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Abstract

In this pilot study, we examined training effects of a computerized working memory program on 

resting state functional magnetic resonance imaging (fMRI) measures in children with 

neurofibromatosis type 1 (NF1). We contrasted pre- with post-training resting state fMRI and 

cognitive measures from 16 participants (nine males; 11.1±2.3 years) with NF1 and documented 

working memory difficulties. Using non-parametric permutation test inference, we found 

significant regionally specific differences (family-wise error corrected) in two of four voxel-wise 

resting state measures: fractional amplitude of low frequency fluctuations (indexing peak-to-

trough intensity of spontaneous oscillations) and regional homogeneity (indexing local intrinsic 
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synchrony). Some cognitive task improvement was observed as well. These preliminary findings 

suggest that regionally specific changes in resting state fMRI indices may be associated with 

treatment-related cognitive amelioration in NF1. Nevertheless, current results must be interpreted 

with caution pending independent controlled replication.
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1. Introduction

Although cognitive deficits in attention, working memory and executive function are among 

the most impairing consequences of neurofibromatosis type 1 (NF1) (Acosta et al., 2006; 

Schwetye and Gutmann, 2014), evidence-based, effective interventions that improve or 

restore cognitive function in NF1 remain lacking. Computerized cognitive training programs 

may augment cognitive abilities through repeated practice of mental exercises with 

increasing difficulty as performance improves (e.g., Klingberg et al., 2005). Cogmed 

[www.cogmed.com] is a computerized visuo-spatial training regimen administered at home 

and supplemented by remote coaching sessions (Astle et al., 2015; Holmes et al., 2009; 

Olesen et al., 2004). In developmental and acquired attentional disorders, Cogmed gains 

have been reported to be sustainable for months and to span across multiple cognitive 

measures, including certain untrained tasks (Astle et al., 2015; Conklin et al., 2015; Holmes 

et al., 2009; Stevens et al., 2016).

Consistent with training-induced neural plasticity (Kelly and Castellanos, 2014), Cogmed 

interventions may modulate blood-oxygenation level-dependent (BOLD) signals during 

tasks probing working memory and cognitive control (Olesen et al., 2004; Stevens et al., 

2016). Such training effects tend to manifest as increased prefrontal activity as well as 

enhanced connectivity within prefrontal cortex, and between prefrontal and parietal regions 

(for review see, Constantinidis and Klingberg, 2016; Nee et al., 2013). For instance, in 

typically developing children, ages 8 to 11, Cogmed training has been found to induce 

intrinsic functional connectivity alterations between fronto-parietal and ventral visual areas 

(Astle et al., 2015).

While the neural correlates of NF1 are understudied, aberrant recruitment of visual and 

default mode network regions in response to checkerboards has been reported in children 

and in adults with NF1 (Violante et al., 2012). Preliminary evidence suggests that resting 

state (i.e., task-free) BOLD activity patterns in NF1 may be modifiable (e.g., by 

pharmacological treatment: Chabernaud et al., 2012). Relative to healthy controls, abnormal 

resting state functional connectivity has also been identified in NF1 (Loitfelder et al., 2015; 

Tomson et al., 2015).

This pilot open-label, prospective pre-/post-test study assessed training effects of Cogmed 

on resting state fMRI measures in 16 NF1 patients (aged 8–15 years) with marked working 

memory deficits. We sought to identify reliable regionally specifiable changes in 
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spontaneous BOLD fluctuations by contrasting pre- with post-treatment resting state scans. 

Accordingly, we performed univariate voxel-wise analyses on a set of four indices of 

spontaneous resting state activity that have been used previously to examine neural 

correlates of working memory in typically developing children and adolescents (Yang et al., 

2015), including two regional measures – fractional amplitude of low frequency fluctuations 

(fALFF, Zou et al., 2008) and regional homogeneity (ReHo, Zang et al., 2004). Additionally, 

to probe behavioral improvement, standardized Cogstate tasks (Maruff et al., 2009) were 

administered before and after Cogmed training completion.

2. Methods

2.1. Participants

Children with NF1 (age range: 8–15 years) were identified through an institutional NF1 

clinical database with approval of the Children’s Health System Institutional Review Board. 

