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Abstract

Objectives—The practice of evidence-based medicine involves integrating the latest best 

available evidence into patient care decisions. Yet, critical barriers exist for clinicians’ retrieval of 

evidence that is relevant for a particular patient from primary sources such as randomized 

controlled trials and meta-analyses. To help address those barriers, we investigated machine 

learning algorithms that find clinical studies with high clinical impact from PubMed®.

Methods—Our machine learning algorithms use a variety of features including bibliometric 

features (e.g., citation count), social media attention, journal impact factors, and citation metadata. 

The algorithms were developed and evaluated with a gold standard composed of 502 high impact 

clinical studies that are referenced in 11 clinical evidence-based guidelines on the treatment of 

various diseases. We tested the following hypotheses: 1) our high impact classifier outperforms a 

state-of-the-art classifier based on citation metadata and citation terms, and PubMed’s® relevance 

sort algorithm; and 2) the performance of our high impact classifier does not decrease significantly 

after removing proprietary features such as citation count.

Results—The mean top 20 precision of our high impact classifier was 34% versus 11% for the 

state-of-the-art classifier and 4% for PubMed’s® relevance sort (p = 0.009); and 2) the 

performance of our high impact classifier did not decrease significantly after removing proprietary 

features (mean top 20 precision = 34% vs. 36%; p = 0.085).
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Conclusion—The high impact classifier, using features such as bibliometrics, social media 

attention and MEDLINE® metadata, outperformed previous approaches and is a promising 

alternative to identifying high impact studies for clinical decision support.

Graphical abstract

1. Introduction

On average, clinicians raise more than one clinical question for every two patients seen, and 

the majority of these questions are left unanswered [1,2]. Unmet information needs can lead 

to suboptimal patient care decisions and lower patient care quality [3]. “Lack of time” and 

“doubt that a useful answer exists” are two major reasons that prevent clinicians from 

pursuing clinical questions at the point of care [2]. Yet, online knowledge resources, such as 

primary literature resources (e.g., PubMed®) and evidence summaries (e.g. clinical 

guidelines, UpToDate®), can provide answers to most clinical questions [4].

Evidence based medicine (EBM) practice advocates clinicians to integrate individual clinical 

expertise and the best available evidence, ideally from methodologically sound randomized 

controlled trials (RCTs), systematic reviews (SRs), and meta-analyses (MAs) [5,6]. In the 

past twenty years, the publication of RCTs, SRs, and MAs has experienced steady growth 

[6]. Despite recommendations for clinicians to integrate high quality evidence in patient care 

decisions, the use of primary literature resources in patient care is still low [7]. Challenges 

include: 1) only a very small fraction of the studies indexed in PubMed® warrant changes in 

clinical practice - the findings of most studies are false due to weaknesses such as small 

sample size, small effect size, biases, unstandardized study design, flaws in statistical 

analysis, and conflicts of interest [8]; and 2) finding and interpreting high quality studies that 

have an impact on the care of a specific patient is very time-consuming and unfeasible in 

busy care settings [9].

To promote clinical use of PubMed®, several promising approaches have been investigated 

to retrieve high quality (i.e., scientifically rigorous) studies, mainly using MeSH terms/

keywords or bibliometric information [10–15]. However, previous approaches focused 

primarily on retrieving studies with scientifically sound methodology. In the present study, 

we investigate approaches to retrieve articles that have a high clinical impact, and are likely 

to influence clinicians’ patient care decisions. Our method is built over the following 

previous approaches: 1) the Clinical Query filters [10]; 2) citation count [13]; and 3) the high 
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quality study classifier by Kilicoglu et al. [11]. We combined the approaches above and 

explored several novel features as surrogates for an article’s clinical impact. We hypothesize 

that 1) our high impact classifier outperforms Kilicoglu et al.’s high quality Naïve Bayes 

classifier and PubMed’s® relevance sort in terms of top 20 precision; and 2) the performance 

of our high impact classifier does not decrease significantly after removing proprietary 

features.

2. Background

Multiple research efforts have investigated algorithms to retrieve scientifically rigorous 

clinical studies. Overall, they can be divided into three categories: search filters, citation-

based algorithms, and supervised machine learning algorithms.

