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Abstract

Functional data are increasingly collected in public health and medical studies to better understand 

many complex diseases. Besides the functional data, other clinical measures are often collected 

repeatedly. Investigating the association between these longitudinal data and time to a survival 

event is of great interest to these studies. In this article, we develop a functional joint model (FJM) 

to account for functional predictors in both longitudinal and survival submodels in the joint 

modeling framework. The parameters of FJM are estimated in a maximum likelihood framework 

via EM algorithm. The proposed FJM provides a flexible framework to incorporate many features 

both in joint modeling of longitudinal and survival data and in functional data analysis. The FJM is 

evaluated by a simulation study and is applied to the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) study, a motivating clinical study testing whether serial brain imaging, clinical and 

neuropsychological assessments can be combined to measure the progression of Alzheimer’s 

disease.
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1 Introduction

Modern technologies are currently producing increasingly large, complex, and high-

dimensional data in medical research. One such type of data is functional data, whose units 

of observation are functions defined on certain continuous domains (e.g., time, space, or 

both) but sampled on discrete grids. These functions may be defined on a one-dimensional 

Euclidean domain, such as growth curve data, heart rate monitor (HRM) data, and 

electroencephalogram (EEG) data. A growing volume of functional data are also collected 

on higher dimensional domains such as magnetic resonance imaging (MRI), positron 

emission tomography (PET), and functional MRI (fMRI). Moreover, prospective cohort 
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studies and clinical trials investigating neurodegenerative diseases such as Alzheimer’s 

disease (AD) and Huntington’s disease (HD) often collect repeated measurements of clinical 

variables, event history, and functional data, which induce complex correlation structures 

among the observations. The emergence of new data types and structures brings rich source 

of information but also poses new challenges in methodology development of functional 

data analysis (FDA).

Function regression, especially functional predictor regression (scalar-on-function 

regression, models the relationship between a scalar outcome and functional predictors), is 

an active area of FDA in the past 10 years. It was first introduced by Ramsay & Dalzell [1] 

and built up by Ramsay & Silverman [2]. There is a rich literature in functional predictor 

regression [e.g., 3–10], while most existing work deals only with cross-sectional data. 

Goldsmith et al. [11] first extended the penalized functional regression approach [10] to 

handle longitudinal measurements in both the response variable and functional predictors by 

incorporating scalar random effects. Gertheiss et al. [12] extended the functional principal 

component regression (PCR) to longitudinal functional data and allowed for different effects 

of subject-specific curves. More recently, Gellar et al. [13] extended the Cox proportional 

hazards model to incorporate functional predictors and estimated the parameters via 

penalized partial likelihood approach. Lee et al. [14] developed a Bayesian functional Cox 

regression model with both functional and scalar covariates, but used different regularization 

methods. To the best of our knowledge, there is no functional regression modeling attempts 

to simultaneously analyze the longitudinal measurements and time-to-event data under the 

joint modeling framework.

Joint models of longitudinal and time-to-event data were proposed by Faucett & Thomas 

[15] and Wulfsohn & Tsiatis [16]. The principle is to define two submodels (a mixed effects 

submodel for the longitudinal outcome and a Cox submodel for the survival outcome) and 

link them using a common latent structure. This modeling approach analyzes the two types 

of outcomes simultaneously and is able to reduce the bias of parameter estimates and 

improve the efficiency of statistical inference. Tsiatis and Davidian [17] and Proust-Lima et 
al. [18] gave excellent review of joint modeling research. However, current state-of-the-art 

joint models do not incorporate functional predictors.

The major objective of this article is to incorporate the growing volume of functional data in 

the longitudinal-survival setting. Specifically, we develop a functional joint model (FJM), 

where outcomes consist of a longitudinal measure and a time-to-event variable, and the 

exposure variables include both scalar covariates and functional predictors. The rest of the 

article is organized as follows. In Section 2, we describe a motivating clinical study and the 

data structure. In Section 3, we discuss the joint longitudinal-survival model with functional 

predictors, and the estimation procedure. In Section 4, we apply the proposed FJM to the 

motivating Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. In Section 5, we 

conduct a simulation study to examine the performance of the proposed FJM. Concluding 

remarks and discussion is presented in Section 6.
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2 A Motivating Clinical Study

