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Dynamical systems describing whole cells are on the verge of becoming a rea-

lity. But as models of reality, they are only useful if we have realistic

parameters for the molecular reaction rates and cell physiological processes.

There is currently no suitable framework to reliably estimate hundreds,

let alone thousands, of reaction rate parameters. Here, we map out the relative

weaknesses and promises of different approaches aimed at redressing this

issue. While suitable procedures for estimation or inference of the whole

(vast) set of parameters will, in all likelihood, remain elusive, some hope can

be drawn from the fact that much of the cellular behaviour may be explained

in terms of smaller sets of parameters. Identifying such parameter sets and

assessing their behaviour is now becoming possible even for very large sys-

tems of equations, and we expect such methods to become central tools in

the development and analysis of whole-cell models.
1. Introduction
John von Neumann was famously dismissive of over-eager curve-fitting. ‘With

four parameters I can fit an elephant, and with five I can make him wiggle his

trunk’ encapsulates his position [1], and is a view shared by many. However, com-

putational science is now exploring models of great complexity with hundreds

and even thousands of parameters—and it is perhaps fitting that one of von

Neumann’s many great legacies, the modern computer, is enabling this; whole-

cell models (WCMs) are perhaps the most ambitious example of large-scale

models in the life sciences and here we discuss the statistical and parameter

estimation challenges intrinsic to such efforts.

Mathematical models can have manifold uses in biology. First and foremost,

they show that complexity can arise even from very simple dynamical systems

[2]. At their best, such simple models capture essential aspects of biological systems

and afford us with fundamental new insights. Lotka–Volterra models in ecology,

the Wright–Fisher model in population genetics, Turing [3] and French-flag [4]

models in developmental biology [5], the repressilator in synthetic biology [6] and

the standard model of gene expression [7] in molecular biology are all examples

of powerful yet simple models that have substantially contributed to our

understanding of biological processes from the molecular to the eco-system level.

Despite the simplicity of these models—often to the extent that substan-

tial and non-trivial analytical solutions are available for key aspects of their

behaviour—their validity or relevance has been probed and demonstrated

repeatedly. Models are not reality, nor are they meant to represent all aspects

of reality faithfully [8]. Nevertheless, these simple models have essentially

framed how we understand many key biological processes, and can serve as

useful guides as to how we should best explore them in more detail. However,

such models are quickly found wanting when more detailed data become avail-

able, or when related but more complicated processes are studied. For example,

spatial structure is known to affect the validity of both ecological and popu-

lation genetic processes, and at the very least models have to be modified to

account for these changes. As models become more complex and incorporate

often complex feedback structures [9,10], we can no longer rely on analytical
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Figure 1. WCMs. Genome-scale models of metabolism and gene regulation exist for many important model organisms. WCMs now try to combine these, together
with any available detailed models about, for example, signalling networks and basic biophysical models of cellular processes and structure, and molecular machines
into a single coherent simulation platform. For this, we will typically rely on hybrid modelling approaches, that combine different modelling approaches, which
reflect the quality and amount of data available for different aspects of the cell’s behaviour.
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techniques, and instead start to require computer simulations

to explore their behaviour.
1.1. From simple to complex models
Some models aim to capture the essential hallmarks of

life—such as metabolism, nutrient uptake, gene expression

regulation and replication—but in a simplified representation

that does not aim to replicate the true complexity of a whole

organism [11–16]. These coarse-grained models have shown

great promise and allow us to integrate molecular, cellular

and population level/scale processes into a coherent—and ana-

lytically tractable—modelling framework. While real cells will

be much more complicated, these simple model systems have

successfully provided insight into fundamental cell physiology,

e.g. processes affecting microbial growth rates [12,13,15,16].

Increasingly, there is interest in generating more realistic

and complicated models that, rather than aiming to provide

abstract representations of key features, incorporate extensive

details of known components and interactions (or reactions)

present in a system. In cell biology, for example, there are

now numerous attempts at modelling aspects of metabolism,

gene regulation and signalling at cellular level [17–24]. Per-

haps the best established are metabolic models, where a

powerful set of tools, based around flux balance analysis (FBA)

[25], allows us to explore metabolic phenotypes in silico at a

genomic level for an increasing range of organisms (and

some individual cell types) [24,26,27]. However, such models

are stoichiometric and thus give us information about bio-

chemical reaction schemes and fluxes, but not details about

the system dynamics.
Advances in both high-throughput experimentation

and computational power have opened up the possibility of

creating and analysing more complex dynamic models of bio-

logical systems, including many which represent processes

occurring at different scales [28,29]. Numerous models now

face the challenge of being large (in terms of numbers of species

and parameters represented), multi-scale and/or hybrid
in nature (incorporating multiple different mathematical

representations) [23,28–30]. The most ambitious models to

date—the WCMs—aim to provide faithful in silico represen-

tations of real biological cells, including all major cellular

processes and components, and are both very large scale and

hybrid (figure 1) [31–33].