2.1 Search filters

Clinical Queries, a PubMed® built-in feature, have been designed to help clinicians find 

citations of scientifically sound clinical studies [10,12]. Clinical Query filters are Boolean-

based search strategies that include MeSH terms and keywords that are often found in the 

abstracts of scientifically sound clinical studies. The approach has been developed and 

validated through a rigorous systematic process [10,12]. Filters for five topics have been 

developed (i.e., therapy, diagnosis, etiology, prognosis, clinical prediction guides), with the 

option to maximize precision or recall. Since Clinical Queries are openly available through 

PubMed®, they are often used as a baseline for evaluating the efficacy of novel approaches 

aimed at retrieving high quality clinical studies from PubMed®.

2.2 Citation-based algorithms

Citation-based algorithms, such as the approach proposed by Bernstam et al. [13], are based 

on approaches that are widely used on the Web, such as citation count and PageRank [16]. 

Both citation count and PageRank are based on linkage analysis between the nodes (i.e., 

citations/websites) of a graph. The difference is that citation count considers only one layer 

of linkage (i.e., only the documents that directly cite the document of interest), whereas 

PageRank looks at multiple layers (i.e., all documents that recursively cite the document of 

interest). Using the Society of Surgical Oncology’s Annotated Bibliography (SSOAB) as the 

gold standard, Bernstam et al. found that both citation count and PageRank outperformed 

MeSH and keyword-based algorithms, such as Clinical Queries and machine learning 

classifiers (top precision = 6% versus 0.85%) [13]. Limitations of citation-based algorithms 

include 1) not considering the scientific quality of a study; 2) citation count relies on 

proprietary data; and 3) citation count is time-dependent and does not work for very recent 

studies.

2.3 Supervised machine learning

Examples of the supervised machine learning approach include studies conducted by 

Aphinyanaphongs et al. and Kilicoglu et al. [11,14,15]. Aphinyanaphongs et al. found that a 

polynomial support vector machine (Poly SVM) classifier outperformed Clinical Queries’ 

specificity filter for retrieving internal medicine articles included in the American College of 

Physicians Journal Club (ACPJ) on treatment (recall = 0.80 versus 0.40) and etiology (recall 
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= 0.76 versus 0.28) tasks [14]. The features included MeSH terms, publication type, and 

words in the title and abstract. Next, they proposed that each PubMed® article retrieval 

system should be built upon a particular task and an appropriate gold standard for the task 

[15]. They compared the performance of different machine learning methods using three 

gold standards (i.e., the SSOAB for surgical oncology, ACPJ-treatment for internal medicine 

treatment, and ACPJ-etiology for internal medicine etiology) [15]. The study found that 

gold-standard-specific machine learning classifiers (e.g., applying the model built on ACPJ-

treatment to find internal medicine treatment articles) outperformed non-specific machine 

learning (e.g., applying the model built on SSOAB to find internal medicine treatment 

articles) in terms of the area under the curve (0.966 versus 0.770). The main limitation of 

this study is the generalizability of the classifier (i.e., only explored the internal medicine 

domain). We may need to develop new classifiers for every different domain.

More recently, Kilicoglu et al. employed a stacking ensemble method that combined the 

features used in Aphinyanaphongs et al. with Unified Medical Language System (UMLS) 

concepts, UMLS semantic relations, and semantic predications [11]. Classifiers were built 

and evaluated with a large gold standard developed by McMaster University and consisting 

of 49,028 high quality clinical studies selected through a rigorous manual process from 161 

clinical journals [11,17]. The stacking classifier had 73.7% precision and 61.5% recall for 

scientifically rigorous studies, and 82.5% precision and 84.3% recall for treatment/

prevention studies. The main strength of this study is good generalizability as it covered 

multiple clinical domains. The main limitation of this study is still focusing on scientifically 

rigorous studies, but not high clinical impact ones.

3. Methods

Our overall method is based on machine learning algorithms with a variety of features, 

including bibliometrics, MEDLINE® metadata, and social media exposure. The method was 

developed according to the following steps (Figure 1): 1) development of a gold standard of 

high impact articles cited in 11 clinical guidelines; 2) retrieval of candidate PubMed® 

citations covering the main topic of each guideline using a search strategy based on 

PubMed’s® Clinical Queries filter [17]; 3) preparation of bibliometrics, MEDLINE® 

metadata, and social media exposure features; 4) ranking of features; 5) training and 

optimization of classifiers to identify high impact clinical studies; and 6) testing of a set of 

hypotheses regarding the performance of the classifiers.