After obtaining written informed consent and assent, children’s intellectual, working 

memory and executive function skills were assessed. Participation was limited to children 

who exhibited working memory difficulties, specifically (1) score ≥ 1 SD below the 

population mean on the Wechsler Intelligence Scale for Children-IV (Wechsler, 2004) 

Working Memory Index or (2) T-score ≥ 75th percentile on the Metacognition scale of the 

parent-reported Behavior Rating Inventory of Executive Function (Gioia et al., 2000). 

Exclusionary criteria included: Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999) 

estimated full-scale IQ < 70; motor, visual or auditory handicaps preventing computer use; a 

DSM-IV Axis I diagnosis that would take treatment precedence over cognitive training 

needs; history of photosensitive seizures; change in type or dose of psychotropic medication 

within the last 30 days; and chemotherapy for a brain tumor.

Qualifying children underwent resting state fMRI scans and a cognitive test battery (i.e., 

Cogstate testing; see 2.3) before and after completing Cogmed training, which resulted in 20 

complete datasets. The at-home standard Cogmed training under parental supervision lasted 

~25 sessions over 6–10 consecutive weeks. Weekly coaching phone calls by study staff were 

intended to troubleshoot potential problems and reinforce compliance. Algorithmic adaptive 

adjustment of training item difficulty on a trial-by-trial basis was used to ensure that 

performance was continually challenged over the course of each 30–45 minute training 

session. While a blinded, placebo-controlled study would have allowed inferences about 

efficacy and specificity, the primary goal of this pilot study was to determine whether 

reliable neural changes could be detected after computerized cognitive training in 

individuals with NF1. Accordingly, like previous clinical trials in attentional disorders (e.g., 

Stevens et al., 2016), we pursued an open-label approach.

Next, neuroimaging data quality was assessed. Inclusion required anatomical scans that 

passed visual quality assurance for signal drop-out and motion artifacts and functional scans 

with acceptable head motion, i.e., mean frame-wise displacement (FDmean) ≤ 0.5 mm 

(Power et al., 2014), as computed using Jenkinson’s formula (Jenkinson et al., 2002). This 

criterion yielded 16 subjects (nine males, mean age: 11.1 ± 2.3 years, range: 8–15 years, see 

Table 1 for participant characteristics) with usable pre- and post-Cogmed data (maximal 
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FDmean = 0.375 mm, average FDmean = 0.198 mm), whose data form the basis of further 

analyses reported here.

2.2. Neuroimaging data

2.2.1. Data acquisition—We obtained T1-weighted anatomical images (sagittal 3D fast 

spoiled gradient echo sequence: TR = 7.8 ms; TE = 30 ms; TI = 450ms; flip angle = 12°; 

voxel-size = 0.923 mm × 0.923 mm × 1.0 mm) and functional T2*-weighted resting state 

scans (echo planar images: TR = 2500 ms; TE = 25 ms; flip angle = 90°; 38 slices; voxel-

size = 3.75 mm × 3.75 mm × 3 mm; 150 time-points) using a GE 3 Tesla scanner equipped 

with an 8-channel head coil.

2.2.2. Data pre-processing—Pre-processing was carried out using the open-source, 

Nipype-based, automated Configurable Pipeline for the Analysis of Connectomes (C-PAC) 

v0.3.3 [https://github.com/FCP-INDI/C-PAC/tree/0.3.3_development]. After discarding the 

first 4 time-points of each functional run to allow magnetization to reach steady state, pre-

processing individual resting state functional scans consisted of 3D motion correction 

(realignment using the Friston 24-parameter model (Friston et al., 1996): 3 translational and 

3 rotational parameters, their values from the previous time-point, and the squared values of 

these 12 items), nuisance regression (detailed in 2.2.2.2), temporal band-pass filtering (0.01–

0.1 Hz) except for fALFF computation, registration (detailed in 2.2.2.3), and spatial 

smoothing using a 4-mm Gaussian kernel at full-width half maximum. The human-readable 

C-PAC pipeline configuration file is available online as Supplementary Information 

(SI_CPACconfig.yml).

2.2.2.1. Head micro-motion: Head micro-motion, indexed by Jenkinson’s FDmean, did not 

differ significantly pre- vs. post-intervention (t15 = 0.24, p = 0.82; FDpre = 0.201 ± 0.09 mm, 

FDpost = 0.196 ± 0.09 mm).

