
rsif.royalsocietypublishing.org
Research
Cite this article: Buceta J. 2017 Finite cell-

size effects on protein variability in Turing

patterned tissues. J. R. Soc. Interface 14:

20170316.

http://dx.doi.org/10.1098/rsif.2017.0316
Received: 2 May 2017

Accepted: 2 August 2017
Subject Category:
Life Sciences – Physics interface

Subject Areas:
biocomplexity, biophysics

Keywords:
patterning, noise, Turing, tissue, development
Author for correspondence:
Javier Buceta

e-mail: jbuceta@gmail.com
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.3852112.
& 2017 The Author(s) Published by the Royal Society. All rights reserved.
Finite cell-size effects on protein
variability in Turing patterned tissues

Javier Buceta1,2

1Department of Bioengineering, and 2Department of Chemical and Biomolecular Engineering, Lehigh University,
Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015, USA

JB, 0000-0003-1791-0011

Herein we present a framework to characterize different sources of protein

expression variability in Turing patterned tissues. In this context, we introduce

the concept of granular noise to account for the unavoidable fluctuations due

to finite cell-size effects and show that the nearest-neighbours autocorrelation

function provides the means to measure it. To test our findings, we perform

in silico experiments of growing tissues driven by a generic activator–inhibitor

dynamics. Our results show that the relative importance of different sources

of noise depends on the ratio between the characteristic size of cells and that

of the pattern domains and on the ratio between the pattern amplitude

and the effective intensity of the biochemical fluctuations. Importantly, our

framework provides the tools to measure and distinguish different stochastic

contributions during patterning: granularity versus biochemical noise.

In addition, our analysis identifies the protein species that buffer the stochas-

ticity the best and, consequently, it can help to determine key instructive

signals in systems driven by a Turing instability. Altogether, we expect our

study to be relevant in developmental processes leading to the formation of

periodic patterns in tissues.
1. Introduction
Tissue patterning sets the developmental roadmap that provides positional

information to cells and confers their unique identities [1–4]. Thus, as a

response to distinct protein expression levels in a primordium, cells commit

to different fates, may undergo apoptosis, increase/decrease the proliferation

rate, or change their division mode to ultimately put into action the develop-

mental plan that shapes the organism. As for the mechanisms of pattern

formation, short-range signalling elicits local responses that may propagate in

the tissue, e.g. Notch–Delta interactions leading to lateral inhibition/induction

[5,6]. On the other hand, long-range signalling driven by diffusive molecules,

morphogens, enables positional information to cells at a larger, tissue-level

scale and induces pattern formation by following either the French flag

model or other mechanisms [4,7]. In particular, Alan Turing proposed a

long-range patterning mechanism where interacting species (activators and

inhibitors) with different diffusive properties lead to periodic protein

expression profiles [8,9]. Turing’s proposal meant a breakthrough in mathemat-

ical biology; however, besides its success in explaining animal coating [9–11],

its relevance in the field of development remained elusive for many years.

Notably, during the last decade a number of developmental structures have

been found to be shaped by this mechanism [12–14].

The characteristic size of the domains patterned by diffusive processes is con-

trolled by the physical constraints set by the size of morphogen molecules, their

production and degradation rates, and the time scales associated with exocytosis

and endocytosis among other factors [15,16]. As a result, the reported ratio

between the size of patterned domains and that of cells is typically of the

order of O(101) [12,14]. Moreover, cell growth leads to size doubling that leads

to perturbations of this ratio by around 20%. These facts raise the intriguing ques-

tion of how cells deal with aliasing-like effects. By ‘aliasing-like effects’, we mean
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Figure 1. (a) In a patterning situation, the finite cell size, V, sets a characteristic protein concentration variability for species Z between neighbouring cells, Dz, that
accounts for the analogue-to-digital conversion of the continuous concentration levels: the so-called granular noise. The biochemical fluctuations at the single-cell
level (grey line) additionally contribute to the concentration variability by an amount sz. Finally, patterning itself implies protein differences of order dz ( pattern
amplitude) at length scales of the order of the pattern wavelength, l. (b) In a periodic pattern, the nearest-neighbours autocorrelation function, Gz, characterizes the
variability at the single-cell level (blue line) by filtering out global patterning effects and allows us to differentiate between the background level due to granularity
(brown line/shaded area) and the effective contribution of biochemical fluctuations (green shaded area).
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the consequences in terms of protein variability derived from

the sampling process since, as illustrated in figure 1, cells

must perform an analogue-to-digital conversion of the, other-

wise idealized, continuous periodic pattern into a discretized

version due to finite cell-size effects. Here we coin the term

granular noise to describe such variability. We point out that

the granular effect relies on the hypothesis that proteins are

well mixed at the single-cell level and, hence, cells cannot

‘sample’ protein numbers with a subcellular resolution. This

hypothesis is sustained by the fact that patterning depends

ultimately on morphogens that are driven by a homogenizing

transport mechanism: diffusion.

