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Abstract

In genetic epidemiological studies, family history data are collected on relatives of study
participants and used to estimate the age-specific risk of disease for individuals who carry a causal
mutation. However, a family member’s genotype data may not be collected due to the high cost of
in-person interview to obtain blood sample or death of a relative. Previously, efficient
nonparametric genotype-specific risk estimation in censored mixture data has been proposed
without considering covariates. With multiple predictive risk factors available, risk estimation
requires a multivariate model to account for additional covariates that may affect disease risk
simultaneously. Therefore, it is important to consider the role of covariates in the genotype-
specific distribution estimation using family history data. We propose an estimation method that
permits more precise risk prediction by controlling for individual characteristics and incorporating
interaction effects with missing genotypes in relatives, and thus gene-gene interactions and gene-
environment interactions can be handled within the framework of a single model. We examine
performance of the proposed methods by simulations and apply them to estimate the age-specific
cumulative risk of Parkinson’s disease (PD) in carriers of LRRK2G2019S mutation using first-
degree relatives who are at genetic risk for PD. The utility of estimated carrier risk is demonstrated
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through designing a future clinical trial under various assumptions. Such sample size estimation is
seen in the Huntington’s disease literature using the length of abnormal expansion of a CAG
repeat in the H7T gene, but is less common in the PD literature.

Keywords

Mixture distribution; Censored data; Parkinson’s disease; Penetrance function; Disease risk
estimation

1. Introduction

Estimating the cumulative risk of disease onset by a certain age for individuals who carry a
causal mutation (i.e., age-specific penetrance function), has important implications for both
genetic counseling and clinical trial planning. For example, the age-specific penetrance
function will provide prognostic information for patients who are at risk of a genetic
disorder wishing to know the significance of their biological features in relation to their risk
of disease-onset. This will ultimately allow genetic counselors to interpret risk of disease
according to each individual’s unique biological characteristics and help patients make
important decisions regarding genetic testing. Furthermore, cumulative disease risk obtained
from an untreated population provides an estimate of the baseline event rate when powering
a clinical trial recruiting individuals at genetic risk. A lack of treatment options for changing
the trajectory of Parkinson’s disease (PD) or Alzheimer’s disease (AD) progression, in
combination with an increasing elderly population, poses a rising economic burden on
patients and the healthcare system [1], which makes developing innovative new treatments
that delay disease onset an urgent research priority [1, 2]. In many genetic epidemiological
studies of these late-onset disorders, family history data on probands at genetic risk are
collected and used to estimate the penetrance [3, 4, 5, 6]. In a typical study, affected
individuals (e.g., Ashkenazi Jewish (AJ) PD patients) including carriers and non-carriers are
recruited, and report family history of disease, including age at onset of the disease, in their
first-degree relatives. However, genotype information in many relatives may not be available
due to death of a relative (e.g., parents of a proband) or lack of resources to collect blood
samples in all family members [5, 7, 8]. This practical difficulty is frequently encountered in
cases of late onset disease (e.g., PD or AD) when parents are often deceased. When some
genotype information is missing, the probability of a family member carrying a mutation is
estimated based on the mutation status in the initial cohort of subjects (e.g., probands) and
the relative’s relationship to the proband under Mendelian transmission. [3, 5, 8].

With missing genotypes and ages of disease onset subject to right censoring, the observed
data consists of censored mixture data. Previously, a sieve maximum likelihood
nonparametric method for such data was proposed to estimate distribution function in
carriers and non-carriers [9]. The method was applied to a recent study [5] to estimate age-
specific risk of PD in LRRKZ gene mutation carriers compared to non-carriers. To evaluate
the sex effect on the carrier risk in this study, stratified analyses were carried out and the
penetrance function was estimated in a subpopulation of male and female relatives
separately [5]. Stratified analysis maintains the nonparametric nature in the sense that it does
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not assume any specific model of the association between the covariates and the outcome.
However, a limitation is reduced efficiency; when multiple covariates are available that may
affect the penetrance simultaneously, stratifying by a larger number of covariates reduces the
sample size and estimation may become infeasible. Therefore, when considering the role of
other demographic covariates or environmental risk factors on modifying the penetrance
functions, it is desirable to link covariates to the penetrance function through appropriate
semiparametric regression models.

Another advantage of introducing covariates to the model is that gene by gene interaction or
gene by environmental risk factor interaction can be handled within the framework of a
single model. A better characterization of the interactions between genetic and
environmental factors helps to understand the pathogenesis of multifactorial diseases [10].
However, if the gene itself is examined without considering its potential interactions with
other factors, the effect of the genetic factors on complex mechanism might be missed [11].
For example for PD, variants in LRRK2and PARK16 genetically interact to increase the
risk of PD. A recent study shows that LRRKZ interacts with RAB7L 1 to modify PD risk [12,
13]. Therefore, it is of interest to consider genotype-specific risk estimation in the presence
of their interaction with other genetic or environmental factors. A LRRKZ2by gender
interaction was suggested in a prior stratified analysis in our motivating study [5]. It is
desirable to test for this interaction in a parsimonious model. One challenge in testing for
gene by other risk factor interaction in [5] and other similar studies [4] is that genotypes are
not available in most first-degree relatives.

