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Approximately 19 years ago, Terhorst and colleagues reported the cloning of the gene 

encoding a small adaptor protein SAP (SLAM Associated Protein), named by virtue of its 

binding to the intracellular tail of a cell surface receptor called SLAM (Signaling 

Lymphocyte Activation Molecule) (1). Genetic mapping, along with 2 independent papers 

using positional cloning approaches (2, 3), revealed that this gene, now known as SH2D1a, 

was mutated in X-linked Lymphoproliferative (XLP1) syndrome, a rare primary 

immunodeficiency characterized by fulminant mononucleosis triggered by Epstein-Barr 

Virus (EBV). The study of SAP and the associated SLAM family members has led to 

multiple discoveries about the genetic immunodeficiency XLP1, as well as insight into the 

biology of lymphocyte:lymphocyte interactions, regulation of germinal center (GC) 

formation, requirements for cytolysis of B cells, development of invariant (i) NKT cells, and 

induction of T cell restimulation-induced cell death (RICD) (4–6). Moreover, recent studies 

of SAP-independent functions of the SLAM family members have identified novel roles for 

these receptors in immune cell homeostasis and pattern recognition (7–9).

XLP1 was first described in the 1970s as a fatal immunodeficiency characterized by 

lymphoproliferation, hemophagocytosis, and abnormal Ab levels (10). Although such 

patients initially appear healthy, they are unable to clear EBV, with fatal infectious 

mononucleosis resulting in the majority of cases. XLP1 is a noteworthy example of a 

primary immunodeficiency characterized by susceptibility mainly to one infectious agent; 

however, the findings of lymphoproliferation, lymphomas, and altered serum 

immunoglobulins even in the absence of EBV infection argued that these patients have a 

broader immune dysfunction (4, 5, 11). The cloning of SH2D1a allowed identification of 

other family members with XLP1 and generation of mouse models, thereby providing 

further insight into this disease and the role of SAP and SLAM family members in immune 

cell function and homeostasis.

SLAM was first cloned as a T cell costimulatory receptor that influenced patterns of T cell 

IFNγ production (12). SLAM is now recognized as a member of a larger family of receptors 

including 2B4 (SLAMF4, CD244), LY9 (SLAMF3, CD229), CD84 (SLAMF5), NTB-A/

Ly108 (SLAMF6, CD352), and CRACC (SLAMF7, CD319). With the exception of 2B4, the 

SLAM family members are homophilic (i.e., self-ligands), many of which function as 

cytolytic receptors on NK and CD8+ T cells. A larger family of receptors has homology to 

this superfamily and includes CD2 and CD48 (SLAMF2, the ligand for 2B4), although not 
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all of these receptors bind SAP, which is expressed mainly in T and NK cells (5, 6); some B 

cell expression has also been reported (13).

One of the most striking features of SAP is that it consists primarily of one Src homology 2 

(SH2) domain: SH2 domains are conserved domains that bind to phosphotyrosine-based 

motifs and are usually part of larger proteins, including multi-modular domain adaptors and 

enzymes (14). Surprisingly, SAP binds to a tyrosine-based motif on SLAM in the absence of 

phosphorylation, although binding improves upon phosphorylation and binding to other 

SLAM family receptors does require tyrosine phosphorylation (15, 16). So how does SAP 

help transmit signals from these receptors? In this landmark paper (1), Terhorst and 

colleagues hypothesized that SAP functions by blocking the recruitment of phosphatases, in 

part due to the similarity of its binding site to immunotyrosine inhibitory motifs. They 

further showed using overexpression in heterologous cells that SAP can compete with the 

phosphatase SHP2 (1). However, subsequent data from Veillette and colleagues, as well as 

from Terhorst and Eck, provided contrasting evidence that SAP functions as an adaptor 

molecule, binding to the Fyn SH3 domain (17, 18). Other evidence demonstrated that SAP 

also binds Lck (19, 20). Together, these data supported a model in which SAP functions as 

an adaptor molecule required for recruiting Src family kinases, leading to phosphorylation 

and transmission of positive signals downstream of SLAM family receptors. Nonetheless, an 

increasing body of data now supports both pathways, demonstrating that SAP can also 

compete for binding of inhibitory molecules such as SHP1, SHP2, and SHIP to multiple 

SLAM family members (21–24). Thus, SAP appears to function as a switch that determines 

whether SLAM family members transmit positive signals (if SAP is present) or function as 

inhibitory receptors (in the absence of SAP). This model was put forth by Siderenko, Clark, 

and colleagues when they proposed the SAP binding motif be called an Immunotyrosine 

Switch motif (25, 26) and was supported by early work on 2B4 (21).

So how does SAP affect immune cell function? Even prior to the cloning of SAP, NK cells 

from XLP1 patients were found to exhibit impaired killing (27). Subsequent data 

demonstrated that CD8+ T cells from XLP patients were unable to kill EBV-infected B cell 

targets (28–30), suggesting a reason why XLP1 patients fail to clear EBV. Yet other data 

suggested that the SLAM family member 2B4 functioned as an inhibitory receptor in the 

absence of SAP, supporting the idea of SLAM family members as inhibitory receptors (31–

33). More recently, SAP-deficient T cells have been found to exhibit defective RICD, again 

as a result of inhibitory activity of a SLAM family member, NTB-A; this may contribute to 

the lymphoproliferation seen in XLP1 (34).

