
A Dirichlet Process Mixture Model for Clustering Longitudinal 
Gene Expression Data

Jiehuan Suna, Jose D. Herazo-Mayab, Naftali Kaminskib, Hongyu Zhaoa, and Joshua L. 
Warrena,*

aDepartment of Biostatistics, Yale University, New Haven, CT 06510, U.S.A

bPulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06519, 
U.S.A

Abstract

Subgroup identification (clustering) is an important problem in biomedical research. Gene 

expression profiles are commonly utilized to define subgroups. Longitudinal gene expression 

profiles might provide additional information on disease progression than what is captured by 

baseline profiles alone. Therefore, subgroup identification could be more accurate and effective 

with the aid of longitudinal gene expression data. However, existing statistical methods are unable 

to fully utilize these data for patient clustering. In this article, we introduce a novel clustering 

method in the Bayesian setting based on longitudinal gene expression profiles. This method, called 

BClustLonG, adopts a linear mixed-effects framework to model the trajectory of genes over time 

while clustering is jointly conducted based on the regression coefficients obtained from all genes. 

In order to account for the correlations among genes and alleviate the high dimensionality 

challenges, we adopt a factor analysis model for the regression coefficients. The Dirichlet process 

prior distribution is utilized for the means of the regression coefficients to induce clustering. 

Through extensive simulation studies, we show that BClustLonG has improved performance over 

other clustering methods. When applied to a dataset of severely injured (burn or trauma) patients, 

our model is able to identify interesting subgroups.
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1. Introduction

Subgroup identification is an important problem in disease studies, especially in complex 

diseases such as cancers, which are highly heterogeneous among individuals [1, 2]. Accurate 

identification of subgroups could be beneficial in disease diagnosis, treatment, and prognosis 

as well as understanding the underlying biological mechanisms. Gene expression data are 

commonly used to define subgroups [3, 4, 5, 6], and subgroups thus identified are usually 
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significantly associated with clinical features, providing valuable clinical insights into 

diseases [5, 6].

Longitudinal monitoring of molecular profiles can be predictive of the onset of diseases [7], 

which suggests that the dynamic trend of gene expression profiles might provide extra 

information on disease progression in addition to baseline gene expression profiles. 

Moreover, longitudinal gene expression data allow us to account for intra-individual 

variability of gene expression when grouping patients. Therefore, subgroup identification 

could be improved with the aid of longitudinal gene expression data.

As our motivating study, a large-scale collaborative research program, Inflammation and the 
Host Response to Injury, aims to improve understanding of the host responses to severe 

injury in a systematic way through genomics, which might help develop improved 

treatments for severe trauma or burn injured patients. In this study, a cohort of critically 

injured patients (burn injury or blunt trauma) were longitudinally followed immediately after 

the injury occurred [8]. At each visit, the whole genome gene expression profile in the whole 

blood leukocytes was measured for the patient. Despite considerably different clinical 

presentations of burn injury and blunt trauma, the changes in the gene expression profiles 

were rather similar in the sense that similar genetic pathways are invoked in response to 

injury. However, the magnitudes and durations in the changes of the gene expression profiles 

were different for different types of injury, which might be related to the development of 

complications often observed in the severely injured patients.

Our first goal is to use the longitudinal gene expression profiles to cluster the patients based 

on the cause of injury, which might reveal differences in the molecular responses to different 

types of injury and hence lead to an improved understanding of these injuries at the 

molecular level. The longitudinal gene expression profiles of patients with the same injury 

type may also vary significantly due to patient heterogeneity. Thus, our second goal is to 

cluster the patients with the same type of injury in order to identify clinically distinctive 

subgroups, which might be related to the development of complications and hence help 

design early interventions.

