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Abstract

In genetic epidemiological studies, family history data are collected on relatives of study 

participants and used to estimate the age-specific risk of disease for individuals who carry a causal 

mutation. However, a family member’s genotype data may not be collected due to the high cost of 

in-person interview to obtain blood sample or death of a relative. Previously, efficient 

nonparametric genotype-specific risk estimation in censored mixture data has been proposed 

without considering covariates. With multiple predictive risk factors available, risk estimation 

requires a multivariate model to account for additional covariates that may affect disease risk 

simultaneously. Therefore, it is important to consider the role of covariates in the genotype-

specific distribution estimation using family history data. We propose an estimation method that 

permits more precise risk prediction by controlling for individual characteristics and incorporating 

interaction effects with missing genotypes in relatives, and thus gene-gene interactions and gene-

environment interactions can be handled within the framework of a single model. We examine 

performance of the proposed methods by simulations and apply them to estimate the age-specific 

cumulative risk of Parkinson’s disease (PD) in carriers of LRRK2 G2019S mutation using first-

degree relatives who are at genetic risk for PD. The utility of estimated carrier risk is demonstrated 
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through designing a future clinical trial under various assumptions. Such sample size estimation is 

seen in the Huntington’s disease literature using the length of abnormal expansion of a CAG 

repeat in the HTT gene, but is less common in the PD literature.
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1. Introduction

Estimating the cumulative risk of disease onset by a certain age for individuals who carry a 

causal mutation (i.e., age-specific penetrance function), has important implications for both 

genetic counseling and clinical trial planning. For example, the age-specific penetrance 

function will provide prognostic information for patients who are at risk of a genetic 

disorder wishing to know the significance of their biological features in relation to their risk 

of disease-onset. This will ultimately allow genetic counselors to interpret risk of disease 

according to each individual’s unique biological characteristics and help patients make 

important decisions regarding genetic testing. Furthermore, cumulative disease risk obtained 

from an untreated population provides an estimate of the baseline event rate when powering 

a clinical trial recruiting individuals at genetic risk. A lack of treatment options for changing 

the trajectory of Parkinson’s disease (PD) or Alzheimer’s disease (AD) progression, in 

combination with an increasing elderly population, poses a rising economic burden on 

patients and the healthcare system [1], which makes developing innovative new treatments 

that delay disease onset an urgent research priority [1, 2]. In many genetic epidemiological 

studies of these late-onset disorders, family history data on probands at genetic risk are 

collected and used to estimate the penetrance [3, 4, 5, 6]. In a typical study, affected 

individuals (e.g., Ashkenazi Jewish (AJ) PD patients) including carriers and non-carriers are 

recruited, and report family history of disease, including age at onset of the disease, in their 

first-degree relatives. However, genotype information in many relatives may not be available 

due to death of a relative (e.g., parents of a proband) or lack of resources to collect blood 

samples in all family members [5, 7, 8]. This practical difficulty is frequently encountered in 

cases of late onset disease (e.g., PD or AD) when parents are often deceased. When some 

genotype information is missing, the probability of a family member carrying a mutation is 

estimated based on the mutation status in the initial cohort of subjects (e.g., probands) and 

the relative’s relationship to the proband under Mendelian transmission. [3, 5, 8].

With missing genotypes and ages of disease onset subject to right censoring, the observed 

data consists of censored mixture data. Previously, a sieve maximum likelihood 

nonparametric method for such data was proposed to estimate distribution function in 

carriers and non-carriers [9]. The method was applied to a recent study [5] to estimate age-

specific risk of PD in LRRK2 gene mutation carriers compared to non-carriers. To evaluate 

the sex effect on the carrier risk in this study, stratified analyses were carried out and the 

penetrance function was estimated in a subpopulation of male and female relatives 

separately [5]. Stratified analysis maintains the nonparametric nature in the sense that it does 
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not assume any specific model of the association between the covariates and the outcome. 

However, a limitation is reduced efficiency; when multiple covariates are available that may 

affect the penetrance simultaneously, stratifying by a larger number of covariates reduces the 

sample size and estimation may become infeasible. Therefore, when considering the role of 

other demographic covariates or environmental risk factors on modifying the penetrance 

functions, it is desirable to link covariates to the penetrance function through appropriate 

semiparametric regression models.

Another advantage of introducing covariates to the model is that gene by gene interaction or 

gene by environmental risk factor interaction can be handled within the framework of a 

single model. A better characterization of the interactions between genetic and 

environmental factors helps to understand the pathogenesis of multifactorial diseases [10]. 