The methodology development is motivated by the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) study. The ADNI study was launched in year 2003 with the primary goal 

of testing whether serial magnetic resonance imaging (MRI), positron emission tomography 

(PET), cerebrospinal fluid (CSF) markers, and neuropsychological assessments can be 

combined to measure the progression of AD. The phase one of the ADNI study (ADNI-1) 

recruited more than 800 adults, of which about 200 cognitively normal individuals, 400 mild 

cognitive impairment (MCI) patients, and 200 early AD patients. Participants were 

reassessed at 6, 12, 18, 24 and 36 months, and additional follow-ups were conducted 

annually as part of ADNI-2. At each visit, various neuropsychological assessments, brain 

image, and clinical measures were collected. Detailed information about the ADNI study 

procedures, including participant inclusion and exclusion criteria and complete study 

protocol can be found at http://www.adni-info.org.

Because MCI is commonly considered as a transitional stage between normal cognition and 

Alzheimer’s disease, numerous recent studies are to assess various neuroimaging techniques 

and clinical markers to predict AD diagnosis among MCI patients [e.g., 19]. To this end, we 

select 355 MCI patients in ADNI-1 study without missing data in covariates of interests, and 

consider AD diagnosis to be the survival event of interest. Participants were followed up for 

a mean of 3.2 years (SD 2.6; range 0.4–9.3) before AD diagnosis or censoring. Among the 

355 MCI patients, 180 patients were diagnosed with AD and 175 had stable MCI over a 

mean follow-up period of 2.3 years and 4.2 years, respectively.

Alzheimer Disease Assessment Scale-Cognitive (ADAS-Cog) score (with 11 items, referred 

to as ADAS-Cog 11) measures cognition functions and it is usually reported as a composite 

score of the 11 items and it ranges from 0 to 70 (or 85), with a higher score indicating poor 

cognitive function. Figure 1 displays the lowess smoothing curve [20] of ADAS-Cog 11 

scores over time for the MCI patients, with follow-up time less than 3 years (203 patients, 

solid line), 3–6 years (82 patients, dotted line), and more than 3 years (70 patients, dashed 

line), in addition to 95% pointwise confidence intervals (shaded regions). Figure 1 suggests 

that the ADAS-Cog 11 scores of patients in all three groups increase with time (deteriorating 

cognitive functions). Moreover, patients with shorter follow-up time tend to have higher 

ADAS-Cog 11 scores, indicating that patients with more severe cognitive impairment were 

more likely to progress to AD. This phenomenon manifests strong correlation between the 

longitudinal ADAS-Cog 11 values and the time to AD diagnosis. Such a dependent terminal 

event time is often referred to as “dependent censoring” or “informative censoring” in the 

literature of joint modeling [21]. However, many studies [22, 23] designed to explore 

longitudinal measures for predicting future cognitive functions of MCI patients fail to 

account for such informative censoring, leading to biased inference.

Moreover, degree of atrophy within the medial temporal lobe structures, especially within 

the hippocampus, was reported to be associated with the AD progression. Most of the 

current analysis was based on volumetric brain MRI data. For example, AD patients and 

MCI patients have been shown to have 27% and 11% smaller hippocampal volumes, 

respectively, as compared with normal age-matched elderly [24]. In the preliminary analysis, 
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we fit regular joint models with baseline MRI imaging measure including bilateral 

hippocampal volume as a scalar covariate. The results (detailed in the Web Supplement) 

suggest that hippocampal volume has strong association with both cognitive function decline 

and time to AD diagnosis. Furthermore, some researches [25–28] demonstrated that the 

surface-based morphology analysis offers more advantages because these methods study 

patterns of hippocampal subfield atrophy and produce detailed pointwise correlation 

between atrophy and cognitive functions.