2.2.2.2. Nuisance regression: To control for head motion effects and attenuate irrelevant 

signals, we used a subject-level nuisance regression strategy involving application of 

CompCor (Behzadi et al., 2007) with 5 principal components derived from white matter and 

cerebrospinal fluid using subject-specific masks along with regressing out preprocessed data 

on the 24 Friston parameters (Friston et al., 1996) generated from the motion correction 

procedure. Global signal was not regressed out (Yan et al., 2013a, 2013b).

2.2.2.3. Image registration: To ensure robust image registration of both sets of longitudinal 

scans, we adopted an unbiased pairwise approach (Reuter et al., 2012). Using the Advanced 

Normalization Tools (ANTs) algorithm for every participant, pairwise registration was 

performed with the common “midway” points between the pre-and post-Cogmed anatomical 

scans. Following functional-to-anatomical image co-registration, images were transformed 

into MNI152 (Montreal Neurological Institute) space at 2 mm3 isotropic resolution using 

ANTs.

2.2.3. Resting state measures—Following data pre-processing, four resting state 

measures were computed (Yang et al., 2015): amplitude of low frequency fluctuations 
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(ALFF; Zang et al., 2007); fractional amplitude of low frequency fluctuations (fALFF; Zou 

et al., 2008); regional homogeneity (ReHo; Zang et al., 2004), and voxel mirrored 

homotopic connectivity (VMHC; Zuo et al., 2010b).

For ALFF and fALFF, in subject’s native space, voxel time-series were transformed into 

power spectrum representations. ALFF was calculated as the total power in the frequency 

range between 0.01 and 0.1 Hz, thereby indexing the intensity of low frequency oscillations 

(Zang et al., 2007). fALFF was computed as the power within the low frequency range 

(0.01–0.1 Hz) divided by the total power in the entire detectable frequency range, thus 

representing the relative contribution of specific low frequency oscillations to the full range 

(Zou et al., 2008; Zuo et al., 2010a). For both measures, power in subject-level maps was 

transformed into z-scores to generate standardized subject-level maps.

ReHo was calculated for each individual subject as the Kendall’s Coefficient of 

Concordance (KCC) between the time-series of a given voxel and its 26 nearest neighbors 

(Zang et al., 2004). Values of KCC range from 0 to 1 with higher values indicating greater 

similarity between the time-series of a given voxel and the adjacent voxels. Subject-level 

KCC maps were z-score standardized to enable group analysis.

VMHC assumes symmetric morphology between the left and right hemispheres; therefore 

individual brains were first transformed to fit a symmetric template. Functional data were 

then transformed to fit the new symmetrical anatomical image. VMHC was computed as the 

Pearson’s correlation coefficient between the time-series of a given voxel and its 

symmetrical inter-hemispheric counterpart (Zuo et al., 2010b).

These four resting state measures have been previously examined in typically developing 

children and adolescents (e.g., Yang et al., 2015) and highlight distinct properties of intrinsic 

brain signals. Specifically, ALFF and fALFF quantify the amplitude of the low frequency 

oscillations that are a fundamental feature of intrinsic brain activity. The relative magnitudes 

of such fluctuations can serve as markers of individual differences or dysfunction. Both 

ALFF and fALFF show high sensitivity to gray matter signals, although ALFF is more 

susceptible to physiological noise (Zou et al., 2008; Zuo et al., 2010a).

ReHo measures local synchronization and has been associated with individual differences in 

behavioral inhibition in healthy adults (Tian et al., 2012) or resting state alterations in brain 

networks implicated in attention-deficit/hyperactivity disorder (ADHD; Cao et al., 2006).

VMHC quantifies the strength of inter-hemispheric synchrony in patterns of spontaneous 

activity (its most robust feature) and can be sensitive to age-related differences (Zuo et al., 

2010b).