However, if the gene itself is examined without considering its potential interactions with 

other factors, the effect of the genetic factors on complex mechanism might be missed [11]. 

For example for PD, variants in LRRK2 and PARK16 genetically interact to increase the 

risk of PD. A recent study shows that LRRK2 interacts with RAB7L1 to modify PD risk [12, 

13]. Therefore, it is of interest to consider genotype-specific risk estimation in the presence 

of their interaction with other genetic or environmental factors. A LRRK2 by gender 

interaction was suggested in a prior stratified analysis in our motivating study [5]. It is 

desirable to test for this interaction in a parsimonious model. One challenge in testing for 

gene by other risk factor interaction in [5] and other similar studies [4] is that genotypes are 

not available in most first-degree relatives.

In this paper, we propose a covariate-adjusted semi-parametric estimation method that 

permits including multiple covariates and interaction effects in the presence of missing 

genotypes through a semiparametric regression model. Compared to previous nonparametric 

approaches, our method allows controlling for individual characteristics such as sex, 

ethnicity, environmental risk factors, and genotypes at other loci. Moreover, gene-gene 

interactions and gene-environment interactions can also be handled within the framework of 

a semiparametric model. Thus, we extend the prior work [9] on a single gene to handle 

multiple genes. The analyses may provide insights on whether demographics or 

environmental variables play a role in modifying the penetrance. In addition, to assist with 

clinical trial planning, we estimate cumulative risk distribution of disease onset in the overall 

sample by marginalizing over covariate distributions using estimates obtained from the 

conditional model given covariates. Sample size estimation has been calculated in the 

Huntington’s disease literature due to the known disease causal gene and its near complete 

the penetrance. However, using estimated mutation risk to design a clinical trial for PD is 

less common due to reduced penetrance. Our estimate of LRRK2 penetrance in the AJ 

population provides a unique opportunity to power a future clinical trial in this population 

with a higher PD risk. When external or prior information on the covariate distribution in the 

target trial population is available, they can be easily incorporated. The performance of the 

proposed method is examined through extensive simulation studies. Finally, we apply the 

proposed approach to estimate the age-specific risk of PD for first-degree relatives with 

LRRK2 mutations [4, 14, 15] and test for interaction between LRRK2 mutation and other 

covariates.
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2. Methods

2.1. Notation and likelihood function

Let Ti be the age-at-onset of a disease which is subject to random censoring given 

covariates. Let Xi indicate the carrier status at the causal gene of interest, with one indicating 

the carrier group (each individual has at least one copy of the mutation) and zero indicating 

the non-carrier group under an autosomal dominant inheritance model. Note that LRRK2 
G2019s mutation has an autosomal dominant mode of inheritance [5]. Thus, here we rely on 

biological knowledge and in the following consider a dominant model. It is straightforward 

to extend to other genetic models (recessive or additive). Let Zi and Wi be a vector of 

auxiliary covariates collected on the probands and relatives, respectively. For example, Zi 

may include demographic information on probands in each family representing family-

specific covariates to be adjusted, and Wi may include relatives’ own individual-specific 

characteristics. Due to potential right-censoring of the age-at-onset information and 

unknown Xi, the observed data from n subjects consist of {Yi = Ti Λ Ci, Δi = I(Ti ≤ Ci), Zi, 
Wi}, i = 1, …, n, where Ci denotes the censoring time assumed to be conditionally 

independent of Ti given Zi and Wi.

In our motivating study, the sampling design was to first recruit probands (either affected by 

the disease or control) in a three-site PD consortium studying LRRK2 G2019S [5, 9]. All the 

probands are genotyped and their phenotype information and covariates were collected (Zi 

and Yi are known). Next, the family history of the disease and some demographic 

information of the first-degree relatives, were collected through a systematic interview with 

the probands or the relatives themselves [7] (Ti and Wi are known). Genotypes on most 

relatives were not available (Xi can be missing). Even though in some cases the relatives’ 

genotypes are unknown, one can estimate the probability of a relative being a carrier, i.e., 

P(Xi = 1). For example, LRRK2 gene mutation is associated with autosomal dominant PD 

[16] and knowing just one parent is homozygous carrier will lead to infer the child is a 

carrier with probability one. Moreover, a child of a heterozygote carrier parent has a 

probability of 0.5 of carrying this mutation under the Mendelian transmission and a low 

mutation prevalence (approximately zero). If the mutation prevalence in the general 

population is known and denoted by c, then the probability of this child being a carrier is 

P(Xi = 1) = 0.5(1 + c). To present the likelihood function, we denote a finite number of 

possible values for P(Xi) in a study as {p1, …, pm}, and let an indicator variable, Gi, 

represent m distinct carrier probabilities, where Gi = g indicates P(Xi = 1) = pg, g = 1, …, m. 