In the statistical literature, a number of methods have been developed that can be used for 

clustering patients with longitudinal trajectories. Most methods adopt a functional 

approximation of the curves using some standard basis systems and then perform clustering 

based on the coefficients. For example, James et al. [9] used B-splines while Serban et al. 
[10] used the Fourier transformation to approximate the trajectories and then both studies 

adopted the K-means algorithm for clustering based on the coefficients. Model-based 

clustering of the coefficients has also been employed after functional approximation [11, 

12]. Each of these methods is designed for the cases where each subject has only a single 

trajectory. Recently, Rodriguez et al. [13] developed a Bayesian method for clustering 

subjects with multiple trajectories measuring the same variable. However, none of these 

methods are applicable in our setting, where each subject has multiple trajectories measuring 

different genes over time. Although some clustering methods based on multivariate 

longitudinal data have been developed [14, 15], they do not scale up well for high-

dimensional variables, such as the gene expression profiles.
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There are many clustering methods developed for time course gene expression data [16, 17, 

18, and references therein]. However, the time course and longitudinal gene expression data 

are inherently different in that multiple gene expression profiles over time are taken from 

different patients/subjects. Because of this, most of the existing methods, if not all, focus on 

grouping similar genes into clusters instead of patients/subjects. Moreover, the repeated 

measurements on a single patient in the longitudinal gene expression data allow us to cluster 

patients, which requires different statistical models from those methods developed for time 

course gene expression data.

In this article, we propose a nonparametric Bayesian method, called BClustLonG (Bayesian 

Clustering method for Longitudinal Gene expression data), for subgroup identification based 

on longitudinal gene expression profiles. In BClustLonG, we use a linear model to 

approximate the trajectories of genes while clustering is carried out based on the regression 

coefficients obtained from all genes. In order to properly account for high correlations often 

observed among some of the genes when modeling multiple genes simultaneously, we adopt 

the factor analysis model for the regression coefficients. Factor analysis is commonly used in 

genomics studies [19, 20] to alleviate the high dimensionality challenges. To induce 

clustering, the Dirichlet process (DP) prior [21, 22] is specified for the means of the 

regression coefficients of each subject.

The remainder of the article is organized as follows. Section 2 details our statistical model 

and clustering inference. Section 3 gives the prior specification and computational details. 

Section 4 displays the performance of BClustLonG in simulation studies and comparisons to 

other clustering methods. Section 5 shows results of BClustLonG applied to the data of 

critically injured patients. We conclude the paper in Section 6.

2. Methods

2.1. Statistical Model

Let Yig(xit) be the expression value of gene g for subject i at time xit, for i = 1, …, N, g = 1, 

…, G, t = 1, …, Ti and fig(·) be the true underlying trajectory of gene g for subject i. We 

assume

(1)

where  is the gene specific variance. Based on the observed trajectories in our data (see 

Figure 1) and the relatively small number of time points for each patient, we adopt a linear 

regression model to approximate the trajectories such that

(2)

where (aig, big)T is the vector of gene-specific regression parameters for subject i.
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Then, conditional on the regression and variance parameters, the data generating model can 

be written as

(3)

where Yi(xit) = {Yi1(xit), …, YiG(xit)}T denotes the expression values of the G genes at time 

xit for subject i, ai = (ai1, …, aiG)T, bi = (bi1, …, biG)T, , and Σ is a 

diagonal covariance matrix with .

For each patient, we introduce 2G parameters in our model, i.e. . More 

specifically, these parameters control the baseline expression values of the G genes and the 

trend of the longitudinal trajectories (increasing, decreasing, or unchanged over time). 

Depending on the clinical outcome of interest, intercept coefficients ai, slope coefficients bi, 

or both could be informative for clustering. In the following, we assume both sets of 

coefficients are informative when describing our proposed method. The model can be easily 

extended to clustering only on ai or bi if appropriate.

To induce clustering, we specify DP mixture models for the vectors of subject-specific 

regression parameters such that

(4)

(5)

where . More specifically, if a distribution P on parameters μi 

follows a DP with parameters c, G0, then P can be written as , μ*∼G0, 

where wj = uj∏s<j(1 − us), , δμ* is the point mass on μ*, and G0 is the base 

distribution on μ*. This is the well known stick-breaking representation of the DP [22]. 