In this paper, we propose a covariate-adjusted semi-parametric estimation method that
permits including multiple covariates and interaction effects in the presence of missing
genotypes through a semiparametric regression model. Compared to previous nonparametric
approaches, our method allows controlling for individual characteristics such as sex,
ethnicity, environmental risk factors, and genotypes at other loci. Moreover, gene-gene
interactions and gene-environment interactions can also be handled within the framework of
a semiparametric model. Thus, we extend the prior work [9] on a single gene to handle
multiple genes. The analyses may provide insights on whether demographics or
environmental variables play a role in modifying the penetrance. In addition, to assist with
clinical trial planning, we estimate cumulative risk distribution of disease onset in the overall
sample by marginalizing over covariate distributions using estimates obtained from the
conditional model given covariates. Sample size estimation has been calculated in the
Huntington’s disease literature due to the known disease causal gene and its near complete
the penetrance. However, using estimated mutation risk to design a clinical trial for PD is
less common due to reduced penetrance. Our estimate of LRRKZ penetrance in the AJ
population provides a unique opportunity to power a future clinical trial in this population
with a higher PD risk. When external or prior information on the covariate distribution in the
target trial population is available, they can be easily incorporated. The performance of the
proposed method is examined through extensive simulation studies. Finally, we apply the
proposed approach to estimate the age-specific risk of PD for first-degree relatives with
LRRKZ mutations [4, 14, 15] and test for interaction between LRRKZ mutation and other
covariates.
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2. Methods

2.1. Notation and likelihood function

Let 7;be the age-at-onset of a disease which is subject to random censoring given
covariates. Let Xjindicate the carrier status at the causal gene of interest, with one indicating
the carrier group (each individual has at least one copy of the mutation) and zero indicating
the non-carrier group under an autosomal dominant inheritance model. Note that LRRK2
G2019s mutation has an autosomal dominant mode of inheritance [5]. Thus, here we rely on
biological knowledge and in the following consider a dominant model. It is straightforward
to extend to other genetic models (recessive or additive). Let Z;and W, be a vector of
auxiliary covariates collected on the probands and relatives, respectively. For example, Z;
may include demographic information on probands in each family representing family-
specific covariates to be adjusted, and W;may include relatives’ own individual-specific
characteristics. Due to potential right-censoring of the age-at-onset information and
unknown Xj, the observed data from n7subjects consist of { Y;= T; A Cj Aj= (T;< C), Z;,
W}, i=1, ..., n,where C;denotes the censoring time assumed to be conditionally
independent of 7,given Z;and W;,.

In our motivating study, the sampling design was to first recruit probands (either affected by
the disease or control) in a three-site PD consortium studying LRRK2 G2019S [5, 9]. All the
probands are genotyped and their phenotype information and covariates were collected (Z,
and Y;are known). Next, the family history of the disease and some demographic
information of the first-degree relatives, were collected through a systematic interview with
the probands or the relatives themselves [7] (7;and W/, are known). Genotypes on most
relatives were not available (Xjcan be missing). Even though in some cases the relatives’
genotypes are unknown, one can estimate the probability of a relative being a carrier, i.e.,

A X;=1). For example, LRRKZ gene mutation is associated with autosomal dominant PD
[16] and knowing just one parent is homozygous carrier will lead to infer the child is a
carrier with probability one. Moreover, a child of a heterozygote carrier parent has a
probability of 0.5 of carrying this mutation under the Mendelian transmission and a low
mutation prevalence (approximately zero). If the mutation prevalence in the general
population is known and denoted by ¢, then the probability of this child being a carrier is
AX;i=1)=0.5(1 + ¢). To present the likelihood function, we denote a finite number of
possible values for A(X)) in a study as {py, ..., m}, and let an indicator variable, G,
represent /m distinct carrier probabilities, where G;= gindicates AX;=1) = py, g=1, ..., m.
The observed genotypes in relatives can be incorporated by letting p, equal one for carriers
and zero for non-carriers. The model identifiability conditions on p, were examined in
Lemma 1 of [9].

Because the mutation status Xjmay be unknown, the observed conditional likelihood takes a
mixture form as

T TT{[pef1(YiiZs, Wi)+(1 — pg) fo(YiiZ:, Wi)|> x [1— pgFy(YiiZi, W;) — (1 — pg) Fo(YiiZ, Wi))}kAi}I(Gi:g%

i=1g=1
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where 7y, z, w) is the conditional probability density function of 7in the group with X'= k
given covariates Z = zand W = w, and Fi{); z, w) is the corresponding cumulative
distribution function. Compared to the prior work [9], the main contribution here is to
accommodate covariates, gene by environmental risk factor interaction, and potential gene
by gene interaction, through regression models. Thus, consider the hazard model allowing
for the interaction between X;and W, as

At X3, Wi, Zi)=No(t) exp{B(t) Xi+n" Wi+0" WiX;i+v"Z:}. (1)

Note that we allow the hazard ratio between two genotype groups to be time-dependent (i.e.,
B(9 is time-varying) to accommodate the potential time-varying mutation effect and protect
against misspecification of the penetrance function. To adjust for W;, Z,;and interaction
effect in a parsimonious way, their effects are assumed to be time-invariant. It is possible to
extend to time-varying case. The observed data likelihood is

n o m

[111

i=1g=1
{{pg/\o(Yfz)emm”’”e)Tm”Tzi exp {—/

+(1 = pg)Ao(Ya)e Wetr 2 exp{—Ag(vy)e™ Witr 2]

Y;

eﬁ(t)+(?7+0)TVW+'yTZ, dA(](t) }
0

A

Y, 17Ai 1<G'L:g)
i T
% [pg exp {/0 B+ (n+6) W'7+'7TZ’7dA0(t)} +(1—py) exp{Ao(}Q)e"TMHTZ”}] } )

O]

We can further expand the model to accommodate penetrance estimation for more than one
gene. For example, in our motivating LRRKZ consortium study, probands were genotyped
for the LRRK2 G2019S and glucocerebrosidase (GBA) mutations, but the probands who
carried GBA mutation were excluded [5] in prior analyses to investigate the LRRK2G2019S
mutation effect on the PD-onset that is not due to the other genetic factors. We can now
further estimate the risk of PD accounting for multiple genotypes such as cumulative risk for
those carrying both LRRKZand GBA mutation. Let U;denote the potentially unobserved
GBA carrier status. The hazard function corresponding to two genes is expanded as

NHX;, Ui, Wi, Z;)=Xo(t) exp{p1(t)Xi+B2()Us+n" Wi+0" W, X;4+~4"Z;},
where B9 is the effect of each gene on the disease hazard, respectively. An interaction term
between genes Xjand Uj;can also be incorporated when of interest. Because the majority of

the relatives were neither genotyped for LRRKZ2 nor for GBA, we expand the probability
vector of the carrier status at two loci as AX;= g1, U= ) = Py, g,- The likelihood function
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in (2) can be re-expressed under the expanded hazard model and probability vectors, and the
estimation procedure proceeds as in a single gene case.