The observed genotypes in relatives can be incorporated by letting pg equal one for carriers 

and zero for non-carriers. The model identifiability conditions on pg were examined in 

Lemma 1 of [9].

Because the mutation status Xi may be unknown, the observed conditional likelihood takes a 

mixture form as
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where fk(y; z, w) is the conditional probability density function of T in the group with X = k 
given covariates Z = z and W = w, and Fk(y; z, w) is the corresponding cumulative 

distribution function. Compared to the prior work [9], the main contribution here is to 

accommodate covariates, gene by environmental risk factor interaction, and potential gene 

by gene interaction, through regression models. Thus, consider the hazard model allowing 

for the interaction between Xi and Wi as

(1)

Note that we allow the hazard ratio between two genotype groups to be time-dependent (i.e., 

β(t) is time-varying) to accommodate the potential time-varying mutation effect and protect 

against misspecification of the penetrance function. To adjust for Wi, Zi and interaction 

effect in a parsimonious way, their effects are assumed to be time-invariant. It is possible to 

extend to time-varying case. The observed data likelihood is

(2)

We can further expand the model to accommodate penetrance estimation for more than one 

gene. For example, in our motivating LRRK2 consortium study, probands were genotyped 

for the LRRK2 G2019S and glucocerebrosidase (GBA) mutations, but the probands who 

carried GBA mutation were excluded [5] in prior analyses to investigate the LRRK2 G2019S 

mutation effect on the PD-onset that is not due to the other genetic factors. We can now 

further estimate the risk of PD accounting for multiple genotypes such as cumulative risk for 

those carrying both LRRK2 and GBA mutation. Let Ui denote the potentially unobserved 

GBA carrier status. The hazard function corresponding to two genes is expanded as

where βj(t) is the effect of each gene on the disease hazard, respectively. An interaction term 

between genes Xi and Ui can also be incorporated when of interest. Because the majority of 

the relatives were neither genotyped for LRRK2 nor for GBA, we expand the probability 

vector of the carrier status at two loci as P(Xi = g1, Ui = g2) = pg1,g2. The likelihood function 
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in (2) can be re-expressed under the expanded hazard model and probability vectors, and the 

estimation procedure proceeds as in a single gene case.

2.2. Sieve maximum likelihood estimation with covariates and interactions

To estimate the parameters Λ0(t) and {β(t), η, θ, γ}, we adapt a hybrid approach involving a 

nonparametric estimator and sieve estimation that leads to consistent and semiparametrically 

efficient estimators similar to [9]. Specifically, consider using a nonparametric maximum 

likelihood estimator for Λ0(t) and a sieve approximation to estimate β(t) by letting 

, where ϕ1(t), …, ϕKn(t) are basis functions such as B-splines functions. 

It is computationally intensive and inefficient to directly maximize (2) over all the 

parameters, since the log-likelihood is not convex and the parameters include the potentially 

large number of jumps of Λ0. However, by treating the mutation status in all individuals X1, 

…, Xn as missing data, fast numerical computation can be achieved by using the 

expectation-maximization (EM) algorithm [17] due to available closed-form solutions in the 

M-step.

The complete data log-likelihood function for (Yi, Δi, Xi, Gi), i = 1, …, n is given as

Therefore, in the E-step of EM algorithm, we evaluate the posterior probability of Xi = 1 

given the observation data (Gi, Yi, Δi) as qi = ai/(ai + bi), where

In the M-step, we maximize
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(3)

By differentiating (3) with respect to the jump sizes of Λ0(·) at the observed event times, we 

obtain close-form solutions

(4)

After substituting (4) into (3) and differentiating with respect to αj, we obtain the score 

equation for αj as

where ϕ(Yi) = (ϕ1(Yi), ⋯, ϕkn(Yi))T. The score equations for the other parameters in the M-

step are obtained similarly and the parameters are estimated using Newton-Raphson 

algorithm. After obtaining the updated α and {η, θ, γ} values, we use (4) to update the 

jumps of Λ0(·). We then iterate between the E-step and M-step till convergence. Note that 

the baseline hazard function has a closed-form solution due to the use of nonparametric 

maximum likelihood estimator, the M-step is computationally fast. Asymptotic properties of 

the baseline cumulative hazard function in a nonparametric model were studied in Wang et 

al. (2015) [9], which shows consistency, efficiency, and convergence to a Gaussian process 

in the presence of missing genotypes. Similar arguments (see for example, [18]) can be 

applied to establish asymptotic properties of estimators considered here.