In this article, we propose a functional joint model (FJM) to examine the association 

between the longitudinal ADAS-Cog 11 score and the time to AD diagnosis, accounting for 

the clinical co-variates and MRI imaging measures. We include as a functional predictor the 

hippocampal radial distance (HRD) of each bilateral hippocampal surface point (referred to 

as vertex), which measures the distance from the medial core to each vertex on the surface 

and represents the hippocampal thickness. For image processing, we adopt a surface fluid 

registration package [29]. The left and right hippocampal surfaces are first conformally 

mapped to a two-dimensional (2D) rectangle plane, in the form of matrix, to form a feature 

image of the surface. After registering each feature image to a common template and 

calculating HRD for all vertexes, the 2D image matrices are vectorized into one-dimensional 

(1D) image vectors. The spatial information and image smoothing has been accounted for in 

part in the image preprocessing steps as described in Shi et al [29]. Our focus here is to 

propose methodology that is applicable to a wide variety of imaging and non-imaging 

functional data. To this end, the corresponding hippocampal radial distances of the vertexes 

are represented as a 1D functional data defined on domain S. Each point in the image vector 

retains a one-to-one relationship to the original vertex on the surface, which allows us to 

back-transform any functions defined on domain S to the hippocampal surfaces. The 

hippocampus image processing procedure is detailed in the Web Supplement.

3 Functional Joint Model

We introduce a general functional joint model (FJM) framework for a longitudinal process 

and a time-to-event process with time-invariant functional predictors. For the ease of 

illustration, we only incorporate a single time-invariant (baseline) functional predictor in 

both the longitudinal and survival submodels, while the FJM can readily accommodate 

multiple functional predictors.

3.1 Functional joint model framework

For each subject i (i = 1, …, I) at visit j (j = 1, …, Ji), we observe data , 

where yij = yi(tij) is a scalar outcome recorded at time tij from the study onset. Vector xij is a 

p-dimensional covariate vector. Function  is a time-invariant functional predictor 

defined over a 1D domain s ∈ [0, Smax] = S. The longitudinal submodel is

(1)
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is the unobserved true value of the longitudinal outcome at time tij, β0 is the intercept, and β 
is the regression coefficient vector. Coefficient function B(x)(s) (defined on the same domain 

as ) determines a pointwise association between  and yi(tij). Vector zij is a q 
dimensional covariates corresponding to random effects ui, which is assumed to have ui ~ 

N(0, Σu) to account for the within-subject correlation. The measurement error 

is independent from ui.

The event history is recorded for each subject i with observed event time 

and the event indicator , where  and Ci are the true event time and 

censoring time, respectively. The survival submodel is

(2)

where h0(t) is the baseline hazard function, and wi is a vector of time-independent covariates 

with regression coefficient vector γ. Functional predictor  may be the same or 

different from its counterpart  in model (1). Functional log hazard ratio B(w)(s) 

measures the overall contribution of  towards the event hazard. The association 

parameter α quantifies the strength of correlation between the unobserved true longitudinal 

function mi(t) and the event hazard at the same time point. Models (1) and (2) consist of the 

functional joint model (FJM) framework.

3.2 Functional regression

To build the functional regression model, we follow the general strategy of functional 

principal component regression (FPCR; e.g., [4, 8]). We first express the time-invariant 

functional predictor  in model (1) using the Karhunen-Loève decomposition. Let 

μ(x)(s) be the mean of  and  be the covariance 

function between two locations (s and s′) of the functional predictor. The spectral 

decomposition of the covariance function is given by 

, where  are non-increasing 

eigenvalues and  are the corresponding orthonormal eigenfunctions. The Karhunen-

Loève expansion of  is

where the functional principal component (FPC) scores 

 are uncorrelated random variables with mean zero 

and variance . In practice, we adopt a truncated approximation for  given by 
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. The number of components Kx can be determined 

using the proportion of explained variance (PEV). Specifically, Kx may be chosen as the 

minimum number of functional principal components such that , 

where L is a pre-specified PEV, e.g., L = 80%, 90%, or 95%.

In the second step, we use the first Kx eigenfunctions as the basis functions to expand the 

coefficient function B(x)(s) in model (1) as , where the coefficient 

. We let vector of FPC scores , vector of 

eigenfunctions , and vector of coefficients 

. Then we have

Note that ∫S ϕ(x)(s)ϕ(x)(s)⊤ds = I, where I is an identity matrix, because the eigenfunctions 

 are orthonormal.