There are several potential uses for such WCMs:

(1) To gain mechanistic insights, by serving as an in silico ‘blue-

print’ through which we study the behaviour of real cells.

(2) As a rational screening and predictive tool, to explore

in silico what might be hard or impossible to study in vivo.

(3) To drive new biological discoveries, by showing where we

lack sufficient understanding, and identifying promising

future directions to pursue experimentally.

(4) To study emergent phenomena which are only apparent

when we consider a system as a whole.

(5) To integrate heterogeneous datasets and amalgamate our

current knowledge into a single modelling framework.

(6) Perhaps eventually to study, via virtual competitions

between different cell architectures, evolutionary dyna-

mics in unprecedented detail (but at enormous, currently

crippling, computational cost).

(7) In the meantime, as the community strives to develop

viable WCMs, the technological, computational and
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statistical challenges of model building will, no doubt, give

rise to much fruitful research and re-usable methodology.

Here, we focus on the inference and statistical modelling

challenges inherent to developing WCMs (and other complex

models), in terms of model construction, parameter esti-

mation, uncertainty and sensitivity analyses, and model

validation and refinement. Some of these are generic model-

ling challenges—but worth reiterating—while others are

specific to large-scale, multi-scale and hybrid models.
J.R.Soc.Interface
14:20170237
2. Combining models
The first example of a comprehensive WCM, published in 2012,

describes the life cycle of a simple bacterium, Mycoplasma
genitalium, accounting for the functions of all 525 known anno-

tated genes [31]. This model was constructed by combining

28 submodels that describe cellular processes, including

metabolism, gene expression regulation, protein synthesis,

biomolecule assembly, signalling and cell division functions.

Such a hybrid model requires a sophisticated and non-trivial

simulation framework, as the different modelling modalities

required, e.g. for FBA and stochastic gene expression, need to

be reconciled with one another and staged appropriately such

that cell–physiological processes are realistically scheduled.

For some of the obvious next candidates to generate

WCMs, such as Escherichia coli or Bacillus subtilis, we already

have vast amounts of metabolomic, transcriptomic and proteo-

mic data, as well as knowledge summarized in databases.

There are, for example, the genome-scale metabolic models

that we have already touched upon above. These are comple-

mented by gene regulation and protein–protein interaction

networks that capture interactions that have been experimen-

tally substantiated to different degrees. Construction of the

next WCMs will probably follow similar approaches that com-

bine existing submodels; the challenge is to (i) construct and

parametrize appropriate submodels and (ii) intercalate these

networks to enable computational analyses. An even more

ambitious goal is to extend such approaches to study eukary-

otic species such as Saccharomyces cerevisiae or mammalian

cells, where not only do we have to deal with much larger gen-

omes, but features such as subcellular compartments and more

complex regulatory mechanisms.

Approaches and difficulties relating to submodel con-

struction and parametrization are discussed in subsequent

sections, but even once we have extensively characterized, care-

fully parametrized and validated models describing different

aspects of a complete system, combining these will remain a

formidable challenge [28,29,34]. Submodels were successfully

integrated in the original WCM by assuming independence

on short time scales, and defining a collection of cell variables

that could be shared among the various distinct cellular pro-

cesses [31]. However, we should bear in mind the difficulties

faced in other scientific fields, where complex systems are fre-

quently studied using multi-scale [29] and multi-physics

modelling approaches [35]. In climate modelling, for example,

multi-physics approaches combine models of atmospheric

chemistry with models of ocean currents, which are then

coupled, using, for example, partial differential equations.

But in those cases the processes of connecting the different sub-

systems can introduce uncertainty and bias, as the feedback

between different constituent parts of the larger system can
also be complicated, and coupling different systems requires

considerable fine-tuning of the equations linking the different

subsystems.

It will be crucial to develop ways to assess how uncertain-

ties and errors may be propagated through a complex model.

Any inaccuracies in linking different submodels can severely

compromise the compound model, irrespective of how care-

fully the submodels have been calibrated and tuned.