To inform planning of a clinical trial, the marginal cumulative risks in carrier and non-carrier 

relatives may provide design parameters (e.g., risk of disease in the absence of intervention). 

Thus, we can estimate the marginal cumulative distribution of disease age-at-onset in 

carriers and non-carriers, respectively, based on the expressions
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and

(5)

where H(W, Z|X) denotes the conditional probability distribution function of W, Z given the 

mutation carrier status. Since the genotypes X are not observed in some relatives, we 

estimate H(W, Z|X) through an EM algorithm.

3. Simulation Studies

We conducted simulation studies to assess the performance of the proposed method. The 

simulations were designed to imitate the LRRK2 penetrance study described in Section 4. 

We generated survival times similar to the estimated distributions of the actual data in 

Section 4. The distribution of the event times for non-carriers in the baseline group (with 

covariates Zi and Wi as zero) were generated from Weibull(5, 105) and the distributions for 

carriers and non-carriers in the other covariate groups were generated under the hazard 

model (1), allowing for relative’s sex by gene interaction [9]. The mutation probability pi 

was taken from {0, 0.02, 0.51, 1}, as in the real data analysis. 93% of the total sample size n 
= 2266 were not genotyped and parents, siblings, and children had a similar rate of available 

genotypes as in the real example. To evaluate how well our method works in the case of data 

sets with a large percentage of censored data points (i.e, data points where an exact time of 

age at onset is not known), censoring times were generated from a uniform distribution to 

achieve a random choice of censoring rate of 40% or 60%. To ensure valid inference, we 

used bootstrap resampling of families to compute the standard errors and construct 

confidence intervals for the estimators. The covariates included in the simulation models 

(sex of the relative and proband) were fixed at the same values as the real data. We did not 

include site of enrollment as a covariate in the simulation model since there was no 

significant heterogeneity between sites on the penetrance of PD in the real data analysis.

The goal of the simulation study is to examine the bias and efficiency of estimators. We 

evaluated the bias, empirical standard deviation, average of the estimated standard errors, 

and coverage probability corresponding to nominal 95% confidence intervals. We set the 

initial values to be zero in our simulations and data analysis and we did not find the 

algorithm to be sensitive to the choice of initial values. A reasonable way to select the initial 

values of parameters is to use baseline hazard ratios estimated from the probands data where 

all the genotypes are observed. We used exponential random variables with a mean of one to 

weight each observation. The simulation results from 1,000 replications with 1,000 bootstrap 

samples for each simulated data are given in Table 1 and Table 2.

The parameter estimates of the Cox proportional hazards model for the simulation study 

under both 40% and 60% censoring rates in Table 1 suggest that estimated hazard ratios 

(HR) are close to true HRs with small bias. The empirical variability agrees with the 

variance estimate based on the bootstrap and the coverage probabilities are close to the 

nominal level of 95%. Specifically, the estimated HR of predicted carrier male relatives to 

predicted non-carrier male relatives adjusted for other covariates was close to the true HR 
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with bias < 0.01 (Estimated HR=1.52, True HR=1.52) and the estimated standard errors 

agrees adequately with the empirical standard deviation (SE=0.21, SD=0.21) with the 

coverage probability 94%. Moreover, higher HR was estimated for the predicted carrier 

female relatives compared to predicted non-carrier female relatives adjusted for other 

covariates which was close to the true HR (Estimated HR=5.20, True HR=4.99) and the 

estimated standard errors agrees adequately with the empirical standard deviation (SE=0.80, 

SD=0.83) with the coverage probability 93%. Our method performs well even under 60% 

censoring rate. As the censoring rate increases from 40% to 60%, we observed the empirical 

standard deviation and estimated standard errors increased slightly.