Similarly, the functional predictor g(w)(s) in model (2) can be expressed as 

 and thus 

, where μ(w)(s), , , and 

B(w) have the same meanings as μ(x)(s), ,  and B(x), respectively. Thus, the FJM 

based on the FPC scores is

(3)

and

(4)

where  and . For 

notational ease and without ambiguity, we replace the approximation sign (≈) by the equal 

sign. Note that models (3) and (4) are similar to a linear mixed model for the longitudinal 

scalar response variable and a Cox model for the survival outcome, respectively, in a 

standard joint model framework [16]. And FPC scores  and  can be treated as scalar 
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covariates. Similar to mixed models, our FJM can readily handle unbalanced data in the 

longitudinal measurement of yi(t).

Let  be the parameter vector, where 

vech(Σu) is the vector being formed by vectorizing the lower triangular part of covariance 

matrix Σu, vector  denotes the parameters in the baseline hazard function . The 

conditional likelihood from the longitudinal data  is

and the density function of the random effects ui is 

 where q is the dimension of the 

covariance matrix Σu. The conditional likelihood from the survival data is

where , and function  can be 

approximated by a piecewise-constant function or a B-spline function.

Under the local independence assumption (i.e., conditional on the random effects vector ui, 

all components in yi and Ti are independent), the joint likelihood function is

(5)

3.3 Estimation and inference

In practice, the functional predictors such as  are measured over finite grids in domain 

S and often with error, i.e., the observed functional predictor , where 

measurement error . The mean function μ(x)(s) is estimated by 

, and the empirical covariance function is estimated by 

. We apply kernel smoothing to the off-diagonal 

elements of  to remove the effects from measurement errors [30, 31]. Then the 
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estimated eigenvalues  and the corresponding estimated eigenfunctions , where l = 

1, …, Smax, are calculated based on the decomposition of the smoothed covariance function. 

Finally, the estimated FPC scores for each subject are calculated as 

, and the integral can be approximated by the 

Riemann sum. We choose the first Kx estimated eigenfunctions and FPC scores, and denote 

them as  and , respectively.

Maximization of the likelihood function in model (5) with respect to parameter vector θ can 

be performed using Expectation Maximization (EM) algorithm. More details regarding the 

EM algorithm implementation are given in the Web Supplement. Based on the estimated 

coefficient vector , the estimated coefficient function is calculated by 

. A pointwise 95% confidence interval for B(x)(s) can be 

constructed based on D (e.g., D = 1,000) bootstrap samples [32], e.g., at location s, a 95% 

bootstrap confidence interval for B(x)(s) can be  where  is the 

p-quartile of the bootstrap samples , d = 1, ⋯, D. Alternatively, a Wald-type 

confidence interval based on the standard deviation of the bootstrap estimates, , is 

given by . These two types of bootstrap confidence intervals give very 

similar results in our simulation study. Similarly, the estimated coefficient function 

and its confidence interval can be obtained. For visualization in the ADNI study, we can map 

the coefficient function  back to the hippocampal surfaces, because there is an one-

to-one relationship between the location s in domain S and the vertex on the hippocampal 

surfaces.

3.4 Implementation using software

An advantage of the proposed FJM is that its implementation can be done using available 

standard software. The first step is to conduct FPCA for functional predictors and to 

estimate the FPC eigenfunctions and scores, using fpca.sc function in the refund package 

[33] or fpca.mle and fpca.score functions in the FPCA package [34] in R. In the second step, 

FPC scores are used as scalar covariates in a standard joint model for longitudinal and 

survival data and their coefficients can be estimated using JM package [35] in R. The 

estimated coefficient function can be calculated as weighted sum of FPC eigenfunctions. In 

addition, we have fitted the proposed FJM via our own code and have obtained the 

estimation results very close to those from the aforementioned packages. To facilitate easy 

reading and implementation of the proposed FJM, we provide in the Web Supplement the R 

codes to conduct FPCA, and to fit the FJM using either the JM package or our estimation 

methods based on EM algorithm.
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4 Application to the ADNI Study

We apply the proposed FJM to the motivating ADNI study. We include the following 

variables as scalar covariates: baseline age (bAge, mean: 74.4, SD: 7.3, range 55.1–89.3), 

gender (gender, 36.1% female), years of education (Edu, mean: 15.6, SD: 3.0, range 4–20), 

and presence of at least one apolipoprotein E allele (APOE–ε4, 56%), given their potential 

effects on AD progression [36–38]. To utilize the brain imaging information, we include 

baseline hippocampal volume (bHV) as a scalar covariate and the baseline hippocampal 

surfaces based on hippocampal radial distance (HRD) as a functional predictor. We follow 

the procedure in the Web Supplement to convert the 3D HRD to a 1D domain denoted by S.