2.2. Sieve maximum likelihood estimation with covariates and interactions

To estimate the parameters Ag(2) and {8(?), n, 6, ¥}, we adapt a hybrid approach involving a
nonparametric estimator and sieve estimation that leads to consistent and semiparametrically
efficient estimators similar to [9]. Specifically, consider using a nonparametric maximum
likelihood estimator for Ag() and a sieve approximation to estimate (%) by letting

5@):2;{; ;j; (f), where ¢1(2), ..., ¢k, (9 are basis functions such as B-splines functions.
It is computationally intensive and inefficient to directly maximize (2) over all the
parameters, since the log-likelihood is not convex and the parameters include the potentially
large number of jumps of Ag. However, by treating the mutation status in all individuals X,
..., Xpas missing data, fast numerical computation can be achieved by using the
expectation-maximization (EM) algorithm [17] due to available closed-form solutions in the
M-step.

The complete data log-likelihood function for (Y}, A, X;, G), i=1, ..., nis given as

n kn
> I(X=1) {Az’ log 6A0(Yi)+A:Y 0 (Vi) +Ai(m+6) Wit Ay Z;

i=1 j=1

Y, <Y; j=1

kn
= Y 0A(Y) eXP{Z%(f’j(Yk)+(’1+9)TW¢+’7TZi}}

n
+Y_I(X;=0){A; log 6Ao(Y:)+Am" Wi+ A" Zi—Ao(Y:) exp{n’ Wi+y" Z,}}

=1
+> > 1(Gi=g, X;=1) log pg+> > 1(Gi=g, X;=0) log(1 — py).
i—1g—1 i—1g=1

Therefore, in the E-step of EM algorithm, we evaluate the posterior probability of X;=1
given the observation data (G;, Yj A) as g;= aj(a;+ bj), where

kn Y kn T
ai=pg, exp{Az'ZOéj(f’j(Yz‘)+Ai("l+0)TWi+Ai’YTZF/O e2st @0 T W 2 g 1))
=1

bi=(1 - pg, ) exp{Ai" Wi+ A" Z; — Ao(Y7) exp{n’ Wi+y" Z;}}.

In the M-step, we maximize
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n kn
S ai{A; log SA0(Yi)+A:Y 0 (Yi)+A;(n+0)" Wi+ A" Z,;

i=1 j=1

kn
— ) 6A0(YR) eXP{Z%’%‘(Yk)+(’7+9)TW’7:+'YTZz'}}

Y <Y; j=1

n
+> (1=g;){A; log 6Ag(Yi)+Am Wit Ay Z;— Ao (V) exp{n’ W;++"Z;}}. @
i=1 3

By differentiating (3) with respect to the jump sizes of Ag(-) at the observed event times, we
obtain close-form solutions

A;
5A0(Yv£): n k T ’
Y=l (Ve 2 Y7) {Qk exp{3_77 09 (Yi)+(n+0)” Wiy Zy }+(1 — qx) eXP{ﬂTWk+’YTZk}}

(4)

After substituting (4) into (3) and differentiating with respect to a;, we obtain the score
equation for a;as

Sho (Vi > Yi)gr exp{3}2 0,0, (V) +(n+0)" Wi+" Z;}
S I(Yr > Y5) {qkez_l;zlaj¢j(YZ‘)‘H‘VH’0>TWI«+'YTZk+(1 _ qk)enTWk""YTZk}J

ZAi [Qi -
i=1

where ¢(Y) = (¢1(YD), =, dx, (YD) T The score equations for the other parameters in the M-
step are obtained similarly and the parameters are estimated using Newton-Raphson
algorithm. After obtaining the updated a and {7, 6, ¥} values, we use (4) to update the
jumps of Ag(). We then iterate between the E-step and M-step till convergence. Note that
the baseline hazard function has a closed-form solution due to the use of nonparametric
maximum likelihood estimator, the M-step is computationally fast. Asymptotic properties of
the baseline cumulative hazard function in a nonparametric model were studied in Wang et
al. (2015) [9], which shows consistency, efficiency, and convergence to a Gaussian process
in the presence of missing genotypes. Similar arguments (see for example, [18]) can be
applied to establish asymptotic properties of estimators considered here.

To inform planning of a clinical trial, the marginal cumulative risks in carrier and non-carrier
relatives may provide design parameters (e.g., risk of disease in the absence of intervention).
Thus, we can estimate the marginal cumulative distribution of disease age-at-onset in
carriers and non-carriers, respectively, based on the expressions

Fi(t)=P(T < t|X=1)=1— / exp{—Ag(t)PO+m+O W2y Ww 7| X=1),
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and

Fo(t):P(TgﬂX:O):l—/ exp{— Ao ()" W IV AH(W, Z| X=0), -

where H(W, Z|.X) denotes the conditional probability distribution function of W, Z given the
mutation carrier status. Since the genotypes X are not observed in some relatives, we
estimate H(W, Z|X) through an EM algorithm.