During the last decade, much progress has been attained

in the field of noise in gene expression at the single-cell level

[17–26]. On the other hand, a number of studies have pointed

out the ordering role of fluctuations in spatially extended

systems [27–34]. In the context of developmental processes,

the role played by cell-to-cell variability, modelled as bio-

chemical noise, in morphogen patterned systems to produce

robust and precise positional information has been explored

[35]. Also, the effects of embryo size variability, the inter-

actions that help to attenuate the associated noise and

the scaling properties of positional information in growing

tissues have been recently addressed [36,37].

However, the identification, the characterization and the

function of different sources of variability at the collective

tissue level within a biological context remain barely explored

[38–41]. Notably, to the best of our knowledge, granularity

effects have been neglected altogether. Moreover, so far there

are no tools that allow us to distinguish among different

stochastic contributions, i.e. to measure independently the

variability arising from biochemical noise and that from the,

unavoidable, granularity. Major difficulties in performing

such analysis include the competing effects of various sources

of variability at different spatio-temporal scales, the dynamical

character of growing tissues and the role played by cell com-

munication that effectively propagates noise in the local

cellular environment. Here, we address these questions and

present a framework to study gene expression variability,

and differentiate among various contributions, in Turing-like
patterned tissues (i.e. patterns showing a periodic motif). To

that end, we introduce a formalism based on the autocorrela-

tion function that can be easily implemented when

processing experimental data. We illustrate our findings by

means of a generic activator–inhibitor system and perform

realistic numerical simulations of growing tissues using a

vertex-model approach that includes mechanical interactions

between cells, cell-cycle variability, binomial partition of mol-

ecules between daughter cells following division and

biochemical noise. Our results confirm that the autocorrela-

tion function is a robust method to compute the granular

noise and to estimate also the levels of biochemical fluctu-

ations. The applicability of our methodology to specific

developmental processes patterned by the Turing instability

is straightforward and we provide simple guidelines to

assess and quantify the importance of granularity versus

other protein variability sources.
2. Results
As for the various contributions to cell-to-cell variability,

finite cell-size effects in protein variability are relevant at

length scales of the order of V (cell’s size) and set protein con-

centrations quanta: a characteristic protein concentration

difference between neighbouring cells that results in a discon-

tinuous protein concentration profile (figure 1). In addition,

at the single-cell level, the effects of the biochemical noise

further contribute to increasing the variability by a factor sz

(the effective intensity of the biochemical fluctuations).

Finally, patterning leads to protein concentration differences

of order dz (pattern’s amplitude) over length scales of order

l (pattern’s wavelength).

To filter out the influence of the global patterning on the

concentration variability from our analyses, we make use of

the nearest-neighbours autocorrelation function

Gz ¼ 1� k(znþ1 � kznl)(zn � kznl)l
k(zn � kznl)2l

, ð2:1Þ



Table 1. Glossary of relevant symbols.

symbol meaning

z concentration of species Z

n cell index

sz effective intensity of the biochemical fluctuations

of species Z

z0 average protein concentration of species Z

dz average amplitude of the pattern of species Z

l ¼ q�

2p wavelength of the pattern

V average cell diameter

sV standard deviation of the average cell diameter
s2

z

Vd2
z

noise-to-signal ratio of protein species Z

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170316

3
where zn stands for the protein concentration levels of species

Z at cell n and the average, k†l, is performed over cells (see

below for considerations about time averaging). By estimat-

ing the concentration differences between neighbouring

cells, Gz effectively measures the mutual information in the

local cellular environment. Note that Gz also provides an

(indirect) estimation of the value of the protein quanta,

Dz ¼ [k(znþ1 2 zn)2l]1/2/kznl.
Note that if there is no biochemical noise, either in the

case of constant functions (no patterning) or in the case that

there is patterning but it is a continuous solution, V! 0,

then znþ1� zn and consequently Gz � 0 (maximal simila-

rity in the local cellular environment). On the other hand,

when biochemical fluctuations are dominant, zn behaves

as a spatial white noise, kznzml � dnm/V (dnm being the

Kronecker delta) and Gz � 1 (minimal similarity among

neighbouring cells).

If further sampling over configurations, i.e. noise realiz-

ations, is needed (see below) then k†l accounts for a time

average too. Ideally, the sampling frequency for time

averages must be smaller than the typical protein turnover

rate (to ensure that the pattern has reached stationary

conditions) but larger than the characteristic frequency for

pattern remodelling (to render enough statistics). Alterna-

tively, if the focus of the study is to characterize the

non-equilibrium fluctuations during the process of pattern

formation, the analysis should be performed using a

sampling frequency larger than the typical protein turnover

rate. As for pattern remodelling, as the size of the tissue

increases due to cellular growth more of the pattern’s

domains, i.e. wavelengths, can fit into the size-increasing pri-

mordium, thus leading to rearrangements (see the electronic

supplementary material, movies S1–S4). Assuming exponen-

tial growth conditions, remodelling occurs at a rate � (tlog(l/

V))21 : t being the average cell-cycle duration. Notably, pattern

remodelling relies on the ability of cells to change their

expression profile depending on their local environment as

experimentally reported [14].