We should also consider how else we can incorporate the

impact of cellular context when modelling subsystems. The

notion of extrinsic noise was introduced precisely to account

for cell-to-cell heterogeneity in factors that are not explicitly

captured by a model, but which may differ between cells

[36]. Frequently, it is possible to capture the leading effects

of such extrinsic factors by allowing for differences in the

rate parameters between cells [37–39].
3. Parameter estimation
The models, f(Y; u, t), we are after capture the behaviour of our

organism/cell, or all of its constituent parts subsumed in the

vector, Y, over time, t; u denotes the vector of parameters

(e.g. rate constants for metabolic and kinetic processes).

Depending on the nature of the process being studied, and

the level of knowledge we have about a system, we may require

different modelling formalisms (e.g. deterministic, stochastic,

logical or stoichiometric); frequently, we will make use of

ordinary differential equations of the form

dY(t)
dt
¼ f(Y; u,t)þ j(Y,t), ð3:1Þ

where j(Y, t) is an optional additional term to denote stochastic

processes (e.g. due to random timings of collisions between

molecules in the cellular interior).

The structure of the model—in terms of the mathematical

representation of the function f(Y; u, t) which describes the

system components and relationships—is defined according

to our current knowledge, perhaps in combination with data-

driven network inference techniques that aim to learn the likely

structure of a system from observations of its variables

[40–46]. However, we also need to obtain suitable estimates

for the parameters, either from experimentally determined

values or by using statistical approaches to estimate (or infer)

these values by fitting model simulations to observed data.

3.1. Experimental estimates
The authors of the first WCM [31], and others [47], stress the

need to only use experimentally measured parameters in bio-

logical models. This may appear a rigorous way to ensure

that a model is properly calibrated against the available infor-

mation, and that free (wiggle) parameters are avoided. There

are, however, a number of pitfalls to such a strategy [48,49].

First, the mathematical models that we are considering are

abstractions of much more complex processes (even within

WCMs that attempt to incorporate functions of all known

genes); therefore, the meaning of a parameter needs to be care-

fully evaluated in each case. For example, Michaelis–Menten

kinetics are frequently used to model enzymatic reactions,

but these model assumptions may be far removed from the

true biophysical processes occurring inside a crowded cellular

environment, and may grossly simplify the complex catalytic

regulation that occurs in the real system. The model parameters
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may therefore not really reflect the biophysical constants that

are experimentally accessible using in vitro or in vivo assays.

Second, biochemical reaction rates depend on numerous

environmental (e.g. temperature, acidity, ionic strengths) and

cellular (e.g. viscosity, allosteric regulation) factors. While we

can aim to design experiments so that our measurements are

as relevant as possible [50–53], few biological parameters can

be measured precisely in their appropriate in vivo context.

We are often forced to resort to parameter estimates obtained

from in vitro assays or from other (related) species, but there

are good reasons to be wary of such estimates: the thermo-

dynamic and ecological differences can lead to pronounced

differences between, for example, catalytic rates; similarly,

differences in the architecture of the cell membrane and

embedded transporters and receptors can affect transport as

well as cell–environment interactions.

Third, any modelling using fixed parameters ought to be

viewed with a healthy dose of scepticism: uncertainty and

noise pervade all of cell biology, and failure to account for

this appropriately can compromise analyses and further uses

of the resulting model [48]. Such shortcomings may not necess-

arily be detectable in validation experiments—particularly

when dealing with such complex models, numerous parameter

combinations may provide a reasonable match to the data [54],

yet the complexity renders these models intractable to existing

approaches designed to identify these situations.

Finally, not all relevant parameters may be known (even

when we include data from related species) and, in some

cases, may not be experimentally accessible. A key advantage

of modelling is that it enables us to explore the influence of pro-

cesses that we cannot directly observe, by linking these

processes in a mathematical framework to variables we can

probe experimentally. If we restrict our models to only include

parameters that we can estimate experimentally, we surely risk

biasing our models (and thus conclusions) according to our

current experimental limitations.