In Table 2, we present the average estimated values of the cumulative distribution functions 

(F̂
1 for carriers and F̂

0 for non-carriers) in male and female relatives at various ages with 

their performances. When cumulative risk in male and female relatives were examined 

separately, the small bias of estimated penetrance was observed through out the entire range 

of age (see Table 2 and Figure 1). Specifically, the bias of estimated penetrance to age 80 

among predicted mutation carrier male relative with 40% censoring rate was −0.02% and the 

estimated standard errors agrees adequately with the empirical standard deviation 

(SE=4.19%, SD=4.28%), and the coverage probability of 93.4% was close to the nominal 

level. Similar results were observed in female relatives and our method performs well under 

both 40% and 60% censoring rates. We note that as the censoring rate increases, the bias and 

the variance estimates tend to increase and the coverage probability tends to decrease. This 

makes a wider 95% confidence interval for the cumulative risk estimates for 60% censoring 

rate compared to 40% censoring rate (see Figure 1 and Figure S2). In the Supplementary 

Material, we observed similar results for the overall penetrance estimates marginalized by 

relative’s sex and proband’s sex (see Table S1, Figure S1) as well as for the penetrance 

estimates in male and female relatives of male and female probands (see Table S2 and 

Figure S3 and S4).

4. Application to the AJ Penetrance Study

Since mutations in the LRRK2 gene are identified as a potential cause of autosomal 

dominant idiopathic Parkinson’s disease (PD) [14], it is essential to estimate the cumulative 

risk of Parkinson’s disease for LRRK2 mutation carriers for genetic counseling purposes [4, 

9]. Ashkenazi Jews (AJ) are known to have high frequencies of G2019S mutations in 

LRRK2 gene [19]. The risk for LRRK2 G2019S mutation carriers vary widely in the 

literature [4]. Moreover, the penetrance estimates can be modified by genetic or 

environmental risk factors of age at onset or demographic factors including ethnic group or 

gender [5].

To provide precise risk prediction, we estimate the age-specific cumulative risk of 

Parkinson’s disease for LRRK2 G2019S carriers and non-carriers in the AJ cohort adjusted 

for multiple risk factors. Due to the low frequencies of LRRK2 G2019S mutations in AJ 

population controls [20], we studied familial aggregaton of PD using the same validated 

family history interview at three academic centers specialized in the care of PD [5, 7, 19]. 

The family history data on the initial samples (probands) were collected from the Michael J. 

Fox Foundation Ashkenazi Jewish LRRK2 Consortium [5, 9, 19]. Although the probands 

Lee et al. Page 9

Stat Med. Author manuscript; available in PMC 2018 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reported on family history of PD, most of the genotypes of the relatives were not observed 

[5]. The unobserved genotypes were inferred by the LRRK2 G2019S mutation status in the 

probands using the kin-cohort method under a Cox hazards model to estimate the penetrance 

of LRRK2 PD in first-degree relatives [5, 9]. The probands were excluded from the analysis 

to avoid ascertainment bias [9]. All probands were genotyped for the LRRK2 G2019S 

mutation and glucocerebrosidase (GBA) mutations [5, 9]. To investigate the effect of 

LRRK2 mutations on PD risk, we excluded probands carrying other known genetic risk 

factors such as GBA mutations [5, 9].

The data consists of 2266 first-degree relatives (i.e., 727 parents, 575 siblings, and 964 

children) from 474 families. The participants were recruited at three sites: Beth Israel 

Medical Center (n=136), Columbia University Medical Center (n=146), and Tel-Aviv 

Medical Center (n=192). The prevalence of LRRK2 G2019S mutation was estimated to be 

2% in the AJ population [20]. There were four groups of mutation probabilities of relatives, 

pg ∈ {0, 0.02, 0.51, 1} [9], with frequencies 3%, 71%, 22%, and 4%, respectively. Hence, 

93% of the first-degree relatives were not genotyped. Specifically, the percentage of missing 

genotypes was similar in siblings and children (91%) and slightly higher in parents (98%). 

There were 127 relatives with PD (5.6%) and relatives with censored age-at-onset were 

excluded from the analysis.

The potential risk factors that may have an impact on the penetrance of PD were considered 

to improve the accuracy of the estimation. For example, the recent study by Marder et al. 