2.2.4. Statistical inference—In light of recent empirical demonstrations that parametric 

statistical inference tends to inflate family-wise error rates (Eklund et al., 2016), we opted 

for group-level non-parametric, permutation-based statistical inference. To minimize 

problems inherent to cluster-based inference, e.g., spatial smoothing and cluster-forming 

threshold dependence, we adopted the threshold-free cluster enhancement (TFCE, Smith and 

Nichols, 2009) algorithm. Permutation testing (10,000 randomizations), which controls for 
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multiple comparisons with family-wise error rate at α = 0.05, was implemented in fsl 
v5.0.8′s randomise tool (Winkler et al., 2014) [http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

Randomise]. Due to its use of cluster-wise evidence at each voxel, TFCE can reliably detect 

small, focal effects that may be missed by other methods. The algorithm’s sensitivity to a 

wide range of signal shapes further renders it particularly suitable for our data-driven 

examination spanning different resting state measures (ALFF, fALFF, ReHo, VMHC) each 

with its unique signal properties. Paired pre- vs. post-Cogmed t-tests included head motion 

(FDmean) as a nuisance covariate. Whole-brain un-thresholded statistical maps for all four 

resting state measures are freely accessible as 3D interactive images online [http://

neurovault.org/collections/ZLEIBWYV] to enable exploration of the magnitude and spatial 

extent of sub-threshold effects.

2.3. Cognitive measures

Six Cogstate tasks - Detection, Identification, One-back, One Card Learning, Continuous 

Paired Associate Learning and Groton Maze Learning (Maruff et al., 2009) -were 

administered prior to and following Cogmed training completion. The CogState 

standardized battery [http://cogstate.com/computerized-tests/cognitive-tests/battery] was 

chosen due to its high test-retest reliability and negligible practice effects in healthy 

individuals across different exam settings (Cromer et al., 2015; Falleti et al., 2006). Task 

performance (speed or accuracy as per Maruff et al., 2009) was contrasted pre- vs. post-

training within subjects using paired t-tests. Test statistics and Hedges’ gav corrected effect 

sizes for small, correlated samples (Lakens, 2013) for age-normed scores are reported in 

Table 2. P-value adjustment for false discovery rate at α = 0.05 (Benjamini and Hochberg, 

1995) was calculated using the p.adjust function in R version 3.0.2.

Age-normed values for the Continuous Paired Associate Learning task were not made 

available by Cogstate at the time of data collection. However, given the non-significant 

difference for the Continuous Paired Associate Learning task (pre-Cogmed accuracy = 

80.8% ± 3.3 vs. post-Cogmed accuracy = 80.0% ± 3.5), the lack of normative scores has 

little impact. The central findings reported in Table 2 remained practically unchanged when 

analyses were replicated using raw scores for the six Cogstate tasks (Table S1).

3. Results

Whole-brain contrasts of pre- with post-intervention maps revealed significant (p < 0.05, 

family-wise error corrected) regional differences in two resting state measures: fALFF and 

ReHo (Table 3). Specifically, we found decreased fALFF following Cogmed treatment in 

three clusters: the largest cluster was predominantly in left cerebellum I-IV extending 

medially, the second largest was mostly in right cerebellum V, and the smallest cluster was 

bilateral thalamus (Figure 1). Reduced post-treatment ReHo was observed in right superior 

frontal sulcus while increased ReHo was detected in a visual region: left occipital fusiform 

gyrus. Whole-brain un-thresholded statistical maps for these fALFF and ReHo effects, as 

well as for ALFF and VMHC are freely viewable online at http://neurovault.org/collections/

ZLEIBWYV.
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After adjusting for false discovery rate at α = 0.05, two Cogstate tasks showed significant 

post-intervention improvement: Identification task speed and Groton Maze Learning 

accuracy increased (Table 2; raw scores in Table S1).

4. Discussion

This pilot investigation revealed preliminary evidence of Cogmed training effects on neural 

measures and cognitive performance in a small sample of children with NF1. Intervention 

effects (p < 0.05, corrected) were found for two local resting state measures. Following 

training, ReHo increased in higher order visual areas. Enhanced local synchrony within 

visual cortex post-intervention can be considered in the context of decreased BOLD 

activation across visual areas reported in NF1 relative to healthy controls (Violante et al., 

2012). Moreover, given emerging evidence that visual processing deficits in NF1 might be 

more closely linked to poor attentional allocation rather than sensory impairments (Ribeiro 

et al., 2014), we speculate that our short-term training could have promoted greater 

synchrony within visual cortex via top-down mechanisms (Astle et al., 2015; Constantinidis 

and Klingberg, 2016).

