Skip to main content
. Author manuscript; available in PMC: 2018 Sep 1.
Published in final edited form as: J Biomed Inform. 2017 Jul 26;73:95–103. doi: 10.1016/j.jbi.2017.07.015

Table 2.

Classification algorithms and their parameter settings.

Algorithm Parameter Setting
K-Nearest Neighbors number of neighbors and instance weighting methods
Naïve Bayes kernel density estimator
Bayes Net search algorithm and estimator algorithm
Naïve Bayes Multinomial default parameter setting in Weka
Logistic kernel type and the corresponding parameters of each kernel type
Multilayer Perceptron number of hidden layers, number of nodes in each layer, learning rate, and momentum
Simple Logistic default parameter setting in Weka
Stochastic Gradient Descent learning rate, lambda and loss function
Decision Table attribute search method
J48 minimum number of instances per leaf, reduced error pruning and confidence threshold for pruning
Random Forest number of trees, maximum depth of the trees, and number of attributes
Support Vector Machine kernel type and the corresponding parameters of each kernel type