3.1 Gold standard development

We used studies cited in clinical practice guidelines as a surrogate for high impact studies in 

a clinical topic. Clinical guidelines contain evidence-based recommendations on the 

diagnosis and treatment of specific conditions. Through rigorous systematic review 

development methodology, domain experts identify all studies relevant to the topic of the 

clinical guideline, screen out studies that do not meet minimum quality criteria (e.g., 

randomized controlled trials), and derive guideline recommendations from the included 

studies [18,19]. We focused on treatment citations since most clinical questions are related 

to the treatment of patient conditions [2]. In our study, we 1) manually extracted those 
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citations (i.e., RCTs, MAs and SRs) from each guideline (Table 1); and 2) automatically 

mapped each extracted citation to PubMed® IDs using the NCBI Batch Citation Matcher 

tool [18]. We manually mapped citations that could not be automatically mapped.

To find these 11 guidelines, the overall approach was to search for recent guidelines on the 

treatment of a range of common complex chronic conditions. We also included guidelines 

based on the following criteria: 1) articles cited in the guideline must have been selected 

through a systematic search, screening, and appraisal process; 2) eligible guidelines must 

have provided explicit treatment recommendations, along with citations to the original 

studies that supported each recommendation. For guidelines with multiple versions, we 

selected the latest version available at the time of our search.

3.2 Candidate citations retrieval

Candidate citations were retrieved using a search strategy specifically designed for RCTs, 

MAs and SRs (Box 1). The strategy included three components. First, a suitable disease 

MeSH term was manually selected based on the main condition covered in each guideline. 

Second, filters were applied to retrieve high quality treatment studies. RCTs were retrieved 

by using the Clinical Queries narrow therapy filter [17], which is designed to retrieve high 

quality therapy studies and is optimized for precision. MAs and SRs were retrieved with a 

combination of PubMed’s® systematic review filter and studies whose titles contained 

“systematic review” or “meta-analysis” or were published in the Cochrane Database of 

Systematic Reviews. Third, a date range constraint was applied matching the same time 

period of the systematic search conducted to support the development of the corresponding 

guideline. Further constraints included articles written in English, studies with human 

subjects, and articles with an abstract [31].

3.3 Feature extraction and pre-processing

Features of retrieved citations were extracted through a set of automated scripts, and stored 

in a relational database. The features are as follows:

3.3.1 Journal Impact Factor (JIF)—JIF measures how often articles published in a 

particular journal are cited by other articles. Specifically, JIF is calculated by dividing the 

number of citations to publications in the journal of interest in the previous two years by the 

number of original research articles and reviews published in that journal in the previous two 

years [32,33]. JIF eliminates the bias of higher citation counts from large journals, 

frequently published journals and old journals. We used JIF as a surrogate for the reputation 

of a journal and consequently for the impact of articles published in the journal. We obtained 

the JIFs from the Journal Citation Reports® (JCR®), published by Thomson Reuters [34].

3.3.2 Registration in ClinicalTrials.gov—This feature indicates whether the study is 

registered in the ClinicalTrials.gov registry. National regulations and most reputable journals 

require registration of clinical trials in national registries such as ClinicalTrials.gov before 

the trial is initiated. Our assumption is that registration in ClinicalTrials.gov is a predictor of 

the study quality and impact. This feature is determined by the presence of a 

ClinicalTrial.gov ID in the citations’ PubMed® metadata.
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3.3.3 Publication in PubMed Central®—This feature indicates whether the article is 

available in the PubMed Central® database. All studies funded by the US National Institutes 

of Health (NIH) are published in PubMed Central® and available open access. Since these 

studies are not funded by commercial entities, they tend to be more balanced and potentially 

have a stronger clinical impact [35–37]. This feature is determined by the presence of a 

PubMed Central® ID in the PubMed® metadata.

3.3.4 Article Age—This feature represents the number of months since the article was 

published. More recent articles may have a stronger clinical impact. Article age was 

determined based on the number of months elapsed between the date the citation was added 

to PubMed® (the Entrez Date in the PubMed® metadata) and the month when the Article 
Age feature was processed (i.e., August 2016).

3.3.5 Study Sample Size—This feature represents the number of participants in the study 

according to the study record in ClinicalTrials.gov. A large sample size might be a predictor 

of high impact studies [8].