Ideally, we should make use of in vivo data from the target

organism of interest where available to help estimate par-

ameters in the correct cellular context. However, we should

also exploit the diverse array of techniques available that

allow us to infer the most probable parameter values from

the observed behaviour of a system.
3.2. Statistical inference
Here by inference we mean the use of sound statistical

methods to learn the parameter and, where possible, include

an explicit assessment of the associated uncertainty. The like-
lihood is a central quantity for such methods [55]; it is defined

as the probability of observing the data D ¼ {d1, . . . ,dn} given

a parameter, u,

L(u) ¼ Pr(D j u) ¼
Yn

i¼1

Pr(di j u): ð3:2Þ

Here Pr(d j u) is the probability of an experimental obser-

vation, d, given the mathematical model f (Y; u, t), for

a given value of u. Note that u will for all interesting pro-

blems, including WCMs, be a vector containing all the

model parameters.

The maximum-likelihood estimate (MLE) of u, denoted by û, is

obtained by varying u until the likelihood becomes maximal

û ¼ argmax(L(u)), ð3:3Þ
and it is the best estimate of u given the data, D, and the

assumed model, f(Y; u, t). Frequentist inference approaches

aim to identify the MLE of u; for most non-trivial biological

models, we expect the likelihood surface (the likelihood func-

tion evaluated over the parameter space) to be complex and

multi-modal in nature and we thus rely on numerical optimiz-

ation algorithms rather than analytical approaches to find the

maximum. Local optimization algorithms risk identifying

local maxima, so there is strong reason to prefer global optimiz-

ation approaches that aim to explore the parameter space more

broadly [56,57]. For sufficiently simple models (those where

the likelihood function in concave around a single maximum),

even global uncertainty statements can be made. Experience

suggests that this latter case is the exception rather than the

rule for dynamical systems in cell and molecular biology

[54,58]. Some approaches, such as profile-likelihood methods,

try to assess the uncertainty for each parameter [59,60],

which may hold particular appeal for those interested in

inferring specific parameters with accuracy.

The likelihood is also used in Bayesian inference where it is

combined with the prior p(u)—a probability over the par-

ameter space that reflects the level of existing knowledge

(or lack thereof)—to arrive at the posterior distribution

Pr(u jD) ¼ Pr(D j u)p(u)Ð
Vu

Pr(D j u)p(u) du
: ð3:4Þ

Here now, instead of providing a single estimate û (plus

potentially associated confidence intervals), we specify the

probability distribution over the whole potential parameter

space considered, Vu. We can, if preferred also choose to

report a point estimate, i.e. u � ¼ argmax(Pr(u jD)), for prag-

matic reasons, but typically we find it preferable to consider

the whole posterior distribution (at least conceptually).

The Bayesian framework offers considerable interpreta-

tional advantages over the traditional likelihood approach

(reviewed elsewhere [61]), but comes, in its full form, with a

computational burden that can prove prohibitive. Generally,

for any half-way realistic model the denominator in equation

(3.4) will be hard to evaluate (hence the need for Markov

chain Monte Carlo and related methods in Bayesian inference).

For many scientifically interesting problems, even evaluation

of the likelihood is computationally unfeasible and a range of

methods, including approximate Bayesian computation and

other likelihood-free inference methods have risen to promi-

nence [62–65], which extend the applicability of the Bayesian

framework to problems that have computationally intractable

likelihood functions.
3.3. Application to large-scale, hybrid models
For WCMs (and other large-scale, hybrid models), we

will require further advances and improvements in both

experimental techniques, and computational and statistical

methods in order to ensure that these models are built on

solid foundations.

Despite the wealth of ‘omics’ level data available for the

most well-studied organisms, e.g. E. coli and S. cerevisiae, we

still lack the comprehensive in vivo measurements needed

to allow us to obtain the relevant parameter estimates in a sys-

tematic and automated way. The original M. genitalium WCM

relied on the authors painstakingly compiling information

from over 900 publications in order to parametrize the model

(despite purposefully choosing a fairly small organism for
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their proof-of-concept study) [31]. To enable development of

such complex biological models to become more mainstream

will require community-wide efforts to establish accepted

tools and standards for collating and annotating data from het-

erogeneous sources [66–68] as well as improved means of

harvesting existing literature and data sources [23,69]. New

experiments can expand the coverage of existing datasets and

ensure consistency in terms of experimental conditions [70],

as well as providing us with a better understanding of the

relationships between in vivo and in vitro parameter estimates

(these may differ by several orders of magnitude, thus in vitro
estimates can be misleading) [71].