Then, we say that μi|c, . In our case, we use the following base distribution, 

which results in semi-conjugacy in the model,

(6)

where aμ0 and bμ0 are the grand mean vectors for the intercepts and slopes,  and 

describe the variability of the mean parameters aμi and bμi, and IG is the identity matrix with 
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dimension G. Let ei be the cluster membership for the ith subject. Due to the discrete nature 

of the DP distribution, the subject-specific means of the regression parameters 

could take exactly the same values for different subjects, that is  for 

some subjects i and j or, equivalently, ei = ej, which induces clustering. The number of 

unique values for , that is the number of clusters, depends on the similarities 

among the subjects. Therefore, the DP mixture model provides a data-driven method of 

determining the number of clusters, which avoids the need to pre-specify the number of 

clusters.

We choose to account for potentially high correlations among genes through the modeling of 

Σaa and Σbb in Equations (4) and (5). An obvious starting point would be to assume that Σaa 

and Σbb are unstructured covariance matrices. However, when G is large, this specification 

will be computationally difficult to work with due to the large dimension of each matrix. To 

strike a balance between efficiency and high dimensionality, we adopt a factor analysis 

model for ai and bi. Specifically, we introduce a model for the covariance matrices in 

Equations (4) and (5) such that

(7)

(8)

where [Λa]G×Ma and [Λb]G×Mb are the loading matrices for intercepts and slopes, 

respectively (Ma and Mb are numbers of factors), [ηai]Ma×1 and [ηbi]Mb×1 are factor scores 

for subject i, and [Σa]G×G and [Σb]G×G are the diagonal covariance matrices with 

 and . In this way, we use low-rank matrices to approximate the 

large covariance matrices for intercept and slope parameters that take into account the major 

correlations among genes while avoiding estimation of a large covariance matrix, since Ma 

and Mb are usually small.

This model can be easily extended to clustering only on intercepts or slopes. For example, 

let us assume that only the intercepts are informative for the clinical outcome of interest and 

therefore we only want to base clustering on these parameters. Then, we only need to change 

the prior distribution for bi in Equation (8) to bi|b0,  and the base 

distribution in Equation (6) accordingly. Here, we could again use a factor analysis model to 

approximate the large covariance matrix Σb. While this could improve the model fit, the 

increased model complexity might not result in improved clustering for intercepts. 

Alternatively, we can assume that the Σb is diagonal and allow the correlations among genes 

to be accounted for by the intercepts. Similarly, if we only want to cluster on slopes, the 

model could be adjusted accordingly.

Sun et al. Page 5

Stat Med. Author manuscript; available in PMC 2018 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. Clustering Inference

The cluster structure can be derived as follows for BClustLonG. First, we calculate the 

posterior similarity matrix, where the (i, j)th entry of the matrix represents the posterior 

probability that the ith subject and jth subject are in the same cluster. This can be easily 

calculated based on the S posterior samples as , where δ(·) is the 

indicator function and  and  is the cluster membership for the ith and jth subjects in 

the sth iteration, respectively. The posterior similarity matrix is commonly used to derive the 

cluster structure based on the posterior samples, since it is robust to the label switching issue 

in Bayesian mixture models.

Based on the posterior similarity matrix, there are two categories of methods that could be 

used to determine the clustering structure. For the first category, the number of clusters does 

not need to be pre-specified. These approaches, including Binder [23], Dahl's criterion [24], 

and MPEAR [25], can be used to determine the optimal number of clusters and the 

corresponding cluster structure based on the posterior similarity matrix. In simulation 

studies, where the true number of clusters is known, we adopt these approaches so that we 

can study their performance in terms of determining both the number of clusters and the 

clustering structures. Specifically, we choose the MPEAR method among the others for our 

analyses, since it has the positive feature of maximizing the expectation of the adjusted Rand 

index between the estimated and true clustering. The adjusted Rand index represents the 

degree of agreement between two clustering partitions with higher value indicating better 

agreement (it typically ranges from 0 to 1 and sometimes it could be negative) and is a 

commonly used measure of clustering performance [26, 27, 28].