To separate the effects arising from different sources, we

analyse first the case when the biochemical noise is negligible

and show that we can provide an accurate theoretical

estimation of the background granularity and its confidence

bounds. If a periodic pattern develops, then zn can be

approximated as zn ¼ z0 þ dzcos (q*nV) along, at least, one

of the symmetry axes, where z0 is the average protein concen-

tration and q* ¼ 2p/l is the most unstable Fourier mode.

Under these conditions, Gz can be estimated (see Material

and methods)

Gz ≃ 1� cos (q�V) + sVq�j sin (q�V)j, ð2:2Þ

where V is the characteristic mean cell size and sV is its stan-

dard deviation. The error band of Gz sets the confidence

bounds of the theoretical prediction and helps to (i) spot

pattern misalignment with sampling boxes and (ii) assess if

granularity is the dominant source of protein variability.

Expression (2.2) determines the, unavoidable, background

variability among cells in a local environment due to finite-

size effects: the so-called granular noise. Note that this

expression is independent of the expression levels of protein

species and just depends on geometrical constraints: the

ratio between the pattern wavelength and the cell size. Impor-

tantly, these quantities, together with sV, can be characterized

and, consequently, one can compute the basal value of the
autocorrelation in the absence of biochemical noise, Gzjs2
z¼ 0.

As shown below, the relative difference of the estimated auto-

correlation, Gzjs2
z¼ 0, from its actual, measured, value in the

presence of noise, Gzjs2
z
=0, allows us to distinguish between

stochastic sources of protein variability.

In regards of the protein variability due to the bio-

chemical noise, in reaction–diffusion systems the effective
magnitude of the fluctuations depends on the regulatory

interactions between species, which can either enhance or

damp out the noise, and on the diffusive process, which pro-

pagates the noise among cells in their local environment and

also contributes to average out the fluctuations. We consider

that the overall effect of this source of noise can be described

as a random additive contribution, hz
n, to the protein con-

centration: zn ¼ z0 þ dzcos(q*nV) þ hz
n. Thus, we expect the

fluctuations to be more relevant at locations where

cos(q*nV) ≃ 0 and the ratio between the noise and the pattern

solution is maximal: the domain boundaries of the pattern. If

there is enough statistics then either spatial or time averages,

assuming ergodicity, sample the pattern configuration space

(noise realizations): kF(zn)l ¼ (1=N)
P

n

Ð
R

F(zn)r(zn) dzn. In

that case (see Material and methods)

Gz ¼ 1� cos (q�V)

1þ s2
z=Vd2

z

: ð2:3Þ

Consequently, the noise-to-signal ratio can be written as

s2
z

Vd2
z

¼
(Gzjs2

z=0 � Gzjs2
z¼0)

1� Gzjs2
z=0

, ð2:4Þ

where Gzjs2
z¼ 0 is the background granular noise, which can

be estimated by measuring l and V by using equation

(2.2), and Gzjs2
z
=0 is the actual nearest-neighbour autocorre-

lation measured in the presence of biochemical noise using

equation (2.1). Table 1 summarizes the most relevant par-

ameters defined in our analysis to estimate the granular

noise and measure the effective value of the biochemical

fluctuations.

To test and illustrate our findings, we perform computer

simulations of growing tissues driven by a generic activator–

inhibitor protein dynamics (see Material and methods).

Figure 2 shows the regulatory interactions between species

and the region where a Turing instability develops and

patterns the growing tissue. We stress that the formalism
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Figure 2. (a) In our simulations, we use a generic activator – inhibitor protein interaction scheme as a model system. In a tissue, a cell’s morphogen species U
(activator) and V (inhibitor), driven by opposing feedback loops and distinct diffusion rates, develop into a pattern solution at the tissue level. (b) The colour regions
in the plots indicate the patterning region as a function of the dimensionless parameters a (activation versus inhibition strength) and Dv (inhibitor’s diffusion
coefficient in units of that of the activator). The scales stand for the size of pattern domains in units of the cell size (i) and for the ratio between the amplitude
of the pattern of species U and its average concentration u0 (ii). We perform computer simulations of a developing tissue using a vertex model approach using the
following parameters: (a, Dv) ¼ (0.2, 40), a large ratio of the pattern domain size versus cell size, around 11, and a pattern amplitude with respect to the average
levels of around 11% (white circle); and (a, Dv) ¼ (0.9, 9), a small ratio for the pattern domain size versus cell size, around 6, and a global pattern variability
of around 25% (black circle).
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introduced herein does not depend on the specific details of

the model (e.g. the number of species or the functional

form of the equations) but simply on the existence of a pat-

terning solution with a well-defined periodicity regardless

of the mechanism. We simulate the regulatory interactions,

the cell’s biomechanics and growth/division effects (includ-

ing a binomial redistribution of proteins between daughter

cells following a division) by means of a vertex model

approach (see Material and methods). We consider parameter

sets with (i) distinct aspect ratios between the pattern domain

size and the cell size and (ii) different pattern amplitudes

(figure 2b).