At present, none of the statistical inference methods outlined

above are applicable at the scale of WCMs. However, smaller

subsystems, such as individual pathways, regulatory motifs,

receptor complexes or systems comprising small sets of meta-

bolic reactions and the associated regulatory processes can be

effectively parametrized using such methods [72]. For such

systems, we can often estimate parameters, including uncer-

tainty; and we are frequently able to assess parameter

sensitivity (typically measured as the change in some model

output, e.g. predicted protein abundance, in response to varying

a single parameter). In some cases, experimental measurements

of species concentrations may allow us to effectively decompose

our models into smaller modules for efficient parameter esti-

mation [73]. Bayesian inference methods in particular are

limited in terms of scale and are generally only feasible for

models with up to tens to hundreds of species and parameters

[74,75]. Some optimization approaches are much more scalable

though, with recent advances allowing parametrization of ODE

models comprising hundreds to thousands of species and par-

ameters [65,76,77]. As always, however, the chance of being

trapped in local optima is high for such large-dimensional

problems.

A combination of both inference and experimental esti-

mation will probably be needed to parametrize complex

biological models. It is currently impractical to use inference

techniques within the context of a full WCM, unless consider-

ing very small pre-defined subsets of the parameters and, even

then, the computational costs are enormous [67]. We can, how-

ever, make use of scalable inference techniques [78] to help us

parametrize the component submodels, using experimental

information where available as prior knowledge for the infer-

ence procedures. This will allow us to avoid some of the

potential pitfalls outlined above of experimental estimates,

and generate parameter estimates that take into account—to

the best of our ability—the influences of cellular and system

context, and make use of the most appropriate in vivo datasets.

Crucially, rigorous statistical inference also enables us to

explore the relationships between model parameters and

start to understand and quantify the uncertainties inherent to

any mathematical model.
4. Model and parameter uncertainty
There are uncertainties in both the structure and parameters

associated with any mathematical model of a biological

system. We often do not know the exact components and inter-

actions that make up a given subcellular system (such as

signalling or metabolic pathways) and, in particular, the

crosstalk that occurs between such pathways. We necessarily

use abstract and simplified mathematical representations of
the dynamics, and frequently rely on phenomenological

models, rather than modelling the fundamental physical and

chemical processes that occur in the cell. For example, when

modelling enzymatic reactions or gene regulation at a large

scale, we often rely on Michaelis–Menten kinetics—even

when the assumptions behind this modelling formalism do

not hold (e.g. assumptions of irreversibility and time-scale

separations)—or Hill kinetics, the latter of which has no estab-

lished mechanistic interpretation [79,80]. Even when we

attempt to include molecular details of the complete system

(such as in a WCM) we are still forced to ignore many of

the true complexities of the processes occurring, e.g. post-

translational modifications or complex regulation of enzymatic

reactions, as it is simply infeasible to represent these in such a

large model.
4.1. Structural uncertainty
The structural and mechanistic assumptions inherent to our

chosen model will influence the conclusions and predictions

we draw. While uncertainties in parameter values are gener-

ally acknowledged and explored to some extent, structural

uncertainty—the inherent ambiguity as to the ‘correct’ (least

wrong) structure of the mathematical model—is often over-

looked. However, there are methods we can use to explore

how our choices about model definition—in terms of the

system components we include, and the way we represent

these mathematically—may be influencing our conclusions.

Model selection methods enable us to compare several pro-

posed models (which correspond to our different hypotheses

about a system) and determine which are best supported by

the available data. Depending on the nature of the set of

models, there are a range of methods available to rank

our models within both frequentist or Bayesian inference

frameworks—e.g. likelihood ratio tests, Akaike’s (orother) infor-

mation criterion, Bayes factors, or estimation of the marginal

likelihood (the denominator in equation (3.4)) [81]. We can

either choose to select the best-ranked model for our analyses,

or use model averaging techniques to generate conclusions from

a pool of models, with their relative contributions weighted

according to how well they fit the observed data [82,83].

Increasingly, there are techniques that enable us to consider

a collection of good models when making predictions or draw-

ing conclusions. Particularly when working with data-driven

models (i.e. inferred network structures consistent with the

data), we can consider the model structure within a probabilis-

tic framework, rather than assuming a fixed model structure

before making predictions [84,85]. We can explore the robust-
ness of our model predictions—whether the conclusions we

draw are consistent across a set of good models, or whether

they rely on one specific set of model assumptions [86,87]; in

the latter case, we may want to be wary of such conclusions

if we cannot be confident in the validity of those assumptions.