Decreased ReHo was observed in a frontal cluster that overlaps with frontal networks whose 

connectivity tends to exhibit sensitivity to working memory training (Constantinidis and 

Klingberg, 2016). In fact, our cluster falls within 5 mm of the right caudal superior frontal 

sulcus peak [34, 6, 56; MNI] identified as a hub for maintenance of visuo-spatial 

information in a meta-analysis delineating components of working memory (Nee et al., 

2013). The frontal modulation we observe is also consistent with a recent ADHD 

intervention study illustrating Cogmed training effects in frontal areas near superior frontal 

sulcus (Stevens et al., 2016).

The normalized resting state measure we probed in the frequency domain, fALFF, yielded 

significant intervention effects in cerebellum and thalamus. Given the U-shaped age-related 

trajectory of fALFF patterns associated with working memory in healthy children and 

adolescents (Yang et al., 2015), the direction of the training effect in the current study might 

reflect developmental effects, although we cannot test this speculation in our pilot sample. 

The cerebellar and thalamic location of the intervention effects on fALFF is intriguing 

considering the white matter microstructure abnormalities in thalamus and cerebellum 

reported in children and adolescents with NF1 relative to healthy controls (Ferraz-Filho et 

al., 2012).

Behavioral improvement (false discovery rate adjustment at α = 0.05) post-intervention was 

found for two untrained Cogstate tasks. The increase in Identification task speed after 

Cogmed program completion might suggest augmentation of domain-general attentional 

processes. Notably, performance in the Groton Maze Learning task, which highlights spatial 

working memory demands (Pietrzak et al., 2008), was more accurate after the Cogmed 

intervention. This finding suggests a degree of generalization of training across spatial 

working memory processing.
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Our preliminary results should be considered in light of limitations beyond small sample 

size. First, nonspecific intervention benefits cannot be ruled out in the absence of an active 

control group. Nevertheless, studies have documented Cogmed superiority over non-

adaptive contrasts (Astle et al., 2015; Holmes et al., 2009). Indeed, as expected, One-back 

(i.e., non-adaptive, least challenging working memory task) response times in our sample 

did not significantly change following Cogmed training. Second, while data quality was 

adequate, and head micro-motion did not differ pre- and post-training, motion was in the 

moderate range. Accordingly, we eschewed seed-based analyses, which are particularly 

susceptible to head motion artifacts (Yan et al., 2013a, 2013b). Third, the finding of focal 

ReHo effects, while consistent with the ability of TFCE to reliably detect small clusters, 

should be confirmed in larger samples.

In conclusion, we provide preliminary evidence that regionally specific changes in resting 

state fMRI measures may capture treatment-related improvements of cognitive dysfunction 

in NF1. These pilot results should be interpreted with caution pending independent 

controlled replication.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

Children with neurofibromatosis type 1 showing working memory deficits 

participated

Computerized at-home working memory training intervention was provided for 6–

10 weeks

We obtained pre- and post-treatment resting-state fMRI and cognitive measures

Two local resting state measures showed regionally specific changes after 

treatment

We also observed behavioral improvement on untrained tasks
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Figure 1. 
Clusters showing significant differences (p < 0.05, family-wise error corrected) in brain 

resting state measures pre-Cogmed relative to post-Cogmed training overlaid on the MNI152 

T1 template. Corresponding un-thresholded maps for each cluster for each contrast and 

measure are provided directly underneath each significant effect. Un-thresholded whole-

brain maps for all four measures are freely viewable at http://neurovault.org/collections/

ZLEIBWYV).

fALFF = fractional amplitude of low frequency fluctuations; L = left; MNI = Montreal 

Neurological Institute; TFCE = threshold-free cluster enhancement; ReHo = regional 

homogeneity; R = right.
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Table 1

Participant (n = 16) demographic characteristics and cognitive abilities assessed prior to training

Mean ± SD Range

Boys, n (%) 9 (56%)

Age (years) 11.1 ± 2.3 8–15

Wechsler Intelligence Scale for Children-IV (standard scores)

Full Scale IQ 93.2 ± 8.1 79–106

Working Memory Index 89.9 ± 11.6 71–113

Behavior Rating Inventory of Executive Function (T scores)

Working Memory 66.3 ± 9.0 51–79

Metacognitive Index 66.3 ± 6.9 51–74

Behavioral Regulation Index 61.6 ± 12.4 41–84

SD = standard deviation; IQ = intelligence quotient
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