The first model we consider is the regular joint model (refer to as model JM, identified in the 

preliminary analysis in Section 2), which incorporates variable bHV in both longitudinal and 

survival submodels. Additionally, we consider three FJMs, i.e., model FJM1 includes HRD 
only in the longitudinal submodel and model FJM2 includes HRD only in the survival 

submodel, while model FJM3 includes HRD in both submodels as

We perform functional principal component analysis (FPCA) on HRD and select the first 20 

FPCs which explain 82.6% of the total variance in the hippocampus radial distance data. 

Baseline hazard function h0(t) is approximated by a piecewise constant function. 

Specifically, the observed survival time is divided into M = 7 intervals by every 1/Mth 

quantiles. We have also explored other selections of M and obtained very similar results.

Table 1 displays the values of Akaike information criterion (AIC) from the four candidate 

models. The FJM1 and FJM3 have smaller AIC than model JM, suggesting that including 

HRD as a functional predictor in the longitudinal submodel may improve the model fit. 

Model FJM1 is selected as the final model because it has the smallest AIC value. This may 

indicate that after adjustment of hippocampal volume and other covariates, HRD remains an 

important functional predictor for the cognitive functions manifested by variable ADAS-Cog 

11 among the MCI patients. The HRD may not be significantly associated with the time to 

AD diagnosis, because FJM2 has the largest AIC.

Parameter estimates from model FJM1 are presented in Table 2, while the estimated vector 

of coefficients  (for a vector of 20 FPC scores  as in model (3)) are presented in Web 

Table 3. ADAS-Cog 11 score increases (deteriorates) as time progresses, i.e., an average 

increase of 1.006 unit (95% CI: [0.881–1.131]) per year for MCI patients. Higher education, 

lack of APOE-ε4 allele(s), and larger hippocampal volume at baseline are associated with 

lower (better) ADAS-Cog 11 scores. Moreover, Web Table 3 suggests that the coefficients 

for eight FPC scores are significant (p < 0.05), indicating that the baseline hippocampal 

radial distance (HRD) is associated with the ADAS-Cog 11 score at all visits. In the survival 
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submodel, the presence of APOE-ε4 allele(s) increases the hazard of AD diagnosis by 44%

(exp(0.364) − 1, 95% CI: [4%–100%]), which is consistent with the literature [39]. Older 

age and larger hippocampal volume at baseline are associated with lower risk of AD 

diagnosis. Furthermore, larger ADAS-Cog 11 score increases the risk of AD diagnosis, i.e., 

one unit increase in ADAS-Cog 11 score increases the hazard of AD diagnosis by 11% 

(exp(0.107) − 1, 95% CI: [8%–15%]).

The coefficient function B(x)(s) is estimated via . For visualization 

purpose, each point in the 1D domain S, along with the coefficient function on that point, are 

mapped back to the corresponding vertex on the hippocampal surfaces (Figure 2). Due to the 

difficulty of displaying a 3D object on paper, Figure 2 only displays two views (from top and 

bottom) of left and right hippocampal surfaces. Panel (a) displays a schematic representation 

of the hippocampal subfields defined by Apostolova et al. [40], on the hippocampal surface 

template. Panel (b) displays the coefficient function  of the functional predictor HRD 

in the longitudinal submodel. Blue colors denote negative values of  in the regions. It 

suggests that the decrease of HRD (i.e., hippocampal atrophy) in the blue regions is 

associated with increasing ADAS-Cog 11 score and deteriorating cognitive functions. Most 

blue regions in Panel (b) are located in the CA1 subfield and subiculum (Sub) subfield 

displayed in Panel (a), suggesting that regional radial atrophy in these subfields may be a 

good predictor of AD progression among MCI patients. The similar point was made in the 

previous literature [40, 41].