3.3.6 Comparative Study—This feature indicates whether the study compared two or 

more treatment alternatives as opposed to a treatment versus placebo. Comparative studies 

generally provide more useful information to support clinical decisions than intervention 

versus placebo trials [38]. This feature was extracted from the publication type field in the 

PubMed® metadata.

3.3.7 Study Quality—This feature represents the probability that a given citation is a high 

quality article according to the classifier developed by Kilicoglu et al. [11]. The probability 

score for each retrieved citation was generated using a model based on a Naïve Bayes 

classifier with two types of features (i.e., MeSH indexing terms and publication type). The 

rationale behind this classifier is similar to the rationale of PubMed’s® Clinical Query 

filters, i.e. that attributes of strong study designs are indexed as MeSH terms and publication 

type in the citation metadata. Examples include MeSH terms such as “random allocation” 

and “clinical trials” and publication types such as “randomized controlled trials”. Other 

publication types may serve as negative predictors, such as “case-control study” or “case 

report”.

3.3.8 Number of comments on PubMed®—This feature indicates the number of 

editorial comments on a given citation. Articles that receive editorial comments might be 

more important. The number of editorial comments was extracted from the 

CommentsCorrectionsList field in the PubMed® metadata.

3.3.9 Citation Count—This feature indicates how many times an article has been cited 

according to the Scopus system. As a rough adjustment for the time elapsed since the 

publication date, we also calculated the rate of citations per month. We obtained the citation 

counts in August 2016 using a Web service API provided by Scopus [39].

3.3.10 Altmetric® score—Altmetric® tracks the online exposure of scientific work based 

on social media (e.g., Facebook, Twitter), traditional media (e.g., New York Times) and 
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online reference managers (e.g., Mendeley). A different weight is assigned to each specific 

source. The score is calculated based on both the quantity and quality of posts [40,41]. We 

also calculated a monthly-adjusted score. We obtained Altmetric® scores in August 2016 

using an Altmetric® API that is freely available for research purposes [42].

3.3.11 High Impact Journal—This feature indicates whether the study was published in 

a journal included in a list of high impact clinical journals. The list was compiled by 

combining the MEDLINE® Abridged Index Medicus (AIM or “Core Clinical") journals [43] 

and the McMaster Plus (Premium LiteratUre Service) journals [44]. The quality and 

relevance of these journals are rigorously and periodically evaluated by a group of experts 

[45–47].

3.4 Feature ranking

To evaluate the contribution of each individual feature, we employed the Information Gain 
evaluator in the Weka data mining package [48]. This evaluator is one of the best feature 

ranking methods according to Hall and Holmes’s benchmarking study [49]. We selected 

citations from an average-size guideline (heart failure dataset) among the 11 guidelines for 

feature ranking.

3.5 Classification Method

To identify an optimal classifier, we chose the heart failure dataset as the training dataset and 

the major depressive disorder dataset as the validation dataset based on our primary outcome 

(top 20 precision). We chose these two datasets because their sizes are closest to the average 

size of all datasets, their positive sample rates are close to the average positive sample rate 

across datasets, and they are focused on different medical domains.

We evaluated 12 classification algorithms with their parameter settings (Table 2). Since our 

dataset is very unbalanced (3.2% positive vs. 96.8% negative cases), we also employed cost-

sensitive data mining with meta cost algorithm where all mentioned classifiers were trained 

based on different costs for false positive and false negative errors determined by various 

cost matrices [50]. Our experimental setting is aligned with similar studies on performance 

comparison among classifiers [51,52].

We selected the best classifier based on our primary outcome (top 20 precision). If the 

performance of two or more classifiers was similar, we selected the one that is easiest to 

implement and interpret. After finalizing the optimal parameter setting for the best classifier, 

we applied it to the remaining nine disease datasets for hypothesis testing.

3.6 Hypotheses testing

Hypothesis 1. The high impact classifier outperforms Kilicoglu et al.’s high quality 

Naïve Bayes classifier and PubMed’s® relevance sort in terms of top 20 precision. 

For the Kilicoglu baseline, we ranked the citations according to the probability output 

of the Naïve Bayes classifier. PubMed’s® relevance sort is a relevance-based ranking 

algorithm. The ranking is determined by the frequency and the location of search 

terms in the retrieved citation, and the age of the retrieved citation [53].
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Hypothesis 2. The performance of the high impact classifier does not decrease 
significantly after removing citation count and social media exposure features. This 

experiment assessed the contribution of the Scopus citation count and the Altmetric® 

score. These two features are less desirable since both are based on proprietary 

information, and there is a time lag between the time of publication and the presence 

of the first citation to an article for the Scopus citation count.

