless of sex, which suggests that a

different neurotransmitter regulates this response.
1. Introduction
Social space is a measurable characteristic of individuals in groups, and is based

on a balance of attractive and repulsive social cues [1]. Abnormal social spacing

is observed in individuals with disorders such as autism spectrum or Williams

syndrome [2]. However, few studies have investigated the neural mechanisms

underlying this basic social response to others.

We used the genetically tractable Drosophila melanogaster model and com-

pared two types of response to another individual: social spacing [3–9], and

avoidance of the marking left by flies that have been stressed, i.e. Drosophila
stress odorant (dSO), composed partially of CO2 [10,11].

Previous social experience affects social spacing in Drosophila; and vision but

not classical odorant perception is necessary to maintain this distancing [3,7].

Expression of genes involved in synaptic function have been reported to be

necessary for proper social spacing [6–8], and the neural circuitry underlying

CO2 perception has been identified [10]. However, the neurotransmitters

involved in these social behaviours have yet to be determined.

The dopamine system is proposed to underlie a conserved network for

social decision-making from eusocial insects such as bees [12], through birds

and rodents [13], to humans [14]. Therefore, dopaminergic signalling is a

strong candidate for the modulation of social interactions. We manipulated

tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis

[15], present in both neuronal and hypodermal dopamine cells [16]. However,

intracellular monoamine homeostasis is controlled by the vesicular monoamine
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Figure 1. (a,b) Social spacing of males (M) and females (F) overexpressing VMAT RNAi (DoppelX) with a TH-Gal4 driver during (a) the day (number of hours since
light turned on (ZT) ¼ 5 – 7) and (b) the evening (ZT ¼ 11 – 13). (c,d ) Social spacing of (c) males and (d ) females overexpressing UAS-VMAT with a TH-Gal4 driver.
(e,f ) dSO avoidance of mixed sex Canon-S (CS) emitter flies by flies of the indicated genotypes. Letters (a, b, c) indicate groups that are statistically different in
multiple comparisons (table 1). The data are represented as typical box and whiskers (box: 50% of the data distribution, middle line: median, whiskers 10% – 90%).
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transporter (VMAT) [17], and is thus also an excellent candi-

date for studies aiming to identify the role of dopamine

modulation on behaviour.
2. Material and methods
All lines of Drosophila used are described in the electronic sup-

plementary material. Locomotion was used as an indicator of

activity level [18], and is known to be altered in the mutants and

conditions tested (in dopamine synthesis [19] and in alteration of

VMAT expression [20]). Social space and dSO avoidance were per-

formed as described in [4] and [11]. We fed drugs altering

dopamine biosynthesis [15]—30 mM 3-iodotyrosine (a pathway
inhibiter) or 1 mM L-DOPA (converted to dopamine)—to 3–4

day old male flies for 24 h. Statistical analyses were performed

using GraphPad Prism 7. Detailed descriptions can be found

online, in the electronic supplementary material.
3. Results
VMAT loss-of-function mutants—which have less available

intracellular dopamine [20]—and flies with a reduced

expression of VMAT in dopaminergic cells (TH.VMAT
RNAi) display an increase in social spacing, similar to non-

social flies, regardless of their sex (figure 1a and table 1, and

electronic supplementary material, figure S1a–c). However, in



Table 1. Experimental conditions and statistical tests performed.

experiment replicates and conditions statistical test performed

figure 1a n ¼ 2 independent repeats of 40 flies in large chambers for each

genotype

comparison of medians, Kruskal – Wallis test

p , 0.0001;

Dunnet post-test multiple comparison a#b

p , 0.01

figure 1b n ¼ 2 independent repeats of 40 flies in large chambers for each

genotype

comparison of medians, Kruskal – Wallis test

p , 0.0001;

Dunnet post-test multiple comparison a#b

p , 0.01

figure 1c n ¼ 6 for VMAT cDNA/þ and TH-Gal4/þ, n ¼ 10 for TH.VMAT

cDNA independent repeats of 15 individuals in small chambers

Kruskal – Wallis test p , 0.02;

Dunnet post-test multiple comparison a#b

p , 0.02

figure 1d n ¼ 6 for UAS-VMAT/þ and TH-Gal4/þ, n ¼ 10 for TH.VMAT

cDNA independent repeats of 15 individuals in small chambers

Kruskal – Wallis test p , 0.0001;

Dunn’ post-test multiple comparison a#b

p , 0.0002

figure 1e Canton-S, n ¼ 6, TH-Gal4 n ¼ 8, DoppelX VMAT RNAi/þ,

TH.DoppelX VMAT RNAi n ¼ 9; 3 independent trials of approx.

30 flies for 60s, with 2 – 4 internal repeats

one-way ANOVA p ¼ 0.1113;

t-test p . 0.21 for each comparison with Canton-S

figure 1f UAS-VMAT cDNA/þ n ¼ 6; DaGal4/þ, n ¼ 10; Da.VMAT cDNA

n ¼ 8 independent repeats of 30 individuals

one-way ANOVA p ¼ 0.3751;

t-test p . 0.197 for each comparison with

UAS-VMAT/þ
experiment replicates control used for normalization

figure 2a,

male VMAT

TH.VMAT cDNA n ¼ 12; control n ¼ 18; P VMAT n ¼ 5;

TH.VMAT RNAi (DoppelX) n ¼ 12

Canton-S

figure 2b,

female VMAT

TH.VMAT cDNA n ¼ 10; control n ¼ 0; TH.VMAT RNAi (DoppelX)

n ¼ 2 (in this case, s.e.m. obtained from approx. 80 flies)