In order to assess whether our theoretical estimation of

Gzjs2
z¼ 0 captures correctly the background granularity, we

first performed numerical simulations of the growing tissue

in the absence of biochemical fluctuations. Figure 3 shows

snapshots of the growing, patterned tissue for different V/

l ratios (see the electronic supplementary material, movies

S1 and S3). To quantify Gz using equation (2.1), we sampled

the tissue at regular time intervals (approx. 40 frames per cell

cycle). We show the importance of sampling the periodicity

of the patterned solution correctly by sampling cells

from the tissue along perpendicular, fixed stripes with a

large aspect ratio: approximately one cell diameter width

and whole-tissue length (figure 3b). Note that in the case

of stripe-like patterns it is possible to find a large degree of

alignment of the pattern with a sampling box (thus masking

the pattern periodicity). In our analysis, the cell’s character-

istic diameter is estimated as the square root of the apical

area of the sampled cells.

As shown in figure 3, the quantification of the back-

ground granular noise is in agreement with the theoretical

estimation, equation (2.2). As expected, finite cell-size effects

are more pronounced as the ratio V/l increases, that is, as the

ratio of the pattern wavelength to the cell size decreases. Note

also that the granular noise has an extrinsic character [19]
since, as predicted, it affects all protein species equally and

independently of their expression levels, i.e. Gu ≃ Gv. Thus,

in a periodic patterning situation, if the pattern wavelength

and the characteristic cell size are determined, then equation

(2.2) accounts for the variability in protein concentration due

to finite cell-size effects and allows us to distinguish among

different noisy sources as shown below.

In order to explore the competing effects between granu-

lar noise and intrinsic/extrinsic fluctuations, we implement a

stochastic dynamics for proteins U and V and study different

noise-to-signal ratios (see Material and methods). Figure 4

shows the quantification of Gzjs2
z=0 as measured by equation

(2.1), the theoretical estimations of Gzjs2
z¼ 0, the noise-to-

signal ratio, and the patterning domains of U and V (see

the electronic supplementary material, movies S2 and S4).

As the levels of Gz indicate, the protein concentration profiles

of the activator (slow-diffusive) species, U, are noisier than

those of V and these stochastic effects are specially relevant

at the domain boundaries. In addition, the effects due to fluc-

tuations are more significant as the background granular

noise decreases. These results reveal that the noise-to-signal

ratio is dominant in (i) slow versus fast diffusing protein

species, because noise averages out more easily in the

second case, (ii) low versus high background granular noise

situations, because otherwise the latter prevails, and (iii) acti-

vator versus inhibitor species, because the positive auto-

regulation of the former contributes to amplify the noise.

Note also that Gz deviates from the extrinsic behaviour as

predicted by equation (2.3).
3. Discussion
We have shown that by using the nearest-neighbours auto-

correlation function the variability due to global patterning

effects can be filtered out. Such variability of order dz can
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be estimated by Fourier analysis (amplitude of the most

unstable mode). Aliasing effects and biochemical noisy

contributions (intrinsic and/or extrinsic fluctuations) can be

separated and determined by means of Gz when combining

theoretical expressions and measurements. As for the appli-

cability of our approach, experimental results have revealed

that the ratio l/V, pattern wavelength versus cell size, can

be small and patterning domains may comprise around

8–10 cells [12–14]. Thus, we predict that the granular noise

contributes significantly to protein variability. In the particu-

lar case of the limb bud, recent results have shown that this

primordium is patterned by a Turing instability resulting

from the interactions between two morphogens, Bmp and

Wnt, and the skeletal marker Sox9 [14]. A quick assessment

indicates that l � 10V and consequently the background

granularity is of the order of around 20%. Evidence support-

ing the buffer effect of diffusion over the fluctuations can also

be found in the limb bud. Both morphogens, Bmp and Wnt,
lack a self-regulatory motif that in turn helps to damp the

biochemical fluctuations, as shown in our simulations (see

below for further considerations about the instructive role
of inhibitors in Turing systems). However, the values of the

diffusion coefficients satisfy that DBmp� DWnt and one

would expect, according to our analysis, that Wnt has a

noiser profile than Bmp. The experimentally reported profiles

of these species during limb bud patterning [14] seem to be in

agreement with this prediction.