3.6.1 Study outcomes—By default, the PubMed® search results page displays 20 items 

per page. Since busy clinicians are less likely to look past the top 20 citations [54], we 

adopted top 20 precision a priori as the primary outcome for all the hypotheses. We also 

measured top 20 mean average precision, and top 20 mean reciprocal rank [55]. The main 

difference between top 20 precision and top 20 mean average precision is that top 20 

precision only measures the percentage of true positive citations among the first 20 retrieved 

citations, whereas top 20 mean average precision measures the average ranking position of 

the true positive citations; the closer the true positive citations to the top of the ranking, the 

better the retrieval system is. Top 20 mean average precision is computed as follows by: 1) 

for each true positive citation in the top 20 retrieved citations, divide its position among true 

positive citations by its position in the overall retrieved results; 2) calculate the average of 

the values obtained in the previous step. Since our overall dataset is unbalanced, we also 

measured precision, recall, and F-measure of positive samples in all experiments.

3.6.2 Statistical analysis—The goal of the statistical analyses included three aspects: 1) 

in Hypothesis 1, determining if our classifier was superior to Kilicoglu et al.’s high quality 

Naïve Bayes classifier; 2) in Hypothesis 1, determining if our classifier was superior to 

PubMed’s® relevance sort classifier; 3) in Hypothesis 2, determining if our classifier was 

equivalent to the classifier without the citation count and social media exposure features. 

Since these were separate study questions, rather than the more general question of whether 

our classifier is better than other classifiers without being specific, the statistical issue of 

multiple comparisons did not arise in our study [56,57]. Besides multiple classifiers 

(multiple groups), another way that multiplicity, or the multiple comparison problem can 

arise is from having multiple outcome measures. To address that, we selected top 20 

precision a priori as our primary outcome measure. The other five measures were secondary 

measures. The hypothesis test, then, for answering the research question was limited to the 

single primary measure. The secondary measures are simply exploratory, or descriptive, and 

have been included as others in the field may be interested in seeing them. This approach to 

multiplicity is called the primary-secondary approach to multiplicity [58], which is the most 

commonly used approach in randomized controlled trials reported in The New England 
Journal of Medicine [59]. To compare our classifier with any of the other three classifiers, 

we used a paired sample Wilcoxon signed rank test. We employed the Wilcoxon test in place 

of a paired sample t-test so that no data value could overly influence the result in an outlier 

fashion. We performed all the statistical analyses using Stata IC 14.

4. Results

A total of 15,845 citations were retrieved with the PubMed® search strategy for the diseases 

represented in the 11 guidelines. Among these citations, 502 (recall of 77.5% for the total 
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648 guideline citations (Table 1)) were high impact clinical studies. Feature ranking results 

are shown in Table 3. We found that Scopus citation count and journal impact factor were 

the top two features followed by number of comments on PubMed®, high impact journal, 
Altmetric® score and other PubMed® metadata.

We found that hyper-parameter optimization with cost matrix improved the performance of 

some but not all of the classifiers (see online supplement Table s1 for details). The 

performance of the Naïve Bayes classifier with default parameter settings was similar to the 

performance of several other classifiers (e.g., Bayesian network, Naïve Bayes Multinomial). 

As the Naïve Bayes classifier is easiest to implement and understand, we chose it as the final 

classifier for hypotheses testing.

Experiment #1: The high impact classifier outperforms Kilicoglu et al.’s high 
quality Naïve Bayes classifier and PubMed’s® relevance sort. Figure 2 

summarizes the results. The high impact classifier with all features performed 

significantly better than Kilicoglu et al.’s high quality Naïve Bayes classifier and 

PubMed’s® relevance sort in terms of top 20 precision (mean = 34% vs. 11% and 4% 

respectively; both p = 0.009). Similar results were found for the secondary outcomes 

top 20 mean average precision (mean = 23% vs. 6% and 1% respectively; both p = 

0.008), top 20 mean reciprocal rank (mean = 0.78 vs. 0.30 and 0.05 respectively; p = 

0.012 and p = 0.007), precision (mean = 33% vs. 5% and 4% respectively; both p = 

0.008) and F-measure (mean = 21% vs. 9% and 8% respectively; p = 0.015 and p = 

0.008). The high impact classifier performed significantly worse than Kilicoglu et 

al.’s high quality Naïve Bayes classifier and PubMed’s® relevance sort in terms of 

recall (mean = 23% vs. 55% and 65% respectively; p = 0.009 and p = 0.008) (see 

online supplement Table s2 for details).