5 Simulation Study

In this section, we conduct a simulation study with two settings to evaluate the proposed 

FJM models. In Setting I, we include one functional predictor in both longitudinal and 

survival submodels, while in Setting II, we simulate a functional predictor and its coefficient 

which are similar to Section 4.

In Setting I, we select I = 200 or 500 subjects and each subject has Ji=4 measurements at 

time 0, 40, 80, and 120. The longitudinal submodel is

where j = 1, …, Ji, , , ui1 ~ U(0, 5), ui2 ~ N(1, 0.2), and νis1, 
νis2 ~ N(0, 1/k2). The time-invariant functional predictor is defined on a 1D domain S = [0, 

10], and it is observed on a discrete grid at location s = m/10, where m = 0, …, 100. The 
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observed functional predictor , where the measurement errors εi(s) ~ 

N(0, 0.1) across s. The coefficient function B(x)(s) = 2 sin(πs/5). The survival submodel is

where the baseline hazard function h0(t) = 0.02, w1 is simulated from Bernoulli distribution 

with probability being 0.5, and γ1 = −1.75. Functional predictor  and the 

observed functional predictor  is generated in a similar fashion as . The 

coefficient function B(w)(s) = 1.2 sin(πs/4). Censoring times are independently simulated 

from a uniform distribution U(0, c), where c is chosen to achieve a desired censoring rate 

(CR) of 30% or 50%. Due to censoring, each subject has 2 to 3 repeated measurements. We 

perform FPCA to the simulated functional predictors  and , and choose the 

first 5 functional principal components which explain 95% of the total variance in the 

original data.

We generate 200 simulated datasets (denoted by subscript r) for each combination of sample 

sizes (I = 200 or 500) and censoring rates (30% or 50%). Table 3 presents the average mean 

squared error (AMSE) for the coefficient functions  and other parameters as 

 and , 

respectively, in addition to standard error (SE, the square root of the average of the 

variance), standard deviation (SD, the standard deviation of the MLEs), and coverage 

probabilities (CP) of 95% confidence intervals. Table 3 suggests that in Setting I, the 

proposed FJM performs reasonable well with relatively small AMSE values for both 

coefficient functions and other parameters, SE being close to SD, and the confidence interval 

coverage probabilities being reasonably close to 95%.

Figure 3 displays the true coefficient functions B(x)(s) and B(w)(s) (red solid lines) and their 

estimated curves (black solid lines), along with the 95% pointwise confidence bands (shaded 

regions, constructed using Wald-type confidence intervals based on 1,000 bootstrap samples) 

and the 95% coverage probabilities. All panels suggest that the estimated coefficient 

functions from the FJM are reasonably close to the true coefficient functions, with 95% 

pointwise confidence intervals always covering the true functions. The empirical coverage 

probabilities on all regions over the domain S are close to the nominal level of 95%, except 

the rightmost tail of the coefficient function B(w)(s) in the survival submodel. This may be 

because that B(w)(s) is not well expanded by the first few principal components calculated 

from  on the rightmost tail. This limitation is further discussed in Section 6.

In Setting II, we keep the same parameters as in Setting I, but simulate a functional predictor 

which is mapped to a 3D bean surface to resemble the hippocampal surfaces. We evaluate 

the performance of our FJM when the 3D functional predictor is converted to a 1D vector, as 

described in the Web Supplement. To do this conversion, we first construct the triangular 

surface meshes of the bean surface, and then conformally map the triangular surface meshes 
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to a rectangle plane. We align the points on the rectangle plane to form a 1D vector, but still 

retain the one-to-one correspondence with points on the original bean surface.

To generate the 1D functional predictor, we use the first 25 orthonormal eigenfunctions ϕ(s) 

= [ϕ1(s), …, ϕ25(s)]⊤ and corresponding eigenvalues λ = [λ1, …, λ25]⊤ that derived from 

the hippocampal radial distance in Section 4. The functional predictor for the ith subject 

gi(s) is simulated by , for i = 1, …, 400, where ξil is the subject-specific 

principle component score generated from a Normal distribution as ξil ~ N(0, λl), where l = 

1, …, 25. Thus, the simulated functional predictor gi(s) retains many features of the 

hippocampal radial distance. Next, we construct a two-dimensional (2D) coefficient function 