3. Simulation Studies

We conducted simulation studies to assess the performance of the proposed method. The
simulations were designed to imitate the LRRK2 penetrance study described in Section 4.
We generated survival times similar to the estimated distributions of the actual data in
Section 4. The distribution of the event times for non-carriers in the baseline group (with
covariates Z;and W, as zero) were generated from Wesbull5, 105) and the distributions for
carriers and non-carriers in the other covariate groups were generated under the hazard
model (1), allowing for relative’s sex by gene interaction [9]. The mutation probability p;
was taken from {0, 0.02, 0.51, 1}, as in the real data analysis. 93% of the total sample size n
= 2266 were not genotyped and parents, siblings, and children had a similar rate of available
genotypes as in the real example. To evaluate how well our method works in the case of data
sets with a large percentage of censored data points (i.e, data points where an exact time of
age at onset is not known), censoring times were generated from a uniform distribution to
achieve a random choice of censoring rate of 40% or 60%. To ensure valid inference, we
used bootstrap resampling of families to compute the standard errors and construct
confidence intervals for the estimators. The covariates included in the simulation models
(sex of the relative and proband) were fixed at the same values as the real data. We did not
include site of enrollment as a covariate in the simulation model since there was no
significant heterogeneity between sites on the penetrance of PD in the real data analysis.

The goal of the simulation study is to examine the bias and efficiency of estimators. We
evaluated the bias, empirical standard deviation, average of the estimated standard errors,
and coverage probability corresponding to nominal 95% confidence intervals. We set the
initial values to be zero in our simulations and data analysis and we did not find the
algorithm to be sensitive to the choice of initial values. A reasonable way to select the initial
values of parameters is to use baseline hazard ratios estimated from the probands data where
all the genotypes are observed. We used exponential random variables with a mean of one to
weight each observation. The simulation results from 1,000 replications with 1,000 bootstrap
samples for each simulated data are given in Table 1 and Table 2.

The parameter estimates of the Cox proportional hazards model for the simulation study
under both 40% and 60% censoring rates in Table 1 suggest that estimated hazard ratios
(HR) are close to true HRs with small bias. The empirical variability agrees with the
variance estimate based on the bootstrap and the coverage probabilities are close to the
nominal level of 95%. Specifically, the estimated HR of predicted carrier male relatives to
predicted non-carrier male relatives adjusted for other covariates was close to the true HR
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with bias < 0.01 (Estimated HR=1.52, True HR=1.52) and the estimated standard errors
agrees adequately with the empirical standard deviation (SE=0.21, SD=0.21) with the
coverage probability 94%. Moreover, higher HR was estimated for the predicted carrier
female relatives compared to predicted non-carrier female relatives adjusted for other
covariates which was close to the true HR (Estimated HR=5.20, True HR=4.99) and the
estimated standard errors agrees adequately with the empirical standard deviation (SE=0.80,
SD=0.83) with the coverage probability 93%. Our method performs well even under 60%
censoring rate. As the censoring rate increases from 40% to 60%, we observed the empirical
standard deviation and estimated standard errors increased slightly.

In Table 2, we present the average estimated values of the cumulative distribution functions
(Fy for carriers and A for non-carriers) in male and female relatives at various ages with
their performances. When cumulative risk in male and female relatives were examined
separately, the small bias of estimated penetrance was observed through out the entire range
of age (see Table 2 and Figure 1). Specifically, the bias of estimated penetrance to age 80
among predicted mutation carrier male relative with 40% censoring rate was —0.02% and the
estimated standard errors agrees adequately with the empirical standard deviation
(SE=4.19%, SD=4.28%), and the coverage probability of 93.4% was close to the nominal
level. Similar results were observed in female relatives and our method performs well under
both 40% and 60% censoring rates. \We note that as the censoring rate increases, the bias and
the variance estimates tend to increase and the coverage probability tends to decrease. This
makes a wider 95% confidence interval for the cumulative risk estimates for 60% censoring
rate compared to 40% censoring rate (see Figure 1 and Figure S2). In the Supplementary
Material, we observed similar results for the overall penetrance estimates marginalized by
relative’s sex and proband’s sex (see Table S1, Figure S1) as well as for the penetrance
estimates in male and female relatives of male and female probands (see Table S2 and
Figure S3 and S4).

4. Application to the AJ Penetrance Study

Since mutations in the LRRKZ2 gene are identified as a potential cause of autosomal
dominant idiopathic Parkinson’s disease (PD) [14], it is essential to estimate the cumulative
risk of Parkinson’s disease for LRRK2 mutation carriers for genetic counseling purposes [4,
9]. Ashkenazi Jews (AJ) are known to have high frequencies of G2019S mutations in
LRRK2gene [19]. The risk for LRRK2 G2019S mutation carriers vary widely in the
literature [4]. Moreover, the penetrance estimates can be modified by genetic or
environmental risk factors of age at onset or demographic factors including ethnic group or
gender [5].

To provide precise risk prediction, we estimate the age-specific cumulative risk of
Parkinson’s disease for LRRK2 G2019S carriers and non-carriers in the AJ cohort adjusted
for multiple risk factors. Due to the low frequencies of LRRK2 G2019S mutations in AJ
population controls [20], we studied familial aggregaton of PD using the same validated
family history interview at three academic centers specialized in the care of PD [5, 7, 19].
The family history data on the initial samples (probands) were collected from the Michael J.
Fox Foundation Ashkenazi Jewish LRRK2 Consortium [5, 9, 19]. Although the probands
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reported on family history of PD, most of the genotypes of the relatives were not observed
[5]. The unobserved genotypes were inferred by the LRRK2 G2019S mutation status in the
probands using the kin-cohort method under a Cox hazards model to estimate the penetrance
of LRRKZ2PD in first-degree relatives [5, 9]. The probands were excluded from the analysis
to avoid ascertainment bias [9]. All probands were genotyped for the LRRK2 G2019S
mutation and glucocerebrosidase (GBA) mutations [5, 9]. To investigate the effect of
LRRKZ2mutations on PD risk, we excluded probands carrying other known genetic risk
factors such as GBA mutations [5, 9].