Importantly, we have presented our results using a meth-

odology that is feasible in experimental situations. In

particular, since the dimensionality of the pattern is not rel-

evant for estimating these effects, by determining the pattern

wavelength and by sampling the size and protein expression

levels for (i) a few cells, �O(102), along a direction that

captures the best the pattern periodicity and (ii) a small

number of time points in the tissue dynamics, �O(101),

then the background granularity and the biochemical noise

can be specified. Further sampling can provide better,

more accurate results but the fact that the method works

with a limited statistics reveals its robustness. We acknowl-

edge that the experimental quantification of protein

concentrations at the single-cell level requires an accurate

calibration of the fluorescence intensity [42]. However,
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we stress that the background granularity levels, as pre-

scribed by the theoretical expression equation (2.2), are

independent of the protein levels. Thus, as long as the fluor-

escence levels of protein species are normalized, our method

provides a way to compute the relative noise-to-signal ratio

and weight the importance of biochemical noise with respect

to granularity.

The proposed method relies on several assumptions that

are worth commenting on. First, we have assumed that a

pattern with a well-defined wavelength develops. In any

particular patterning situation, a Fourier analysis on the

protein profile, as obtained, for example, by fluorescence

microscopy, will reveal the validity of this assumption. We

point out that, even if several Fourier modes are relevant,

the methodology remains valid. However, the analytical

expressions to estimate the background granularity, equation

(2.2), and the noise-to-signal ratio, equation (2.4), would need

revision. In any case, if the pattern solution is a collection of

waves then the calculations can be carried out easily (Material

and methods). Second, we have assumed that, besides the

pattern’s rearrangement dynamics due to cell growth, station-

ary conditions apply. In this regard, we notice that if the

amplitude of the pattern is modulated in time then our

results still hold. However, we stress that time averaging

must be done carefully to ensure that the pattern configur-

ation space is properly sampled. Third, we have considered
that the overall effect of the biochemical fluctuations renders

a Gaussian-like, white behaviour that is independent of the

value of the pattern amplitude. This approximation is motiv-

ated by the central limit theorem [43] and makes it possible to

obtain analytical expressions for the noise-to-signal ratio.

However, it may raise questions about its fidelity since

other statistical properties for the noise are certainly possible

[21,41]. Yet, the background granular noise is independent of

the statistical properties of the noise since it merely depends

on the geometrical constraints of the problem (cell size and

pattern wavelength). Consequently, the difference between

the nearest-neighbours autocorrelation and the estimated

theoretical background granular noise still provides an esti-

mation of the levels of biochemical fluctuations.

As for additional implications of our study, our results

indicate that variability due to the biochemical noise is

larger for cells at domain boundaries, especially for activator

species. According to this, fate commitment, as a result of

patterning, would be more difficult for those cells. In

addition, boundary lines among cell populations would be

wiggly, thus suggesting that the formation of developmental

structures, e.g. the fingering pattern in the case of the limb

bud [14], could be challenged. However, the robustness

displayed by biological systems argues against these ideas.

This raises the intriguing question about the mechanisms

that are able to buffer noisy effects in tissue patterning. In
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this regard, we note that the level of variability is reduced in

inhibitor species (figure 4). The latter suggests a possible

instructive role for this species in fate decision-making (less

noisy). In addition, it may explain the recurrent feedback

found in developmental boundaries between patterning

and cell mechanical properties to refine compartmentaliza-

tion [44–49].

We expect our study to be relevant in developmental pro-

cesses leading to the formation of periodic patterns in tissues

when cell-to-cell variability needs to be characterized to, for

example, better understand fate decision-making. The exten-

sion of the proposed method to other patterning situations,

e.g. morphogen gradient profiles, or the implementation

of feedback between signalling and cell mechanics to

buffer the fluctuation effects are promising avenues of

research that can shed further light on the role of noise in

developmental patterning systems. Work in these directions

is in progress.
0170316
4. Material and methods
4.1. Tissue simulations
The tissue dynamics is implemented in our simulations using a

vertex model approach [50]. Each cell in the tissue is represented

by a discrete set of points: the vertexes that define its shape.

The energy associated with a vertex i reads

EiðtÞ ¼
X
a

Ka

2
ðAa �A0

aðtÞÞ
2 þ Ga

2
L2
a

� �
þ
X
kijl

Lijlij,

where the sums indexed by a and kijl run, respectively, over

the cells a and vertices j sharing vertex i. Aa � V2 is the cell

apical area, Ka is proportional to the Young modulus, Lij is a

line tension that weights the cell adhesion effects (lij being

the length of the edge connecting neighbouring vertices i
and j ), Ga is a term that accounts for the contraction effect of

the actomyosin cortical ring and La is the cell perimeter

(see [44] for details). The parameters used in our simula-

tions are (dimensionless): A0
a(0) ¼ 1, K ¼ 1, G ¼ 2 � 1022 and

L ¼ 1022. In addition we consider that in the tissue periphery

L ¼ 5 � 1022. The cell-cycle duration, t, is stochastic in our

simulations and follows the rule t ¼ 1tdet þ (1 2 1) tsto, where

tdet is a deterministic time scale that accounts for a mean cell-

cycle duration in the absence of mechanical stress and tsto is a

random variable that accounts for the variability of cell-cycle

duration, r(tsto) ¼ exp (� tsto=tdet)=tdet. The parameter 1 [ [0, 1]

weights the stochasticity of the cell-cycle duration. In our

simulations, 1 ¼ 0.8.