Experiment #2: The performance of the high impact classifier does not decrease 
significantly after removing Scopus citation count and social media exposure 
features. Figure 3 summarizes the results. The high impact classifier with all features 

had an equivalent performance to the classifier without Scopus citation count and 

social media exposure in terms of top 20 precision (mean = 34% vs. 36%; p = 0.085). 

Similar results were found for the secondary measures top 20 mean average precision 

(mean = 23% vs. 24%; p = 0.441), top 20 mean reciprocal rank (mean = 0.78 vs. 

0.60; p = 0.187), precision (mean = 33% vs. 29%; p = 0.406), and recall (mean = 

23% vs. 20%; p = 0.094). In terms of F-measure, the high impact classifier performed 

better than the classifier without Scopus citation count and social media exposure 

(mean = 21% vs. 18%; p = 0.044) (see online supplement Table s3 for details).

5. Discussion

In this study, we investigated machine learning methods to automatically identify high 

impact clinical studies in PubMed® for supporting clinical decision making. Our approach 

builds over previous research that relied on MeSH metadata, abstract terms, and 

bibliometrics to retrieve scientifically sound studies from PubMed®[10–15]. Our approach is 

innovative because we combined features and classifiers used in previous studies with new 

features, such as social media attention. Our high impact classifier outperformed Kilicoglu et 
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al.’s high study quality Naïve Bayes classifier and PubMed’s® relevance sort ranking 

algorithm. In addition, the level of performance does not change significantly after removing 

time-sensitive and proprietary features (i.e., citation count and social media exposure 

features). Our method can be used to support patient care by helping time-constrained 

clinicians meet their information needs with the latest available evidence. For example, the 

algorithm could be integrated with existing tools, such as an additional filter within 

PubMed®, or integrated with new clinical decision support tools, such as the Clinical 

Knowledge Summary [59]. The method can also be used to support physicians in training, 

who can incorporate evidence searching in their learning routine.

Strengths of our study include: 1) generalizability to multiple domains, since the 11 diseases 

included in our study cover multiple medical domains such as autoimmune (e.g., rheumatoid 

arthritis), cardiac (e.g., heart failure), and respiratory diseases (e.g., Asthma); 2) retrieval of 

high impact clinical citations that influence clinicians’ patient care decisions; 3) less 

dependency on time-sensitive and proprietary data of our automatic classifier.

5.1 Experiment 1

Experiment 1 confirmed the hypothesis that the high impact classifier outperforms Kilicoglu 

et al.’s high quality Naïve Bayes classifier and PubMed’s® relevance sort ranking in terms 

of top 20 precision. The top 20 precision of our classifier was on average 34%, which means 

that roughly 6 to 7 out of the top 20 retrieved PubMed® articles are high impact articles. 

Compared with PubMed’s® relevance sort algorithm (roughly 1 out of 20 retrieved articles) 

and with a state-of-the-art algorithm (roughly 2 out of 20 articles), our classifier provides a 

significantly higher chance for clinicians to find high impact articles among the top ranked 

ones. For information retrieval systems, it is very imperative to retrieve the best results in the 

first page. According to a classic study, more than 75% of users using a general search 

engine do not view the results beyond the first 20 hits [60]. This issue is even more 

pronounced in busy clinical settings [61]. On average, clinicians are not willing to spend 

more than 2 minutes seeking information during patient care [62], and more than 91% of 

clinicians do not view PubMed® citations beyond the first 20 [54]. Therefore, to effectively 

support clinical decision making, it is critical to retrieve the best results on the first page.

5.2 Experiment 2

Experiment 2 confirmed the hypothesis that the performance of the high impact classifier 

does not decrease significantly after removing citation count and social media exposure 

features. Citation count has been a well-established surrogate for measuring the quality of 

PubMed® articles [63,64], and it was the strongest feature in our study according to feature 

selection, confirming the finding of Bernstam et al. [13]. Journal Impact Factor (JIF) is 

another proprietary metric, based on citation counts of articles published within that journal. 