Ensemble modelling approaches—which analyse the behaviour

of a population of distinct models—have been central to the

success of model predictions in other fields, e.g. climate fore-

casting, by allowing us to understand and quantify the

uncertainties in our conclusions [88]; such methods are starting

to be applied to biological models [42,89–91]. In situations

where we cannot be sure of the best choice of model (even

when using model selection techniques) and many scenarios

are consistent with the available data, it is crucial to understand

how much our assumptions may be influencing our results.
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Although such techniques are not currently feasible to

apply to WCMs, we should make sure that we consider these

issues when constructing the constituent submodels, and

when deciding what components we should include in our

system, and how we represent these mathematically. It

should be clear, however, that any WCM, no matter how

carefully it has been constructed, will be subject to considera-

ble structural uncertainty. That also means that there will be

a potentially large number of model modifications and alterna-

tive models that will be equally capable of describing available

data; and make essentially indistinguishable predictions about

the system behaviour in many cases.
0 5 10
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Figure 2. Parameter inference. (a) The precision with which the parameters/
rate constants of dynamical systems can be inferred varies greatly. For some
parameters, it is possible to estimate them with low levels of uncertainty
given present information, whereas others are very hard to estimate; for
the flattest cost-function/likelihood surfaces/posterior distributions the varia-
bility overwhelms the mean; here even experimental measurements may be
subject to unacceptably high levels of uncertainty. A flip-side of this is that
the parameters which are hard to infer are also those that affect the system’s
behaviour least. (b) Instead of looking at the distributions over parameter
estimates for individual parameters (e.g. u1 and u2) we should consider
their joint distributions (again, we can characterize the behaviour of, for
example, likelihood and posteriors similarly). These joint distributions also
provide an opportunity to study the robustness of the WCM behaviour.

.Soc.Interface
14:20170237
4.2. Parameter uncertainty
Regardless of how we estimate our parameters—whether

through experimental determination or statistical inference—

there will be some degree of uncertainty in the resulting

values. In all cases, it is important to quantify the level of this

uncertainty and, ideally, consider the relationships between

model parameters, as well as determining to what extent

these uncertainties influence our conclusions.

For experimental estimates, we face the difficulties dis-

cussed earlier in terms of how to best approximate the true

cellular environment when carrying out measurements;

there will be uncertainties in the methods we use for quanti-

fication; and of course many sources of environmental and

cellular heterogeneity, only some of which we can control.

With inferred parameter estimates, we again rely on observed

experimental data (with their associated uncertainties) but

also need to consider the limitations of the specific inference

method we use. Particularly as models get larger, we are also

likely to face issues around identifiability [42,77,92]. Struc-
tural identifiability is a property of the model structure and

considers whether this allows us to uniquely determine the

parameter values from system observations (assuming ideal

conditions and data). This is a prerequisite for practical iden-
tifiability, which is dependent on the data available and

whether these are sufficient to allow parameter determi-

nation (i.e. this reflects the information content of the data).

Assessing these properties can help us modify our model

structure and/or experimental design to deal with lack of

identifiability [50,93].

For models parametrized with point estimates (single

values for each model parameter), we can use sensitivity ana-

lyses to explore the impact of uncertainty in those estimated

values. Sensitivity analysis determines how uncertainties in a

model’s inputs (e.g. parameter values or initial conditions) con-

tribute to uncertainty in the output of the model (e.g. simulated

dynamics) [58,94,95]. To perform a parametric sensitivity

analysis, we perturb a single parameter—or better, combi-

nations of parameters—and test how much this affects our

model output, e.g. simulations of system dynamics. This

allows us to quantify (to some extent) how the uncertainties

and potential errors in our parameter estimates might propa-

gate through our modelling analysis. Ideally, if we have

assigned confidence intervals to our parameters (e.g. by esti-

mating the potential magnitude of errors in our experimental

measurements, or inferring confidence intervals along with

point estimates in a frequentist framework) we can test the

influence of perturbations of these magnitudes. The simplest

methods—perturbing each parameter in turn—ignore poten-

tial dependencies between parameters, yet these may be
strongly correlated, so ideally we should explore the multi-

dimensional parameter space in more detail using global

rather than local sensitivity analyses. However, this is of

course computationally very demanding, particularly as

models increase in size and complexity, and stochasticity

becomes important.

Bayesian inference methods provide us with far more

information as they allow us to infer the full, joint posterior

probability distribution for the model parameters. This not

only gives us details about the uncertainties in single parameters

(from the shapes of the marginal probability distributions),

but also allows us to see the full dependencies between different

model parameters—allowing us to, for example, detect groups

of parameters that can vary in coordinated ways while still pro-

viding a good match between model simulations and observed

data (figure 2). The joint posterior distribution therefore pro-

vides a comprehensive assessment of the uncertainties in our

inferred parameter values (albeit these are, of course, like any

parameter estimates dependent on the structural assumptions

made in our model). To understand how these uncertainties



M1 M2 M3 M4 M5 Mk MNMN–2 MN–1... ...