Cellular growth is implemented by prescribing the follow-

ing dynamics for the preferred apical cell area A0
a(t)

(dimensionless): cells start to grow their apical area linearly

(towards doubling) at the moment they reach the middle of

the cell-cycle progression [44]. With respect to the cleavage

orientation, the code evaluates the inertia tensor of the cell

with respect to its centre of mass assuming that a proper rep-

resentation of the former is a polygonal set of rods, i.e. the

cell edges. The principal inertia axes indicate the symmetry

axes of the cell: the longest axis of the cell is orthogonal to

the largest principal inertia axis. Cells divide following the

Hertwig rule: the cleavage plane is perpendicular to the longest

axis [51]. Cleavage is assumed to happen instantaneously. In

our in silico experiments, tissues are typically grown from

approximately 2.5 � 103 to approximately 1.2 � 104 cells

(approx. two cell cycles). Transients effects in the tissue

dynamics due to the initial conditions are eliminated from

our analysis by discarding data from the first cell cycle.
As for the protein dynamics, we assume each cell to be a

well-stirred system, where spatial effects can be disregarded.

Protein concentration values in each cell are obtained by integrat-

ing numerically the discretized model equations using an Euler

algorithm. We take into account cell growth (dilution effects) to

determine protein concentrations. Also, proteins are distributed

binomially between daughter cells as a consequence of a division

event. The morphogen diffusion process is mimicked by an out-

of-lattice, discretized Laplacian operator that conserves the

number of molecules [52],

r2Zi ¼ AiðtÞ
X
kjil

Lij

rij

Z j

A jðtÞ
� Zi

AiðtÞ

� �
,

where Zi stands for the number of proteins at cell i, Ai(t) is its

area, the sum runs over its nearest neighbours j, Lij is the

length of the membrane shared among cells and rij is the distance

between cell centres. This definition captures rigorously the dis-

cretization of the Laplacian operator as long as the well-mixed

hypothesis holds (see Introduction).

Biochemical noise effects in protein species Z at cell n and

time t, jz
n(t), are implemented by means of additive uncor-

related Gaussian fluctuations: kjz
n(t)l ¼ 0 and kjz

n(t)jz0
m(t0)l ¼

(s2
j/V)dnmdzz0d(t 2 t0), where s2

j is the intensity of the noise.

Our simulations explore the conditions sj , dz (black circle

in figure 1b) and sj � dz (white circle in figure 1b). We

do not consider the case sj . dz since it leads to unrealistic

fluctuation-controlled expression profiles in which patterning

does not play a key role. In all cases sj ¼ 1021. We point

out that the value of sj does not represent the effective
intensity of the fluctuations sz since the latter depends on the

regulatory interactions and on the morphogen diffusion pro-

cess. That is, jn are the input fluctuations with intensity sj

that we use to represent the biochemical noise at the single-

cell level in the simulations, and hn are the output fluctuations

with intensity sz that, as a result of the interactions and

diffusion, the proteins effectively experience and we register

using the autocorrelation method. The code for carrying

out the numerical simulations is provided as the electronic

supplementary material.
4.2. Analytical calculations
Given the expression of the autocorrelation function, equation

(2.2), and taking into account that kznþ1l ¼ kznl, then Gz can be

rewritten as

Gz ¼
kz2

nl� kznþ1znl
kz2

nl� kznl2
: ð4:1Þ

Thus, to characterize Gz the moments kznl, kz2
nl and kznþ1znl

need to be estimated. Given the functional form of the Turing

patterning solution, zn ¼ z0 þ dz cos(q*nV), and the following

identities (valid if N ¼ L/V� 1, L being the size of the tissue),

kcos(q*nV)l ≃ 0, k cos2 (q�nV)l ≃ 1=2 and kcos(q*nV)cos(q*(n þ
1)V)l ≃ cos(q*V)/2, those moments read

kznl ¼ 1

N

X
n
ðz0 þ dz cosðq�nVÞÞ ¼ z0, ð4:2Þ

kz2
nl ¼ 1

N

X
n
ðz0 þ dz cosðq�nVÞÞ2 ¼ z2

0 þ
d2

z

2
ð4:3Þ

and kznþ1znl¼ 1

N

X
n
ðz0 þ dz cosðq�nVÞÞðz0 þ dz cosðq�ðnþ 1ÞVÞÞ

¼ z2
0 þ

d2
z cosðq�VÞ

2
:

ð4:4Þ

Substituting the above expressions into equation (4.1), we

obtain Gz ¼ 1 2 cos(q*V). The confidence bounds for Gz are
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determined by the variation of the parameters q* and V. Yet,