(2015) showed that relative’s sex may modify the penetrance of LRRK2 G2019S in AJ 

cohort [5]. In another study of Ashkenazi PD, the first-degree relatives of female probands 

with PD were more likely to have PD compared to that of male probands with PD, even after 

accounting for LRRK2 G2019S mutations [21]. Moreover, the issue of ascertainment 

through different academic centers (site) may have an impact on the penetrance estimates 

due to the heterogeneity of samples. Therefore, we aim to estimate the age-specific 

cumulative risk of PD in LRRK2 mutation carriers and non-carriers adjusted for relative’s 

sex and carrier status interaction, proband’s sex, and site of enrollment in the Ashkenazi 

Jewish LRRK2 Consortium study. We performed bootstrap based on families, which 

accommodates correlation among relatives in the same family. We used exponential random 

variables with a mean of one and weighted each family to account for the differential family 

data.

We considered using B-splines to estimate β(t) with the number of knots ranging from zero 

to three and degrees ranging from one to three. The location of each interior knot was evenly 

distributed at the quantiles. No penalty was introduced as the number of knots is small. The 

number of knots can be chosen by the Bayesian information criterion (BIC). In the LRRK2 
study, among models with a time-varying β(t), the simplest model with no knots had the 

smallest BIC (see Table S4). Moreover, the model assuming a time-invariant genotype effect 

β further had a smaller BIC. Therefore, we fit a final model with a time-invariant hazard for 

LRRK2 mutation, which maintains parsimony and facilitates easy interpretation. We also 

examined the Cox proportional hazards assumption using the probands data and the 

assumption was not rejected.
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Marginal cumulative risk estimates of PD obtained using (5) based on 1,000 bootstrap 

resampling of families are shown in Table S3 along with 95% confidence intervals. After 

adjusting for relative’s sex by LRRK2 G2019S mutation interaction, proband’s sex, and 

recruitment sites, the penetrance of PD in relatives predicted to carry a G2019S mutation 

was 24.8% (95% CI: 16.3 – 34.3%) to age 80, whereas the cumulative risk for predicted 

non-carriers was 10.9% (95% CI: 8.1 – 14.5%) to age 80. The penetrance estimates were 

slightly higher for carriers and slightly lower for non-carriers both by 1% than when 

unadjusted for the covariates, reported in Marder et al. (2015), but these changes remained 

nearly identical.

Figure S5 shows the estimated marginal cumulative risk of PD where the predicted carrier 

relatives had a dramatic increase in the risk of developing PD after age 60 as compared to a 

lower increase in the predicted non-carrier relatives. While the study unadjusted for the 

covariates [5] reported the penetrance of PD in relatives predicted to carry a G2019S 

mutation was almost 3 fold higher than non-carrier relatives (HR=2.89; 95% CI: 1.73 – 4.55; 

p < 0.001), when we examined the interaction effect between the mutation carrier status and 

relative’s sex on the risk of PD, the effect of the carrier status on the risk of PD was 

significantly modified by gender (HR of interaction effect θ = 0.3; p = 0.03) such that the 

effect was reduced for the male relatives (HR=1.47) and elevated for the female relatives 

(HR=4.95) (see Table 3). Specifically, when the male and female relatives were examined 

separately, the risk of PD for female relatives predicted to have a G2019S mutation was five-

fold higher than non-carrier females (HR=4.95; 95% CI: 2.55 – 9.67; p < 0.001) (Figure 2b), 

while for male relatives the risk of PD was not significantly increased among male relatives 

predicted to carry G2019S mutation compared to non-carrier males (HR=1.47; 95% CI: 0.53 

– 3.07; p = 0.47) (Figure 2a).

While the penetrance in G2019S carrier relatives and non-carrier relatives differed by 

gender, the penetrance to age 80 among predicted mutation carrier male relatives 21.4% 

(95% CI: 8.9 – 35.7%), was not statistically different from predicted carrier female relatives 

28.2% (95% CI: 18.7 – 40.1%); HR male to female: 0.72 (95% CI: 0.26 – 1.56; p = 0.41) 

(see Table 3 and 4). In contrast, the risk of PD to age 80 among predicted non-carrier male 

relatives 15.1% (95% CI: 10.8 – 20.5%), was higher than for predicted non-carrier female 

relatives 6.5% (95% CI: 4.0 – 10.2%); HR male to female 2.43 (95% CI: 1.50 – 4.06; p < 

0.001) was increased by 3% after the adjustment (HR male to female before the adjustment: 

2.40; 95% CI: 1.50 – 4.15; p < 0.001) [5]. The penetrance estimates were slightly lower for 

carrier male relatives by 1% and slightly higher for non-carrier male relatives by 0.1% than 

when unadjusted for the covariates, reported in Marder et al. (2015), but these changes 

remained almost identical. Therefore, the large gender difference of penetrance between 

carrier relatives and non-carrier relatives is due to the different PD distribution in non-

carriers among male and female relatives [5]. These HR are similar to the previous findings 

where the proband’s sex and site of enrollment were not controlled additionally [5].