...

dataset 1 + + + + + + + +–

dataset N – + + + + + +– –

dataset 2 + + + + + +– – –
dataset 3 + + + + + + +– –

...

models

Figure 3. Model selection and model checking: owing to structural as well as
more general uncertainty, there will typically be many alternative models that
can describe the same behaviour. To test which of these (structurally differ-
ent) candidate WCMs, M1, M2, . . ., MN, best describes reality, we cannot
merely rely on available data. Instead we will typically only be able to dis-
tinguish between such candidates when using data from carefully designed,
discriminatory experiments. Owing to the complexity of the problem—the
number of potential plausible models probably vastly exceeds our financial
and material resources to test them—we may expect that several models
could agree with all of the available test datasets.
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influence our conclusions, we can sample probable point esti-

mates from the posterior distribution and compare the results

obtained from our model using these different combinations

of parameters—i.e. generate posterior predictive distributions.

The M. genitalium WCM was parametrized using exper-

imentally derived point estimates [31]. These are of course

subject to uncertainties to various degrees—and, during

model refinement, several parameters needed to be updated

in order to reduce discrepancies between model simulations

and data observations. However, with such a complex model,

we expect there to be strong dependencies between model par-

ameters, so the refined estimates will always be conditional on

the fixed values assumed for all other model parameters (which

are of course also subject to uncertainty). Modern sensitivity

and robustness analysis methods (e.g. [96,97]) may come to

the rescue here and allow us to assess and mitigate parametric

uncertainty even for models with many parameters.

Bayesian methods, while providing the richest information,

are generally only feasible to apply to relatively small-scale

models (e.g. tens to hundreds of species and parameters) due

to the computational demands of these methods. Similarly,

methods to assess identifiability of models and to characterize

the impact of parameter uncertainties tend to be limited to

similar size models, although some more recent developments

can deal with slightly larger scale models of a few hundred

parameters [92,98]. Of course, such methods are currently

not compatible with the size and complex hybrid nature of

WCMs. However, using these approaches to quantify para-

metric uncertainty in smaller scale constituent submodels,

and assessing the impact that this has on our model con-

clusions, will allow us to be more confident in the quality of

the WCM components.

Overall, a host of recent analyses have shown that from an

estimation/inverse problem perspective it is important to

focus on the joint distributions over parameters, which

cannot be fully understood by looking at the uncertainties

associated with individual parameters. If we have two par-

ameters, u1 and u2, with high uncertainties (whether this is

expressed by broad marginal posteriors, flat likelihoods, flat

profile-likelihoods, or some other flat cost function), once

one of them, e.g. u1, is known we may already have a very

good idea as to what the value of u2 is going to be. Such con-

ditional certainty in the presence of otherwise considerable

(marginal) uncertainty appears to be a hallmark of many

dynamical, including stochastic, systems [96,99].

In this context, the notion of sloppy models has gained some

notoriety/prominence [100]. But statistical inference provides a

natural framework in which such issues can be resolved

straightforwardly: issues such as sloppiness and identifiability

notwithstanding, the sets of parameters that affect system

behaviour profoundly will be inferred relatively easily

[101,102]. By contrast, parameters that are hard to infer exert

less influence on the system’s dynamics. A crucial question in

this context is how many parameters fall into the two cat-

egories, of inferable and non-inferable parameters. For small

systems (up to 60 parameters) typically one-third of the par-

ameters are inferable using conventional likelihood criteria,

and they suffice to understand and model the system dynamics

[58]. Exploring such high-dimensional and complex posteriors

is challenging, especially when visual inspection becomes

unfeasible or at least problematic. Principal component analy-

sis on posterior samples [63], or use of the Fisher information

matrix [96,99]—which quantifies uncertainty in parameter
estimates—offer potential routes, e.g. to identify those par-

ameters that exert the greatest influence on system dynamics.

Two caveats are in order at this stage: (i) stitching differ-

ent smaller and well-parametrized models together to form a

single integrated model is likely to introduce complicated

correlation structures among the set of parameters in the

model which deserve closer attention and (ii) the parameters

of an incorrect model may be inferred with relative precision.