The data consists of 2266 first-degree relatives (i.e., 727 parents, 575 siblings, and 964
children) from 474 families. The participants were recruited at three sites: Beth Israel
Medical Center (n=136), Columbia University Medical Center (n=146), and Tel-Aviv
Medical Center (n=192). The prevalence of LRRK2G2019S mutation was estimated to be
2% in the AJ population [20]. There were four groups of mutation probabilities of relatives,
Py € {0, 0.02, 0.51, 1} [9], with frequencies 3%, 71%, 22%, and 4%, respectively. Hence,
93% of the first-degree relatives were not genotyped. Specifically, the percentage of missing
genotypes was similar in siblings and children (91%) and slightly higher in parents (98%).
There were 127 relatives with PD (5.6%) and relatives with censored age-at-onset were
excluded from the analysis.

The potential risk factors that may have an impact on the penetrance of PD were considered
to improve the accuracy of the estimation. For example, the recent study by Marder et al.
(2015) showed that relative’s sex may modify the penetrance of LRRK2 G2019S in AJ
cohort [5]. In another study of Ashkenazi PD, the first-degree relatives of female probands
with PD were more likely to have PD compared to that of male probands with PD, even after
accounting for LRRK2 G2019S mutations [21]. Moreover, the issue of ascertainment
through different academic centers (site) may have an impact on the penetrance estimates
due to the heterogeneity of samples. Therefore, we aim to estimate the age-specific
cumulative risk of PD in LRRKZ mutation carriers and non-carriers adjusted for relative’s
sex and carrier status interaction, proband’s sex, and site of enrollment in the Ashkenazi
Jewish LRRKZ2 Consortium study. We performed bootstrap based on families, which
accommodates correlation among relatives in the same family. We used exponential random
variables with a mean of one and weighted each family to account for the differential family
data.

We considered using B-splines to estimate B() with the number of knots ranging from zero
to three and degrees ranging from one to three. The location of each interior knot was evenly
distributed at the quantiles. No penalty was introduced as the number of knots is small. The
number of knots can be chosen by the Bayesian information criterion (BIC). In the LRRK2
study, among models with a time-varying g(#), the simplest model with no knots had the
smallest BIC (see Table S4). Moreover, the model assuming a time-invariant genotype effect
B further had a smaller BIC. Therefore, we fit a final model with a time-invariant hazard for
LRRK2mutation, which maintains parsimony and facilitates easy interpretation. We also
examined the Cox proportional hazards assumption using the probands data and the
assumption was not rejected.
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Marginal cumulative risk estimates of PD obtained using (5) based on 1,000 bootstrap
resampling of families are shown in Table S3 along with 95% confidence intervals. After
adjusting for relative’s sex by LRRK2G2019S mutation interaction, proband’s sex, and
recruitment sites, the penetrance of PD in relatives predicted to carry a G2019S mutation
was 24.8% (95% ClI: 16.3 — 34.3%) to age 80, whereas the cumulative risk for predicted
non-carriers was 10.9% (95% ClI: 8.1 — 14.5%) to age 80. The penetrance estimates were
slightly higher for carriers and slightly lower for non-carriers both by 1% than when
unadjusted for the covariates, reported in Marder et al. (2015), but these changes remained
nearly identical.

Figure S5 shows the estimated marginal cumulative risk of PD where the predicted carrier
relatives had a dramatic increase in the risk of developing PD after age 60 as compared to a
lower increase in the predicted non-carrier relatives. While the study unadjusted for the
covariates [5] reported the penetrance of PD in relatives predicted to carry a G2019S
mutation was almost 3 fold higher than non-carrier relatives (HR=2.89; 95% CI: 1.73 — 4.55;
p<0.001), when we examined the interaction effect between the mutation carrier status and
relative’s sex on the risk of PD, the effect of the carrier status on the risk of PD was
significantly modified by gender (HR of interaction effect 6= 0.3; p=0.03) such that the
effect was reduced for the male relatives (HR=1.47) and elevated for the female relatives
(HR=4.95) (see Table 3). Specifically, when the male and female relatives were examined
separately, the risk of PD for female relatives predicted to have a G2019S mutation was five-
fold higher than non-carrier females (HR=4.95; 95% CI: 2.55 - 9.67; p< 0.001) (Figure 2b),
while for male relatives the risk of PD was not significantly increased among male relatives
predicted to carry G2019S mutation compared to non-carrier males (HR=1.47; 95% CI: 0.53
—-3.07; p=0.47) (Figure 2a).

While the penetrance in G2019S carrier relatives and non-carrier relatives differed by
gender, the penetrance to age 80 among predicted mutation carrier male relatives 21.4%
(95% CI: 8.9 — 35.7%), was not statistically different from predicted carrier female relatives
28.2% (95% CI: 18.7 — 40.1%); HR male to female: 0.72 (95% CI: 0.26 — 1.56; p= 0.41)
(see Table 3 and 4). In contrast, the risk of PD to age 80 among predicted non-carrier male
relatives 15.1% (95% CI: 10.8 — 20.5%), was higher than for predicted non-carrier female
relatives 6.5% (95% CI: 4.0 — 10.2%); HR male to female 2.43 (95% CI: 1.50 — 4.06; p<
0.001) was increased by 3% after the adjustment (HR male to female before the adjustment:
2.40; 95% CI: 1.50 — 4.15; p< 0.001) [5]. The penetrance estimates were slightly lower for
carrier male relatives by 1% and slightly higher for non-carrier male relatives by 0.1% than
when unadjusted for the covariates, reported in Marder et al. (2015), but these changes
remained almost identical. Therefore, the large gender difference of penetrance between
carrier relatives and non-carrier relatives is due to the different PD distribution in non-
carriers among male and female relatives [5]. These HR are similar to the previous findings
where the proband’s sex and site of enrollment were not controlled additionally [5].