Turing patterning tissues show a precise wavelength and the

main source of variability is the cell size, which may show vari-

ations up to 100% due to size doubling during cell-cycle

progression. Thus, given the standard deviation of the cell

size in the tissue, sV, the error propagates to Gz as+ j@Gz/

@VjsV ¼+sVq*jsin(q*V)j.
In the case where we assume a random perturbation, h, of the

patterning solution due to the biochemical noise, the functional

form of the protein concentration profile now reads

zn ¼ z0 þ dz cos (q�nV)þ hz
n: ð4:5Þ

By invoking the central limit theorem [43], here we imple-

ment a Gaussian approximation and assume that hz
n satisfies

the distribution

rðhz
nÞ ¼ N e�Vðh

z
nÞ

2=s2
z ,

where N is a normalization constant and s2
z/V is the effective

intensity of the biochemical noise of species Z. In addition,

we consider that the fluctuations are uncorrelated in space

and time: khnhml ¼ s2
z(dnm/2V)d(t 2 t0), where dij stands

for the Kronecker delta and d(s) for the Dirac delta. Note

that the cell size, V, is required in the definition of the noise

autocorrelation such that in the continuous limit the auto-

correlation satisfies a white noise character in space:

limV!0 (dnn0=V) ¼ d(x� x0). Formally, one may choose a defi-

nition of the noise intensity leaving out the cell size V and

integrating the latter in the correlation properties of the fluctu-

ations (i.e. in the delta function). Yet, herein we preferred

to explicitly include this dependence of the cell size effecti-

vely in the definition of the biochemical fluctuations. The

Gaussian approximation is valid as long as the intensity of

the noise does not overcome the patterning solution, that is,

sz , z0 2 dz. Otherwise the noise could lead to unphysical

values (negative) of the protein concentration. Given r(hz
n) the

probability distribution for zn reads

r(zn) ¼ eN e�V(zn�[z0þdz cos (q�nV)])2=s2
z : ð4:6Þ

In this case, the moments kznl, kz2
nl and kznþ1znl, by averaging

over noise realizations, read

kznl ¼ 1

N

X
n

ð
R

ðz0 þ dz cosðq�nVÞ þ hz
nÞrðhz

nÞdhz
n ¼ z0, ð4:7Þ

kz2
nl ¼ 1

N

X
n

ð
R

ðz0 þ dz cosðq�nVÞ þ hz
nÞ

2
rðhz

nÞdhz
n

¼ z2
0 þ

d2
z

2
þ s2

z

2V
ð4:8Þ

and kznþ1znl ¼ 1

N

X
n

ð
R

ðz0 þ dz cosðq�nVÞ þ hz
nÞ

� ðz0 þ dz cosðq�ðnþ 1ÞVÞ þ hz
nþ1Þ

� rðhz
nÞdhz

n ¼ z2
0 þ

d2
z cosðq�VÞ

2
: ð4:9Þ

Consequently,

Gzjs2
z
¼ 1� cos (q�V)

1þ s2
z=Vd2

z

ð4:10Þ

and

s2
z

Vd2
z

¼
(Gzjs2

z=0 � Gzjs2
z¼0)

1� Gzjs2
z=0

: ð4:11Þ

We notice that in the case where the assessment of the pat-

terning solution reveals more than one unstable Fourier mode,

e.g. zn ¼ z0 þ d(1)
z cos(q*(1)nV) þ d(2)

z cos(q*(2)nV), the above calcu-

lations are straightforward. The generalization of our

framework to other patterning situations, e.g. morphogen
gradients, can also be easily implemented. By taking into account

the morphogen decay length, l, the protein profile reads [15],

zn ¼ z0 e2nV/l. Thus, the moments kznl, kz2
nl, and kznþ1znl can

be estimated and the background granularity reads

Gz ¼ e�V=2l 1� cosh
V

l

� �� �
:

As in the case of Turing patterning, the background granularity

goes to zero as the ratio V/l does.
4.3. Activator – inhibitor Turing patterning systems
For the sake of simplicity, we restrict our analysis to a system

with two coupled reaction–diffusion equations in one spatial

dimension. Yet, the analysis presented below can be easily gen-

eralized. Thus, the following dimensionless system of equations

describes the reaction and diffusion terms of two protein species

U and V:

@u
@t
¼ f (u, v)þ @

2u
@x2

and
@v
@t
¼ g(u, v)þDv

@2v
@x2

,

9>>=
>>; ð4:12Þ

where u ¼ u(x, t) and v ¼ v(x, t) represent protein concen-

trations. The reaction terms f and g are supposed to have a

single equilibrium point, P0 ¼ (u0, v0), such that f (u0, v0) ¼

g(u0, v0) ¼ 0 and the point P0 is assumed to be stable in the

absence of diffusion. That is, by defining fz ¼ @f=@zjP0
and

gz ¼ @g=@zjP0
, where z stands for either the field u or the field

v, the following conditions hold:

fu þ gv , 0 and fugv � fvgu . 0: ð4:13Þ

A Fourier analysis reveals that a mode, q*=0, becomes

destabilized and a pattern develops if Dvfu þ gv � 2[Dv(fugv�
fvgu)]1=2 [ Rþ [9,33]. It is easy to prove that in terms of the signs

of the entries of the Jacobian matrix

J ¼ fu fv
gu gv

� �

only four out of the possible eight options can lead to a Turing pat-

tern instability:

þ þ
� �

� �
,
� �
þ þ

� �
,
þ �
þ �

� �
,
� �
þ þ

� �
:

Here we choose the first option where species U stands for an acti-

vator and V for an inhibitor: f fu, fvg. 0, fgu, gvg , 0. If fu , jgvj,
and fujgvj , fvjguj, then conditions (4.11) are satisfied. In addition,

if fu ¼ fv ¼ a, gu ¼ 2 2 and gv ¼ 2 1 a pattern develops if

1 � a . 0 and Dv �
3þ 2

ffiffiffi
2
p

a
:

The modelling equations require nonlinear terms to saturate to a

finite value the amplitude of the pattern, which otherwise

diverges. By choosing a cubic non-linearity and P0 ¼ (2, 2), we

obtain the following modelling equations describing an activator–

inhibitor system:

@u
@t
¼ aðuþ v� 4Þ � ðu� 2Þ3

2
þ @

2u
@x2

and
@v
@t
¼ 6� ð2uþ vÞ þDv

@2v
@x2

:

9>>=
>>; ð4:14Þ
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https://doi.org/10.6084/m9.figshare.5146564.

Competing interests. I declare I have no competing interests.

Funding. No funding has been received for this article.

http://doi.org/10.6084/m9.figshare.5146564
http://doi.org/10.6084/m9.figshare.5146564


9
References
rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170316
1. Gilbert SF. 2014 Developmental biology. Sunderland,
MA: Sinauer Associates Inc.

2. Kicheva A, Cohen M, Briscoe J. 2012 Developmental
pattern formation: insights from physics and
biology. Science 338, 210 – 212. (doi:10.1126/
science.1225182)

3. Tickle C. 2003 Patterning in vertebrate development.
Oxford, UK: Oxford University Press.

4. Torii KU. 2012 Two-dimensional spatial
patterning in developmental systems. Trends
Cell Biol. 22, 438 – 446. (doi:10.1016/j.tcb.2012.
06.002)

5. Bray SJ. 2016 Notch signalling in context. Nat. Rev.
Mol. Cell. Biol. 17, 722 – 735. (doi:10.1038/nrm.
2016.94)

6. Collier JR, Monk NA, Maini PK, Lewis JH.
1996 Pattern formation by lateral inhibition
with feedback: a mathematical model of
delta-notch intercellular signalling. J. Theor.
Biol. 183, 429 – 446. (doi:10.1006/jtbi.
1996.0233)

7. Hillenbrand P, Gerland U, Tkacik G. 2016 Beyond the
French flag model: exploiting spatial and gene
regulatory interactions for positional information.
PLoS ONE 11, e0163628. (doi:10.1371/journal.pone.
0163628)

8. Turing A. 1952 The chemical basis of
morphogenesis. Phil. Trans. R. Soc. Lond. B 237,
37 – 72. (doi:10.1098/rstb.1952.0012)

9. Murray JD. 2011 Mathematical biology II. Spatial
models and biomedical applications. New York, NY:
Springer.

10. Kondo S, Iwashita M, Yamaguchi M. 2009 How
animals get their skin patterns: fish pigment
pattern as a live Turing wave. Int. J. Dev. Biol. 53,
851 – 856. (doi:10.1387/ijdb.072502sk)

11. Kondo S, Miura T. 2010 Reaction-diffusion model as
a framework for understanding biological pattern
formation. Science 329, 1616 – 1620. (doi:10.1126/
science.1179047)

12. Economou AD, Ohazama A, Porntaveetus T, Sharpe
PT, Kondo S, Basson MA, Gritli-Linde A, Cobourne
MT, Green JBA. 2012 Periodic stripe formation by a
Turing mechanism operating at growth zones in the
mammalian palate. Nat. Genet. 44, 348 – 351.
(doi:10.1038/ng.1090)

13. Sheth R, Marcon L, Bastida MF, Junco M, Quintana
L, Dahn R, Kmita M, Sharpe J, Ros MA. 2012 Hox
genes regulate digit patterning by controlling the
wavelength of a Turing-type mechanism. Science
338, 1476 – 1480. (doi:10.1126/science.1226804)

14. Raspopovic J, Marcon L, Russo L, Sharpe J. 2014
Digit patterning is controlled by a Bmp-Sox9-Wnt
Turing network modulated by morphogen
gradients. Science 345, 566 – 570. (doi:10.1126/
science.1252960)

15. Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y,
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