(coefficient image) on the rectangle plane to match the size of the bean surface using the 

densities of bivariate Normal distributions. Let

be density functions denoted by fP1 and fP2, respectively. The coefficient image is given by 

0.8fP1 − 1.0fP2, and its 1D representation B(s) can be achieved by aligning points in the 

same order described above. After both functional predictor and its coefficient are 

transformed to 1D domain, the longitudinal and survival data are generated via the same 

method as in Setting I. We select an approximate censoring rate of 30% and generate 200 

simulated datasets. Our objective is to estimate the coefficient image via estimating its 1D 

representation B(s) and mapping back to the 3D surfaces. Figure 4 displays the true and 

estimated coefficient functions mapped back to the bean surface. The close similarity of two 

figures indicates that the estimated coefficient function captures the main feature of the true 

coefficient function, suggesting the feasibility of our approach to transforming the high 

dimensional surface image to the 1D domain.

6 Discussion

Functional data are increasingly collected in public health and medical studies to better 

understand important public health issues and complex diseases. Both theoretical and 

computational complexity in functional data analysis (FDA) often makes health care 

practitioners to reduce the rich functional data into several scalar measures, e.g., volumes of 

a few brain regions. This enormous data reduction may distort the true underlying 

relationship between population’s health condition and the functional data. Moreover, some 

nontraditional functional data, such as genetic variant profiles defined along chromosomes 

or genomic regions, may not be able to reduce to scalar measures. To this end, FDA methods 

are increasingly used.

In this article, we develop a functional joint model (FJM) to account for functional 

predictors in both longitudinal and survival submodels within the framework of joint 

modeling. We use the functional principal component analysis (FPCA) to approximate the 

functional predictor, and expand its corresponding coefficient function using the empirical 

orthonormal eigenfunctions obtained from FPCA. FPC scores can be readily included as 
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scalar covariates in a standard joint model consisting of a linear mixed model for the 

longitudinal scalar response variable and a Cox model for the survival outcome. The 

parameters of the FJM are estimated in a maximum likelihood framework via EM algorithm. 

The proposed FJM provides a flexible framework to incorporate many features both in joint 

modeling of longitudinal and survival data and in functional data analysis. We demonstrate 

through a simulation study that the FJM performs well in estimating the coefficient 

functions and other parameters.

Several studies have documented diminishing hippocampal thickness at baseline is 

associated with an increased likelihood of progressing to clinical dementia [42]. However, 

these studies only assess changes to hippocampal volume rather than its surface morphology. 

Enormous information loss may result when aggregating the high dimensional image data 

into a scalar volumetric value [43]. In comparison, our FJM framework accounts for the 

functional predictor (hippocampal radial distance, HRD) and other scalar covariates and 

efficiently estimate the association between the trajectory of cognitive functions measured 

by the ADAS-Cog 11 score and time to AD diagnosis. The inclusion of functional predictor 

HRD into the longitudinal submodel improves model fitting. We have identified that the 

regional radial atrophy in the CA1 subfield and the subiculum subfield is a good predictor of 

AD progression among patients with mild cognitive impairment. The identification of these 

subfields may facilitate case selection in clinical trials for evaluating therapeutic efficacy in 

slowing or modifying AD-related pathophysiology. Moreover, the proposed FJM can readily 

include multiple brain regions, and even genotype profiles, as functional predictors to assess 

whether they are associated with Alzheimer’s disease progression.

There are some advantages of using FPC expansion, besides the convenience of FPC 

implementation. FPC expansion allows borrowing strength across subjects in estimating 

basis functions, and it can capture complex correlations within the functions, as in the ADNI 

study [44]. Moreover, FPC can easily handle observation with missing values in functions, 

or functions measured with errors [11]. However, we retain the first K eigenfunctions to 

approximate the functional predictor. Although the selected number of K eigenfunctions can 

explain the majority of the variability in the functional predictor, they may not adequately 

represent the coefficient function. Therefore, the features on the tail region of the coefficient 

function are not well captured as demonstrated in our simulation study. Furthermore, it is 

possible that some retained FPCs are not significantly associated with the outcome. On the 

other hand, in the functional predictor regression, there are various choices of basis 

functions, e.g., splines, Fourier, wavelet, and their combinations, and regularization 

approaches. Splines are well suited to modeling simple and smooth functions, and usually 

work better when the dimension of the grid is not too high [45]. However, no single basis 

function is superior in all settings. In the future work, we will investigate the performance of 

other basis functions and new methods for selecting among various candidate basis functions 

and regularization approaches.