When we specifically examined the effect of proband’s sex and site of enrollment on the
penetrance of PD, the risk of PD was not significantly reduced among male probands
compared to female probands (HR=0.71; 95% CI: 0.49 — 1.02; p = 0.05) and there was no
significant heterogeneity between sites on the risk of PD, adjusted for other covariates; HR
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Beth Israel to Columbia=0.78 (95% CI: 0.46 — 1.28; p=0.33), HR Tel Aviv to
Columbia=1.18 (95% CI: 0.72 — 1.97; p= 0.48), HR Beth Israel to Tel Aviv =0.66 (95% ClI:
0.38 - 1.11; p=0.11) (see Table 3). This implies that proband’s sex and site of enrollment
do not play a significant role on the penetrance of PD for the data collected in the AJ
LRRKZ consortium.

To obtain the marginal risk distribution as in Section 2.3 to serve as design parameters, note
that since the mutation status X of the first-degree relatives is independent of covariates W,
collected on the relative (e.g., relative gender) and proband’s covariates Z; (e.g., proband’s
sex and enrollment site), AW, Z|X) = AW, Z) can be obtained nonparametrically based on
the observed data. When the independence assumption does not hold for other applications,
the conditional distribution of (W, Z) given X can be estimated by a similar EM algorithm
treating X 'as missing data. The estimated penetrance for each relative’s sex by carrier status
marginalized by proband’s sex and site of enrollment is reported in Table 4.

To assist with clinical trial planning, we show how to use the estimated penetrance function
to design a disease modifying clinical trial of PD. In a study of Huntington’s disease, sample
size calculations used the length of abnormal expansion of CAG repeat in the H77 gene
since the penetrance is near complete [22]. However, in the PD literatures, using estimated
mutation risk to design a future clinical trial is less common due to the low penetrance for
most mutations. The increased PD risk in LRRKZ carriers compared to non-carriers in the
AJ population provides a unique opportunity to power a future clinical trial in this
population.

Assume a study recruits LRRKZ carrier and non-carrier relatives from probands in the three
sites in the AJ consortium. Assume that the PD risk in the placebo arm is the same as
observed in our carrier relatives’ data. We can obtain the placebo arm as the probability of
developing PD within 5 years for LRRKZ carrier relatives who are not diagnosed at the
baseline as gy = AT< t+ 57>t X=1) for any given baseline age fusing the marginalized
estimators provided by our analysis. Assume the effect of the intervention is to reduce the
PD risk in carriers to that as observed in the non-carrier relatives. Under this assumption, we
can estimate the intervention arm as the proportion of subjects affected by the PD by the end
of 5yearsas py = AT< t+5|T> t X=0) for any given baseline age £ Then the sample size
to achieve a power of 80% for testing the difference between placebo arm and intervention
arm, Hp : oy = b1, can be estimated.

Table 5 summarizes sample size information by baseline age. The results show that when
recruiting asymptomatic LRRKZ carriers at age 65, the risk of developing PD within next 5
years is 6.0% in the control arm. When assuming the intervention reduces the PD risk to the
same as observed in the non-carrier group (scenario 1), the risk of developing PD in the
intervention arm, is 2.5%. To detect a difference of 3.5% (1.1%-5.9%) at 80% power, the
required sample size is 7= 521 per arm. The sample size needed for recruiting
asymptomatic subjects at other age is also presented. We also estimated the sample size to
achieve a power of 80% for testing a smaller risk difference between placebo and
intervention arm (50% of the previous risk difference); that is, to test Ay : gy = 01, by letting
1=+ (01 — pp)/2. The results in Table 5 show that when recruiting pre-symptomatic
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LRRK2 carriers at age 65, the required sample size to detect a difference of 1.7% at 80%
power is n= 2, 492 per arm. A large sample size is required for a prevention trial under the
specified design parameters due to small risk differences.

5. Discussion

We propose a sieve maximum likelihood estimation method that permits adjustment for
multiple covariates and interaction effects to estimate disease risk associated with genetic
mutation in censored mixture data. The method allows more precise risk prediction by
controlling for individual characteristics such as sex, ethnicity or other demographics.
Moreover, gene-gene interactions and gene-environment interactions can also be handled
within the framework of a single risk model using our method. These analyses may provide
insights into whether these factors play a role in modifying penetrance. Previous method [9]
has been proposed without considering covariates. Our model and method here permit more
precise risk prediction by controlling for covariates that can further incorporate interaction
effects with missing genotypes in relatives. In the application, when we examined the
interaction effect between the mutation carrier status and relative’s sex on the risk of PD, the
effect of the carrier status on the risk of PD was significantly modified by gender (p= 0.023;
Table 3). The proposed method can also be readily generalized to include time-dependent
covariates. For example, PD risk can be associated with clinical or environmental time-
varying covariates. For example, studies have reported that cigaratte smoking is inversely
associated with PD [23]. Therefore, taking into account of duration of smoking or time since
quitting is important in estimating penetrance [24]. Additionally, when the dimension of Z;
is high, it may be of interest to perform variable selection in the M-step of the EM
algorithm. Furthermore, we included effect size calculation to power a clinical trial. The
penetrance can be used to design a prevention trial in order to test an intervention to reduce
the risk of PD in asymptomatic LRRK2p.G2019S mutation carrier relatives in a AJ
population. The penetrance estimates can be used in genetic counseling setting. For
example, female Ashkenazi Jewish relatives carrying LRRKZ mutation with female
probands recruited at Beth Israel are estimated to have 27.19% cumulative risk of PD by age
80 in our application.