Canton-S

figure 2c,

male biosynthesis

TH.Catsup RNAi n ¼ 5, cat26/þ n ¼ 3, control n ¼ 9, ple2/þ
n ¼ 3

for TH.Catsup RNAi control was TH-Gal4/þ;

for cat26/þ and ple2 control was Canton-S

figure 2d,

female biosynthesis

TH.Catsup RNAi n ¼ 3, cat26/þ n ¼ 3, control n ¼ 14, ple2/þ
n ¼ 3, pale brain mutant n ¼ 6

for TH.Catsup RNAi control was TH-Gal4/þ;

for cat26/þ and ple2 control was Canton-S

figure 2e,

male acute

3 independent repeats with 2 – 4 internal replicates of 40, such that

control n ¼ 11, 3-IT n ¼ 8 and L-DOPA n ¼ 9

Canton-S fed vehicle
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the evening, the TH.VMAT RNAi lines are not different from

the controls (figure 1b). In contrast, overexpression of the

nerve cells variant, VMAT-A, using either TH-Gal4 driver

(expressed in most dopaminergic cells [16]) or Da-Gal4 driver

(not expressed in serotonin neurons [20]) led to sex-specific

altered social spacing. Males are closer (figure 1c and electronic

supplementary material, figure S1d ), and females are further

apart (figure 1d). In both sexes, there is no change in dSO avoid-

ance in any manipulation of VMAT expression performed

(figure 1e and electronic supplementary material, figure S2).

Females lacking tyrosine hydroxylase in the nervous system

[16] have increased social spacing (electronic supplementary

material, figure S3a). The effect is also strongly diminished in

the evening (electronic supplementary material, figure S3b).

As expected [21], their locomotion is reduced (electronic

supplementary material, figure S3c). However, male but not

female flies that expressed an RNAi against an inhibitor of

tyrosine hydroxylase, catsup, display an increased social
spacing (electronic supplementary material, figure S3d).

Additional milder mutants, of either catsup (Cat26/þ) or tyrosine
hydroxylase ( ple2/þ) lead to no effect in males, whereas females

appear closer (electronic supplementary material, figure S3e).

Finally, we fed male Canton-S flies two drugs, L-DOPA and

3-iodotyrosine (3-IT), respectively increasing and decreasing

dopamine synthesis in an acute manner [22]. In contrast to

the chronic modifications of dopamine synthesis, both treat-

ments led to a similar increase in social spacing, and no effect

on dSO avoidance (electronic supplementary material, figure

S3f,g), but the previously reported effect on their locomotion

[19] (electronic supplementary material, figure S3h).

In order to compare these different treatments, we normal-

ized the data to their respective controls (figure 2—see

electronic supplementary material for details). Dopamine

affects social spacing in a sex-specific manner that is dependent

on whether only the TH-neurons or all tissues are affected and

whether the treatment was chronic or acute.
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Figure 2. Linear (a,c) and curvilinear (U-shaped, b,d,e) distribution of social spacing in response to presynaptic modification in dopamine levels, depending on type
of alteration (chronic or acute, systemic or nervous system, biosynthesis or vesicular packaging), and sex. The genotypes or treatments are ordered in expected
decrease in dopamine (from high to low—blue arrows). Data are represented as relative means (+ s.e.m.) of the social space distributions. ( f ) Diagram of
a synapse, indicating the proteins altered by the pharmacological and genetic manipulations in this study. DA, dopamine.
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4. Discussion
Abnormal expression of VMAT in dopaminergic neurons

alters social spacing, with no effect on dSO avoidance. Further-

more, both chronic and acute modifications of dopamine

synthesis also affect social spacing. Although dopamine and

VMAT alterations affect locomotion, including in the mutants

tested here [3,18,19], we observed no correlation between the

social spacing and the locomotion, as reported before [4].

In males, increasing dopamine in the TH-neurons leads to

an increase in social space, a result suggested previously, in

the context of courtship behaviour [23,24]. However, increasing

dopamine in all tissues leads to the opposite effect. In females
any manipulation in the TH-neurons leads to increased social

space, while manipulation affecting all tissues leads to reduced

social space. Although the underlying mechanisms are yet to be

understood, these linear (in males) or U-shaped (in females)

dose-dependent effects have been proposed by others [25].

It is not surprising to observe different functional consequences

for abnormal dopamine concentration in the hypodermal cells

versus abnormal dopamine tone at the synapse. Dopamine

might affect emission of social cues in hypodermic cells, while

affecting the decision process in response to those cues in neur-

onal cells. Similarly, the sex-specific variations probably reflect

differences in how the genetic manipulations performed

alter dopamine concentrations in the two sexes. Indeed, adult
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females have higher dopamine content than males [26].

Furthermore, flies might rely on sexually dimorphic dopamin-

ergic neurons to generate proper social spacing, as shown

previously for stress response [27].

Finally, we found no effect on social spacing of loss of

function of VMAT in dopaminergic cells in the evening,

which supports previous reports of the role of dopamine and

VMAT in sleep and arousal, although no change in activity

patterns themselves has been reported [28–32].

In summary, we show for the first time to our knowledge

that dopamine is a key component of the regulation of social

space in Drosophila melanogaster, probably at the level of both

emitting and perceiving social signals. Better understanding

of the sex- and cell-specificity of dopamine requirements in

these social responses might reveal conserved neural

correlates.
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