Although JIF changes each year, we kept it in Experiment 2 because, unlike citation count, 

JIF 1) is easier to obtain than article-level citation counts, 2) changes at a slower rate, and 3) 

does not have a time lag. Altmetric® score is a non-traditional surrogate for article quality 

and impact. No strong correlation was found between citation count and Altmetric® score, 

suggesting that the two features are complementary [65,66]. Although both citation count 

and Altmetric® score are strong predictors for article quality, their utility is compromised by 
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their time-sensitive and proprietary nature. In our study, it is possible that other features 

served as surrogates for citation count and social media attention and, when combined, 

compensated for the absence of these features. For example, journal impact factor is 

calculated based on the number of citations to each of the articles published in a journal. 

Thus, journal impact factor may serve as a proxy for an article’s citation count. Therefore, 

our finding that other features combined compensate for the absence of citation count and 

social media attention is important for the feasibility of integrating our high impact classifier 

into a production system.

5.3 Limitations

This first limitation of our approach is that we only employed one guideline (heart failure) 

dataset for feature ranking and selecting an optimal classifier, which could potentially bring 

some bias into this study. We have 11 guideline datasets, for the purpose of boosting 

statistical power, we employed maximum number of datasets (i.e., 9) for the statistical 

analyses regarding the performance of our classifiers. In the future, we will include more 

guideline datasets so that number of the guidelines used for feature selection and optimal 

classifier identification and number of the guidelines used for statistical analyses could be 

well balanced.

The second limitation of our approach is that it does not account for concept drift [67,68] 

and several features used in our high impact classifier change their values over time, which 

are likely to affect the performance of a classifier in a production system. Ideally, we should 

have extracted data for time-sensitive features reflecting the values of those features at the 

time when articles were searched by the guideline authors. However, historical data for the 

Scopus citation count and Altmetric® score are not available. In addition, our approach 

depends on citation metadata, such as MeSH terms and publication type, but those features 

are not available immediately after a citation becomes available in PubMed®. The time-to-

indexing of an article in PubMed® varies from less than a month to eight months, depending 

on multiple factors such as journal impact factor, focus area, and discipline [69]. This poses 

a challenge upon using our classifier for very recent articles, which may be quite desirable 

for clinicians who are experts in a domain and are mostly interested in keeping up with very 

recent evidence. In future studies, we plan to investigate approaches to overcome this 

limitation, such as relying on off-the-shelf auto-indexing tools (e.g., MTI indexer [70]) and 

leveraging other citation metadata (e.g., journal impact factor, author and affiliation, and 

references) that are available at the first time the article appears in PubMed®.

6. Conclusion

This study shows that a high impact Naïve Bayes classifier, using features such as 

bibliometrics, social media attention and MEDLINE® metadata, is a promising approach to 

identifying high impact studies for clinical decision support. Our current classifier is optimal 

for classifying PubMed® articles that have been published after a certain period of time, 

roughly 6 to 9 months. Further research is warranted to investigate time-sensitive approaches 

that address concept drift.
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Box 1: Search strategy pattern for retrieving candidate PubMed® citations

“Disease”[MeSH Terms] AND (Therapy/Narrow[filter] OR (“therapy” [Subheading] 

AND systematic[sb] AND (“systematic review”[ti] OR “meta-analysis” [ti] OR 

“Cochrane Database Syst Rev”[journal])))AND (Guideline Coverage Start Date[PDAT] : 

Guideline Coverage End Date[PDAT])AND “humans”[MeSH Terms] AND “english”

[language] AND hasabstract[text]

Bian et al. Page 17

J Biomed Inform. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• High impact clinical studies provide evidence influencing clinicians’ patient 

care.

• An automated approach is proposed to classify high impact studies from 

PubMed®.

• Our approach identified 6–7 high impact studies out of top 20 articles from 

PubMed®.

• Our approach outperformed a state-of-the-art classifier and PubMed’s® 

relevance sort.

• The high impact classifier performed similarly without proprietary features.
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Figure 1. 
Method Steps
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Figure 2. 
Average top 20 precision, top 20 mean average precision (MAP), top 20 mean reciprocal 

rank (MRR), precision, recall and F-measure, of the high impact classifier, Kilicoglu et al.’s 

high quality Naïve Bayes classifier and PubMed’s® relevance sort (Experiment #1).
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Figure 3. 
Average top 20 precision, top 20 mean average precision (MAP), top 20 mean reciprocal 

rank (MRR), precision, recall and F-measure of the high impact classifier, and the all feature 

without Scopus citation count and Altmetric® score classifier (Experiment #2).
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Table 1

Clinical guidelines used in the gold standard and number of citations per guideline.