As an extension of our method, under certain assumptions we can calibrate the genetic risk
prediction model with covariates from samples to the population. Currently, we estimated
the baseline hazard function from the study sample. However, the sample baseline hazard
rate may not reflect the population baseline hazard rate. Instead, we can estimate the
baseline rate in non-carriers from an external source and include in the model to obtain
cumulative risk distribution in carriers under certain assumptions. When the population
prevalence of deleterious mutation is low, the baseline cumulative hazard of a disease is
readily available from national-based surveys or administrative databases. Assuming the
hazard ratios for (Xj; W;, Z)) are the same between the study sample and the underlying
population, the model for the study sample is A44.X;, W}, Z)) = AoLD) exp{B(DX;+ n'W,+
0'WZ;+ 723, and for the population is A(4.X; W;, Z)) = Ao(d exp{B(D.X;+ n'W,+
0'W,X;+ y'Z 3}, where the difference between two models is the baseline hazard function.
Combining the baseline cumulative hazard function obtained from external resource with
regression coefficients estimated from the study sample, the genetic risk function for the
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carrier group can be obtained under specified assumptions. Such estimation can be
performed when planning clinical trials on certain populations with known baseline
cumulative risk of disease.

In the studies we considered here, relatives’ disease onset phenotypes were collected cross-
sectionally from examining probands in each family. Probands’ ascertainment is through a
disease consortium and primarily clinic-based. Thus, relatives’ missing genotypes due to
death and censoring is unlikely to be directly associated with their disease onset ages given
that a proband is recruited. In other words, relatives’ missing genotypes or censoring can be
conditionally independent of their PD onset given proband’s ascertainment scheme and
covariates, and hence properly accounted for. One source of bias may be length-biased
sampling (for example, probands who are younger and with longer duration of PD may be
more likely to be recruited), and alternative methods [25] can be considered in this case. Our
method can be modified in the presence of competing risks to account for cause-specific
hazards along the lines of [26]. Unfortunately, a limitation of LRRKZ study is that the cause
of death in deceased relatives was not available. Lastly, due to a small number of GBA
carriers in the LRRKZ study sample, estimation of LRRKZ2by GBA interaction was not
stable and thus not reported.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the Michael J. Fox Foundation, and A. Lee receives research support from the NIH
TL1 Personalized Medicine Training Program (TL1TR000082). K. Marder receives research support from the NIH:
NS036630, 1UL1 RR024156-01, PO412196-G, and PO412196-G. R. Alcalay receives research support from the
NIH (K02NS080915), the Parkinson’s Disease Foundation, the Smart Foundation, and the Michael J. Fox
Foundation. A. Orr-Urtreger receives research support from the Kahn Foundation, Chief Scientist of the Israeli
Ministry of Health, and the Michael J. Fox Foundation for Parkinson’s Research. N. Giladi serves as a member of
the Editorial Board for the Journal of Parkinson’s Disease. N. Giladi received research support from the Michael J
Fox Foundation, the National Parkinson Foundation, the European Union 7th Framework Program and the Israel
Science Foundation as well as from Teva NNE program, LTI, and Abviee and CHDI. S. Bressman has received
research support from the Michael J. Fox Foundation, NIH, and Dystonia Medical Research Foundation. Y. Wang
receives research support from the NIH (NS073671, NS082062) and the Michael J. Fox Foundation.

References

1. Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A. The current and projected economic burden
of Parkinson’s disease in the United States. Movement Disorders. 2013; 28(3):311-318. [PubMed:
23436720]

2. Alzheimers Association. Changing the Trajectory of Alzheimers Disease: How a Treatment by 2025
Saves Lives and Dollars. Alzheimers Association. 2010

3. Wacholder S, Hartge P, Struewing JP, Pee D, McAdams M, Brody L, Tucker M. The kin-cohort
study for estimating penetrance. American Journal of Epidemiology. 1998; 148(7):623-630.
[PubMed: 9778168]

4. Goldwurm S, Tunesi S, Tesei S, Zini M, Sironi F, Primignani P, Magnani C, Pezzoli G. Kin-cohort
analysis of LRRK2-G2019S penetrance in Parkinsons disease. Movement Disorders. 2011; 26(11):
2144-2145. [PubMed: 21714003]

5. Marder K, Wang Y, Alcalay RN, Mejia-Santana H, Tang MX, Lee A, Raymond D, Mirelman A,
Saunders-Pullman R, Clark L, Ozelius L, Orr-Urtreger A, Giladi N, Bressman S, LRRK2 Ashkenazi

Stat Med. Author manuscript; available in PMC 2018 September 30.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Leeetal.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Page 15

Jewish Consortium. Age-specific penetrance of LRRK2 G2019S in the Michael J. Fox Ashkenazi
Jewish LRRK2 Consortium. Neurology. 2015; 85(1):89-95. [PubMed: 26062626]

. Brickman AM, Schupf N, Manly JJ, Luchsinger JA, Andrews H, Tang MX, Reitz C, Small SA,

Mayeux R, DeCarli C, Brown TR. Brain morphology in older African Americans, Caribbean
Hispanics, and whites from northern Manhattan. Archives of Neurology. 2008; 65(8):1053-1061.
[PubMed: 18695055]

. Marder K, Levy G, Louis ED, Mejia-Santana H, Cote L, Andrews H, Harris J,Waters C, Ford B,

Frucht S, Fahn S, Ottman R. Accuracy of family history data on Parkinsons Disease. Neurology.
2003; 61(1):18-23. [PubMed: 12847150]

. Zhang H, Olschwang S, Yu K. Statistical inference on the penetrances of rare genetic mutations

based on a case-family design. Biostatistics. 2010; 11(3):519-532. [PubMed: 20179148]

. Wang Y, Liang B, Tong X, Marder K, Bressman S, Orr-Urtreger A, Giladi N, Zeng D. Efficient

Estimation of Nonparametric Genetic Risk Function with Censored Data. Biometrika. 2015; 102(3):
515-532. [PubMed: 26412864]

. Tiret L. Gene-environment interaction: a central concept in multifactorial diseases. Proceedings of
the Nutrition Society. 2002; 61(4):457-463. [PubMed: 12691175]

Cordell HJ. Detecting gene-gene interactions that underlie human diseases. Nature Reviews
Genetics. 2009; 10(6):392-404.