When we specifically examined the effect of proband’s sex and site of enrollment on the 

penetrance of PD, the risk of PD was not significantly reduced among male probands 

compared to female probands (HR=0.71; 95% CI: 0.49 – 1.02; p = 0.05) and there was no 

significant heterogeneity between sites on the risk of PD, adjusted for other covariates; HR 
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Beth Israel to Columbia=0.78 (95% CI: 0.46 – 1.28; p = 0.33), HR Tel Aviv to 

Columbia=1.18 (95% CI: 0.72 – 1.97; p = 0.48), HR Beth Israel to Tel Aviv =0.66 (95% CI: 

0.38 – 1.11; p = 0.11) (see Table 3). This implies that proband’s sex and site of enrollment 

do not play a significant role on the penetrance of PD for the data collected in the AJ 

LRRK2 consortium.

To obtain the marginal risk distribution as in Section 2.3 to serve as design parameters, note 

that since the mutation status X of the first-degree relatives is independent of covariates Wi 

collected on the relative (e.g., relative gender) and proband’s covariates Zi (e.g., proband’s 

sex and enrollment site), F(W, Z|X) = F(W, Z) can be obtained nonparametrically based on 

the observed data. When the independence assumption does not hold for other applications, 

the conditional distribution of (W, Z) given X can be estimated by a similar EM algorithm 

treating X as missing data. The estimated penetrance for each relative’s sex by carrier status 

marginalized by proband’s sex and site of enrollment is reported in Table 4.

To assist with clinical trial planning, we show how to use the estimated penetrance function 

to design a disease modifying clinical trial of PD. In a study of Huntington’s disease, sample 

size calculations used the length of abnormal expansion of CAG repeat in the HTT gene 

since the penetrance is near complete [22]. However, in the PD literatures, using estimated 

mutation risk to design a future clinical trial is less common due to the low penetrance for 

most mutations. The increased PD risk in LRRK2 carriers compared to non-carriers in the 

AJ population provides a unique opportunity to power a future clinical trial in this 

population.

Assume a study recruits LRRK2 carrier and non-carrier relatives from probands in the three 

sites in the AJ consortium. Assume that the PD risk in the placebo arm is the same as 

observed in our carrier relatives’ data. We can obtain the placebo arm as the probability of 

developing PD within 5 years for LRRK2 carrier relatives who are not diagnosed at the 

baseline as p0 = P(T ≤ t + 5|T > t, X = 1) for any given baseline age t using the marginalized 

estimators provided by our analysis. Assume the effect of the intervention is to reduce the 

PD risk in carriers to that as observed in the non-carrier relatives. Under this assumption, we 

can estimate the intervention arm as the proportion of subjects affected by the PD by the end 

of 5 years as p1 = P(T ≤ t + 5|T > t, X = 0) for any given baseline age t. Then the sample size 

to achieve a power of 80% for testing the difference between placebo arm and intervention 

arm, H0 : p0 = p1, can be estimated.

Table 5 summarizes sample size information by baseline age. The results show that when 

recruiting asymptomatic LRRK2 carriers at age 65, the risk of developing PD within next 5 

years is 6.0% in the control arm. When assuming the intervention reduces the PD risk to the 

same as observed in the non-carrier group (scenario 1), the risk of developing PD in the 

intervention arm, is 2.5%. To detect a difference of 3.5% (1.1%–5.9%) at 80% power, the 

required sample size is n = 521 per arm. The sample size needed for recruiting 

asymptomatic subjects at other age is also presented. We also estimated the sample size to 

achieve a power of 80% for testing a smaller risk difference between placebo and 

intervention arm (50% of the previous risk difference); that is, to test H0 : p0 = p̃1, by letting 

p ̃1 = p0 + (p1 − p0)/2. The results in Table 5 show that when recruiting pre-symptomatic 
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LRRK2 carriers at age 65, the required sample size to detect a difference of 1.7% at 80% 

power is n = 2, 492 per arm. A large sample size is required for a prevention trial under the 

specified design parameters due to small risk differences.

5. Discussion

We propose a sieve maximum likelihood estimation method that permits adjustment for 

multiple covariates and interaction effects to estimate disease risk associated with genetic 

mutation in censored mixture data. The method allows more precise risk prediction by 

controlling for individual characteristics such as sex, ethnicity or other demographics. 