Disease Topic Guideline Title Medical Society Number of Citations

Rheumatoid Arthritis (RA) 2012 update of the 2008 American College of Rheumatology 
recommendations for the use of disease-modifying 
antirheumatic drugs and biologic agents in the treatment of 
rheumatoid arthritis. [20]

ACR 66

Asthma in Children and Adults VA/DoD Clinical Practice Guideline For Management of 
Asthma in Children and Adults. [21]

VA/DoD 31

Major Depressive Disorder 
(MDD)

VA/DoD Clinical Practice Guideline For Management of 
Major Depressive Disorder (MDD). [22]

VA/DoD 65

Outpatient Chronic Obstructive 
Pulmonary Disease(COPD) 2007

VA/DoD Clinical Practice Guideline For Management of 
Outpatient COPD. [23]

VA/DoD 95

Outpatient Chronic Obstructive 
Pulmonary Disease(COPD) 2014

VA/DoD Clinical Practice Guideline For the Management of 
Chronic Obstructive Pulmonary Disease. [24]

VA/DoD 58

Extracranial Carotid and 
Vertebral Artery Disease

2011ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/
SAIP/SCAI/SIR/SNIS/SVM/SVS Guideline on the 
Management of Patients With Extracranial Carotid and 
Vertebral Artery Disease. [25]

ACC 22

Stable Ischemic Heart Disease 2012ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline 
for the Diagnosis and Management of Patients With Stable 
Ischemic Heart Disease. [26]

ACC 66

ST- Elevation Myocardial 
Infarction

2013 ACCF/AHA guideline for the management of ST-
elevation myocardial infarction: a report of the American 
College of Cardiology Foundation/American Heart 
Association Task Force on Practice Guidelines. [27]

ACC 69

Heart Failure 2013 ACCF/AHA guideline for the management of heart 
failure: a report of the American College of Cardiology 
Foundation/American Heart Association Task Force on 
Practice Guidelines. [28]

ACC 88

Valvular Heart Disease 2014 AHA/ACC Guideline for the Management of Patients 
With Valvular Heart Disease: A Report of the American 
College of Cardiology/American Heart Association Task 
Force on Practice Guidelines. [29]

ACC 32

Atrial Fibrillation (AFib) 2014 AHA/ACC/HRS Guideline for the Management of 
Patients With Atrial Fibrillation: A Report of the American 
College of Cardiology/American Heart Association Task 
Force on Practice Guidelines and the Heart Rhythm Society. 
[30]

ACC 56

ACC: the American College of Cardiology;

ACR: the American College of Rheumatology;

VA/DoD: the US Veterans Administration/Department of Defense Clinical Practice Guidelines;
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Table 2

Classification algorithms and their parameter settings.

Algorithm Parameter Setting

K-Nearest Neighbors number of neighbors and instance weighting methods

Naïve Bayes kernel density estimator

Bayes Net search algorithm and estimator algorithm

Naïve Bayes Multinomial default parameter setting in Weka

Logistic kernel type and the corresponding parameters of each kernel type

Multilayer Perceptron number of hidden layers, number of nodes in each layer, learning rate, and momentum

Simple Logistic default parameter setting in Weka

Stochastic Gradient Descent learning rate, lambda and loss function

Decision Table attribute search method

J48 minimum number of instances per leaf, reduced error pruning and confidence threshold for pruning

Random Forest number of trees, maximum depth of the trees, and number of attributes

Support Vector Machine kernel type and the corresponding parameters of each kernel type
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Table 3

Feature ranking results

Rank Feature Information Gain

1 Citation count 0.05154

2 Citation count (monthly) 0.04851

3 Journal impact factor 0.03784

4 Number of comments on PubMed® 0.03563

5 High impact journal 0.01887

6 Altmetric® score 0.01771

7 Altmetric® score (monthly) 0.01275

8 Study sample size 0.01242

9 Registration in ClinicalTrials.gov 0.00763

10 Article age 0.00584

11 Comparative study 0

12 Study quality 0

13 Publication in PubMed Central® 0
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