Soto-Ortolaza Al, Heckman MG, Labbé C, Serie DJ, Puschmann A, Rayaprolu S, Strongosky A,
Boczarska-Jedynak M, Opala G, Krygowska-Wajs A, Barcikowska M, Czyzewski K, Lynch T,
Uitti RJ, Wszolek ZK, Ross OA. GWAS risk factors in Parkinson’s disease: LRRK2 coding
variation and genetic interaction with PARK16. American Journal of Neurodegenerative Disease.
2013; 2(4):287-299. [PubMed: 24319646]

MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS,
Clark LN, Small SA, Abeliovich A. RAB7L1 interacts with LRRK2 to modify intraneuronal
protein sorting and Parkinson’s disease risk. Neuron. 2013; 77(3):425-439. [PubMed: 23395371]

Paisaan-Ruiz C, Jain S, Evans EW, Gilks WP, Simén J, van der Brug M, Lépez de Munain A,
Aparicio S, Gil AM, Khan N, et al. Cloning of the gene containing mutations that cause PARK8-
linked Parkinsons disease. Neuron. 2004; 44(4):595-600. [PubMed: 15541308]

Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian
CP, Goldwurm S, et al. Phenotype, genotype, andworldwide genetic penetrance of LRRK2-
associated Parkinsons disease: A case-control study. The Lancet Neurology. 2008; 7(7):583-590.
[PubMed: 18539534]

Di Fonzo A, Rohé CF, Ferreira J, Chien HF, Vacca L, Stocchi F, Guedes L, Fabrizio E, Manfredi
M, Vanacore N, Goldwurm S, Breedveld G, Sampaio C, Meco G, Barbosa E, Oostra BA, Bonifati
V, Italian Parkinson Genetics Network. A frequent LRRK2 gene mutation associated with
autosomal dominant Parkinson’s disease. Lancet. 2005; 365(9457):412—-415. [PubMed: 15680456]

Laird NM, Ware JH. Random Effects Models for Longitudinal Data. Biometrics. 1982; 38(4):963—
974. [PubMed: 7168798]

Chen Q, Zeng D, Ibrahim JG, Akacha M, Schmidli H. Estimating time-varying effects for
overdispersed recurrent events data with treatment switching. Biometrika. 2013; 100(2):339-354.
[PubMed: 24465031]

Alcalay RN, Mirelman A, Saunders-Pullman R, Tang MX, Mejia Santana H, Raymond D, Roos E,
Orbe-Reilly M, Gurevich T, Bar Shira A, et al. Parkinsons disease phenotype in Ashkenazi Jews
with and without LRRK2 G2019S mutations. Movement Disorders. 2013; 28(14):1966-1971.
[PubMed: 24243757]

Orr-Urtreger A, Shifrin C, Rozovski U, Rosner S, Bercovich D, Gurevich T, Yagev-More H, Bar-
Shira A, Giladi N. The LRRK2 G2019S mutation in Ashkenazi Jews with Parkinson disease: is
there a gender effect? Neurology. 2007; 69(16):1595-1602. [PubMed: 17938369]
Saunders-Pullman R, Stanley K, San Luciano M, Barrett MJ, Shanker V, Raymond D, Ozelius LJ,
Bressman SB. Gender differences in the risk of familial parkinsonism: beyond LRRK2?
Neuroscience Letters. 2011; 496(2):125-128. [PubMed: 21511009]

Stat Med. Author manuscript; available in PMC 2018 September 30.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Leeetal.

22.

23.

24.

25.

26.

Page 16

Genetic Modifiers of Huntingtons Disease (GeM-HD) Consortium. Identification of Genetic
Factors that Modify Clinical Onset of Huntington’s Disease. Cell. 2015; 162(3):516-526.
[PubMed: 26232222]

Ritz B, Ascherio A, Checkoway H, Marder KS, Nelson LM, Rocca WA, Ross GW, Strickland D,
Van Den Eeden SK, Gorell J. Pooled analysis of tobacco use and risk of Parkinson disease.
Archives of Neurology. 2007; 64(7):990-997. [PubMed: 17620489]

Thacker EL, O’Reilly EJ, Weisskopf MG, Chen H, Schwarzschild MA, McCullough ML, Calle
EE, Thun MJ, Ascherio A. Temporal relationship between cigarette smoking and risk of Parkinson
disease. Neurology. 2007; 68(10):764-768. [PubMed: 17339584]

Qin J, Shen Y. Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox
Model. Biometrics. 2010; 66(2):382—392. [PubMed: 19522872]

Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. Journal
of the American statistical association. 1999; 94(446):496-509.

Stat Med. Author manuscript; available in PMC 2018 September 30.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Leeetal.

Cumulative Risk
0.4 06 08

0.2

0.0

Page 17
— LRRK2 carriers — LRRK2 carriers
— LRRK2 non-carriers @ _| | = LRRK2 non-carriers
o
o _|
. o
]
©
L
=2
s
= =
= o
=
(&)
o~
R
o _|
o
T T T T T T T T T T T T
30 40 50 60 70 80 30 40 50 60 70 80
Age Age

(a) Male (b) Female

Figure 1.
Estimated cumulative risk functions in the simulation with 40% censoring rate: Carriers (red

solid line) and non-carriers (black solid line) in male and female relatives marginalized by
proband’s sex with their 95% confidence intervals (dashed lines) and true cumulative risk
functions (blue solid line).
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Figure 2.
Estimated age-specific risk of Parkinson’s disease in LRRK2 G2019S carriers (red solid

line) and non-carriers (black solid line) in male and female relatives marginalized by
proband’s sex and site of enrollment with their 95% confidence intervals (dashed lines).
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