Moreover, gene-gene interactions and gene-environment interactions can also be handled 

within the framework of a single risk model using our method. These analyses may provide 

insights into whether these factors play a role in modifying penetrance. Previous method [9] 

has been proposed without considering covariates. Our model and method here permit more 

precise risk prediction by controlling for covariates that can further incorporate interaction 

effects with missing genotypes in relatives. In the application, when we examined the 

interaction effect between the mutation carrier status and relative’s sex on the risk of PD, the 

effect of the carrier status on the risk of PD was significantly modified by gender (p = 0.023; 

Table 3). The proposed method can also be readily generalized to include time-dependent 

covariates. For example, PD risk can be associated with clinical or environmental time-

varying covariates. For example, studies have reported that cigaratte smoking is inversely 

associated with PD [23]. Therefore, taking into account of duration of smoking or time since 

quitting is important in estimating penetrance [24]. Additionally, when the dimension of Zi 

is high, it may be of interest to perform variable selection in the M-step of the EM 

algorithm. Furthermore, we included effect size calculation to power a clinical trial. The 

penetrance can be used to design a prevention trial in order to test an intervention to reduce 

the risk of PD in asymptomatic LRRK2 p.G2019S mutation carrier relatives in a AJ 

population. The penetrance estimates can be used in genetic counseling setting. For 

example, female Ashkenazi Jewish relatives carrying LRRK2 mutation with female 

probands recruited at Beth Israel are estimated to have 27.19% cumulative risk of PD by age 

80 in our application.

As an extension of our method, under certain assumptions we can calibrate the genetic risk 

prediction model with covariates from samples to the population. Currently, we estimated 

the baseline hazard function from the study sample. However, the sample baseline hazard 

rate may not reflect the population baseline hazard rate. Instead, we can estimate the 

baseline rate in non-carriers from an external source and include in the model to obtain 

cumulative risk distribution in carriers under certain assumptions. When the population 

prevalence of deleterious mutation is low, the baseline cumulative hazard of a disease is 

readily available from national-based surveys or administrative databases. Assuming the 

hazard ratios for (Xi, Wi, Zi) are the same between the study sample and the underlying 

population, the model for the study sample is λs(t|Xi, Wi, Zi) = λ0s(t) exp{β(t)Xi + ηTWi + 

θTWiZi + γTZi}, and for the population is λ̃(t|Xi, Wi, Zi) = λ̃
0(t) exp{β(t)Xi + ηTWi + 

θTWiXi + γTZi}, where the difference between two models is the baseline hazard function. 

Combining the baseline cumulative hazard function obtained from external resource with 

regression coefficients estimated from the study sample, the genetic risk function for the 
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carrier group can be obtained under specified assumptions. Such estimation can be 

performed when planning clinical trials on certain populations with known baseline 

cumulative risk of disease.

In the studies we considered here, relatives’ disease onset phenotypes were collected cross-

sectionally from examining probands in each family. Probands’ ascertainment is through a 

disease consortium and primarily clinic-based. Thus, relatives’ missing genotypes due to 

death and censoring is unlikely to be directly associated with their disease onset ages given 

that a proband is recruited. In other words, relatives’ missing genotypes or censoring can be 

conditionally independent of their PD onset given proband’s ascertainment scheme and 

covariates, and hence properly accounted for. One source of bias may be length-biased 

sampling (for example, probands who are younger and with longer duration of PD may be 

more likely to be recruited), and alternative methods [25] can be considered in this case. Our 

method can be modified in the presence of competing risks to account for cause-specific 

hazards along the lines of [26]. Unfortunately, a limitation of LRRK2 study is that the cause 

of death in deceased relatives was not available. Lastly, due to a small number of GBA 

carriers in the LRRK2 study sample, estimation of LRRK2 by GBA interaction was not 

stable and thus not reported.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimated cumulative risk functions in the simulation with 40% censoring rate: Carriers (red 

solid line) and non-carriers (black solid line) in male and female relatives marginalized by 

proband’s sex with their 95% confidence intervals (dashed lines) and true cumulative risk 

functions (blue solid line).
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Figure 2. 
Estimated age-specific risk of Parkinson’s disease in LRRK2 G2019S carriers (red solid 

line) and non-carriers (black solid line) in male and female relatives marginalized by 

proband’s sex and site of enrollment with their 95% confidence intervals (dashed lines).
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