Evaluation of SAP-deficient mice has highlighted several additional phenotypes, and these 

have helped provide insight into the mechanistic underpinnings of XLP1. First, based on the 

connection with Fyn, which affects iNKT cell development, SAP-deficient mice were shown 

to have a severe block in iNKT cell development (35–37). A dearth of NKT cells, even in the 

absence of EBV infection, is now recognized as a feature of XLP1. Second, challenge with 

infectious agents or immunization revealed that SAP deficiency leads to profound defects in 

long-term humoral immunity and the generation of memory IgG B cells (38) that are 

associated with impaired GC formation (39). Additional data from mice demonstrated that 

the humoral immune defect is primarily T cell-intrinsic (39, 40), although in some genetic 
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backgrounds, i.e., Balb/c, B cell contributions have also been shown (13). Accordingly, 

SAP-deficient mice have been used in myriad studies that have helped uncover requirements 

for T cell help in B cell GC formation, including many studies of follicular T helper cells (5, 

41). Interestingly, a lack of GCs was noted in some of the earliest XLP1 studies (10); 

however, the detailed mechanistic findings in mice, as well as subsequent evaluation in 

larger numbers of XLP1 patients (11) clarified that humoral defects are a key feature of this 

disorder.

Intravital microscopy in mice, complemented by in vitro assays, together have provided 

further insight into these phenotypes, revealing that SAP-deficient T cells exhibit a defect in 

stable conjugation to B cells, despite relatively normal interactions with dendritic cells (42). 

This defect likely accounts for the inability of SAP-deficient T cells to deliver contact-

dependent cognate help for GC formation. Importantly, these observations helped crystallize 

an appreciation that defective lymphocyte:lymphocyte interactions provide a common 

pathophysiological mechanism for the phenotypes associated with SAP deficiency (43). 

Thus, in XLP1, CD8+ T cells and NK cells are activated but fail to effectively kill EBV-

infected B cells, CD4+ T cells are activated but fail to provide cognate help for B cells for 

GC formation, and NKT cells (which are selected by interactions with double positive 

thymocytes) fail to develop. Indeed, the occurrence of B cell lymphomas, which can be 

EBV-negative in XLP1, suggests a basic defect in immunosurveillance of B cell 

malignancies.

So why are these defects specific for B cells (and other hematopoietic cells)? Clues came 

from expression of SLAM family members, which are expressed primarily on hematopoietic 

cells, and at very high levels on activated B cells. Indeed, CD48, the ligand for 2B4, was first 

described as a marker that was highly induced on B cells by EBV infection (44). Thus, in the 

absence of SAP, strong inhibitory signals from SLAM family members (particularly 2B4 

and Ly108/NTB-A) are triggered by EBV-infected B cells, thereby preventing effective T 

cell activation and killing of B cell targets. Other data suggest that SAP is important for 

regulating killing of hematopoietic targets in general (6). It is notable that many of the 

phenotypes associated with SAP deficiency require the presence of a SLAM family member 

to transmit an inhibitory signal, a fundamentally different mechanism of signaling than when 

SAP acts as an adaptor. The strongest data supporting this interpretation include those 

showing that blocking or mutation of SLAM family members improved phenotypes 

associated with SAP deficiency, such as killing of B cell targets (24, 29, 30), and the 

demonstration that deficiency in Ly108 markedly improved the GC and iNKT cell 

developmental defects in SAP-deficient mice (45). The strong inhibitory effects of these 

receptors in the absence of SAP, combined with their roles in transmitting both positive and 

negative signals, may account for why deficiencies of SLAM receptors do not recapitulate 

many features associated with SAP deficiency.

Nonetheless, studies of the SLAM family have also been revealing about lymphocyte 

biology. The SLAM family receptors are encoded in a polymorphic gene cluster on mouse 

and human chromosome 1 that has been linked to autoimmunity in both species. 

Interestingly, polymorphisms in specific SLAM family members have been implicated in the 

development of autoantibodies in the lupus-prone mouse strains, supporting the roles of 
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these receptors in regulating humoral immunity (46). Similarly, variation in NKT cell 

numbers in various strains of mice has also been linked to the SLAM family locus (47). But 

also fascinating is growing evidence for SAP-independent functions of SLAM family 

members as pattern recognition receptors, particularly in myeloid cells, where SLAM has 

been found to bind to the outer membrane protein of E. coli and other gram-negative 

bacteria (7). SLAM also serves as a receptor for measles virus (48). More recent data have 

implicated CRACC (SLAMF7) as a CD47-independent “Eat-me” signal that helps clear 

dying cells (9). Thus, the SLAM family members are now recognized as regulators of 

multiple aspects of immune homeostasis.

These studies of SAP and SLAM family members have helped uncover many new insights 

into lymphocyte interactions and immune cell biology, most of which were triggered by 

findings in this featured paper from the Terhorst laboratory (1). Together, this work provides 

an excellent example of how the identification of genes implicated in primary 

immunodeficiencies has spurred not only knowledge of the disease, but also helped uncover 

new insights into the workings of the immune system.
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