There are some limitations we will address in the future. First of all, we exclude from 

analysis the subjects with missing data in baseline covariates of interest. A majority of these 

subjects either do not have baseline image data measured or do not have image data in the 

archive due to the technical difficulty in image data collection and storage. We have assumed 
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the baseline covariates are missing completely at random. We would like to investigate the 

validity of this assumption in the future. Moreover, there is some longitudinal MRI 

measurements available for some ADNI participants. About 30% these participants have at 

least one missed MRI measurement, creating the missing data issue in longitudinal 

functional data. The complex within-subject correlation among functional data should be 

carefully modeled when handling missing data. In addition, we use a time-invariant 

functional predictor in this article. It would be of scientific interest to extend the proposed 

FJM to accommodate longitudinal functional data. We can treat the longitudinal functional 

variable as a functional predictor which can be decomposed by longitudinal FPCA (LFPCA) 

[46] to account for it longitudinal data structure. Alternatively, the longitudinal functional 

variable can be treated as a functional response variable in the longitudinal submodel 

(function-on-scalar regression problem) and it can be incorporated in the survival submodel 

as a time-dependent functional predictor. This model can investigate how the longitudinal 

functional variable directly impacts the time to event of interest. Furthermore, in model (2), 

different formulations can be used to postulate how the hazard of a survival event depends 

on the longitudinal trajectory. For example, both the unobserved true value of mi(tij) as in 

model (1) and its time-dependent slope  can be included in model (2). A good 

summary of these various formulations in the joint modeling framework can be found in 

Rizopoulos et al. [47] and Yang et al. [48]. Finally, we would like to develop an user-friendly 

R package which addresses the aforementioned issues and incorporate some useful features, 

e.g., nonparametric smoothing and missing data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Smoothing curves of variable ADAS-Cog 11 over time for MCI patients with follow-up time 

less than 3 years (203 patients, solid line), 3–6 years (82 patients, dotted line), and more than 

6 years (70 patients, dashed line). Shaded regions are 95% pointwise confidence intervals.
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Figure 2. 
Hippocampal subfields mapped onto the hippocampal surfaces (Panel (a)) and the estimated 

coefficient function  from the longitudinal submodel, mapped onto the hippocampal 

surfaces (Panel (b)).
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Figure 3. 
The FJM’s estimates of coefficient functions in Setting I. The true coefficient functions (red 

solid line) B(x)(s) (left plot in each panel) and B(w)(s) (right plot in each panel) and their 

estimates (black solid line), along with 95% confidence band (shaded region) and converge 

probability (red dotted line) with a reference line (horizontal line) at 0.95. Panel (a): I=200, 

CR=0.3; Panel (b): I=500, CR=0.3; Panel (c): I=200, CR=0.5; Panel (d): I=500, CR=0.5.
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Figure 4. 
The true coefficient function (Panel (a)) and estimated coefficient function (Panel (b), the 

mean of 200 estimated B(s)) on a 3D bean surface.
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Table 1

Akaike information criterion (AIC) from four candidate models in the ADNI study

JM FJM1 FJM2 FJM3

AIC 10211 10202 10217 10208
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Table 2

ADNI data analysis results from model FJM1.

Parameters MLE SE p

For longitudinal outcome

ADAS-Cog 11 Time (Years) 1.006 0.064 <0.001

Female −0.227 0.375 0.546

bAge −0.259 0.177 0.143

Edu (years) −0.248 0.051 <0.001

APOE-ε4 1.090 0.278 <0.001

bHV (mm3) −0.954 0.201 <0.001

For survival process

MCI to AD Female −0.203 0.168 0.227

bAge −0.165 0.087 0.059

Edu (years) −0.002 0.026 0.951

APOE-ε4 0.364 0.168 0.030

bHV (mm3) −0.300 0.091 <0.001

α 0.107 0.015 <0.001
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