It is therefore important to consider both structural and para-

metric uncertainty in every biological modelling study.

Scaling such approaches up to WCMs will be a technical

challenge and require the development of suitable approxi-

mations, or potentially emulation or surrogate modelling

approaches [28,103,104].
5. Model improvement and validation
Mathematical models represent our best current understand-

ing and representation of the true biological systems. We

should aim to continually refine and improve them as new

data become available and we gain knowledge about the

underlying systems. Model selection methods, outlined

above, allow us to propose several alternative mechanistic rep-

resentations and select those that are best supported by the

available experimental data [81,82]. There are also experimental
design approaches that aim to identify the most informative

experiments to perform in order to improve our models and

distinguish between different hypotheses or reduce uncer-

tainty in parameter estimates (figure 3) [50–53,105]. Iterative

cycles of model prediction, experimental data collection and

model refinement enable us to gradually improve models—

using well-targeted experiments—and gain mechanistic

insight into a given system [53,75,93].

Again, such methods are currently not extendable to the

scale and complexity of WCMs, but could—and should—be

used to rigorously test, improve and validate smaller subsec-

tions of the complete model. In fact, to refine some of the

parameter estimates in the M. genitalium WCM, reduced ver-

sions of the model were constructed in order to make it
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feasible to apply numerical optimization techniques [31,68].

This WCM was validated by comparing model predictions

to several independent experimental datasets, and sub-

sequently used to predict the response of the bacterium to

various perturbations (in the form of single-gene mutations)

[31,33]. Comparing model predictions to experimental data

from various mutant strains identified several discrepancies,

which could then be explored in more detail to identify

aspects of the model—in this case parameter values—that

required updating (and were later shown to be consistent

with new experimental measurements).

Despite these successes, these improvements and refine-

ments to the model are fairly ad hoc. For the development of

large-scale, hybrid models to become more established and

reliable, we need to develop more systematic and automated

ways to test and refine these models, particularly when

attempting to extend WCMs to more complex organisms and

cells [68,106,107]. At present, we cannot identify how much

we should trust different aspects of such models, which parts

of the model require improvement, and how uncertainties

and errors in the model structure and parameters (which are,

to some extent at least, inevitable) may be influencing any

conclusions drawn from the model.
6. Conclusion and outlook
The first comprehensive WCM is an impressive demonstration

of how to successfully integrate many large and diverse sub-

models, and heterogeneous experimental data, into a single

cohesive modelling framework. It demonstrates the feasibility,

and potential utility, of developing far more complex and intri-

cate models than are currently widely used in systems, cell and

molecular biology. However, we need to be aware of the limit-

ations and uncertainties associated with such models,

particularly given that many of our established techniques

for developing, validating and refining mathematical models

simply cannot be applied at these scales.

Extensive analyses of smaller scale models have repeatedly

demonstrated that uncertainties in both model structure and

parameters are prevalent. Often, numerous models will be

able to fit the observed data—even when dealing with very
small systems—yet the predictions and conclusions we

would draw from these models can differ substantially.

Methods for constructing, parametrizing, refining and quanti-

fying uncertainties in models are steadily becoming more

scalable. They still, however, fall far short of being applicable

at the scale of WCMs, but can be used to rigorously analyse

and test the constituent parts that are included in such

models. This will not overcome our lack of knowledge about

uncertainties within the complete model, but at least can con-

tribute to improving the quality of, and assessing the validity

of the assumptions underlying the component submodels.

We should not overlook the roles that models at different

levels of abstraction and complexity can play in advancing

our understanding of biological systems. Despite the fact

that WCMs attempt to represent all cellular components

and processes, they still rely on simplified representations

of the true processes, and are necessarily biased towards

our current understanding. Of course, in some cases, we

will need to consider the cellular context and larger system

that a biological process is embedded in, in order to explain

our observations. However, smaller models that are amen-

able to the diverse and powerful array of modelling

techniques available are much better suited to provide us

with detailed mechanistic insight. Using these tools, we can

rigorously explore and compare potential hypotheses, quan-

tify the uncertainties associated with our model inputs and

outputs, and improve our understanding of complex bio-

chemical processes and regulatory mechanisms occurring

within a cell. Without a thorough assessment of our (un)cer-

tainty regarding their fundamental dynamical determinants,

WCMs would risk representing little more than sophisticated

databases that offer few computational advantages compared

with models that are slightly less complex but more amenable

to existing statistical and computational tools.
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