For the second category, the number of clusters has to be pre-specified. Specifically, the 

classical agglomerative hierarchical clustering method (HCLUST), as introduced in [29], 

can be used to infer the clusters. We choose HCLUST in our analysis because it is one 

commonly used clustering method that works on a pairwise distance matrix, which is the 

output of our algorithm. Most existing clustering methods are not applicable in this setting. 

In this approach, the posterior similarity matrix is used to generate the pairwise distance of 

all subjects and then the pairwise distance is given as input to HCLUST with average 

linkage to infer the clustering structure for a given number of clusters. This approach is 

useful when the number of clusters is known a priori or can be determined based on clinical 

relevance for better interpretation. Since the adjusted Rand index could be affected by the 

number of clusters, which is usually unknown in real data, we compare different clustering 

methods by fixing a reasonable number of clusters and hence we use this approach in the 

real data analysis.

3. Computations

3.1. Prior Specification

To complete the model specification, we select prior distributions for all unknown model 

parameters. Most of the prior distributions are selected to be conjugate for computational 

convenience while still being weakly informative to reflect our lack of prior information 
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regarding the true parameter values. The concentration parameter c in the DP prior controls 

the prior expectation of number of clusters in the data. We specify a Uniform(0, 10) prior 

distribution for c where c = 10 results in the prior expected number of clusters to be 15.42 

based on Theorem 1 in [13]. This upper bound should be large enough for our dataset which 

includes at most 159 patients. For datasets with more subjects, a larger value might be 

needed for the upper bound of the uniform distribution.

We select conjugate priors for the mean and variance parameters in the base distribution of 

the DP prior. For the mean parameters aμ0 and bμ0, we use independent multivariate normal 

distributions, that is aμ0 ∼ MVN(0G, hIG) and bμ0 ∼ MVN(0G, hIG), where 0G is a vector of 

length G with all elements being zeros. We set h = 100 in our analysis, resulting in weakly 

informative prior distributions. For the variance parameters  and , we select weakly 

informative Inverse Gamma(0.1, 0.1) prior distributions. When considering the model that 

only clusters on the intercepts, we set b0 ∼ MVN(0G, hIG). Similar adaptation is done when 

we use the model that only clusters on slopes. We specify independent and weakly 

informative conjugate prior distributions for all variance parameters involved in the diagonal 

matrices (Σ, Σa, Σb) through use of the Inverse Gamma(0.1,0.1) prior distribution.

Next, we specify prior distributions for the unknown parameters in the factor analysis model. 

Since the factor models for the intercepts and slopes are symmetric, we only describe the 

prior specification for Λa and ηai noting that the same prior distributions are selected for Λb 

and ηbi. In order to ensure identifiability of the factor loading matrix and hence the factor 

scores, constraints have to be placed on the loading matrix, as done in [30] and [31]. 

However, the factor model is used to account for the correlation among genes in our case 

and hence only the covariance matrix  is involved in the posterior sampling. 

Therefore, the identifiability issue of the factor loading matrix and factor scores is not a 

problem in our case, as long as the covariance matrix  is well identified. As a 

result, we adopt the multiplicative gamma process shrinkage prior for the factor loadings 

proposed in [32]. To be specific, the priors for the entries of Λa are as follows:

(9)

(10)

where [Λa]gm is the (g, m)th entry of Λa and [ϕa]gm and [τa]m control the shrinkage of these 

factor loadings in an element-wise and column-wise manner, respectively. The multiplicative 

gamma process shrinkage prior on the factor loadings allows the introduction of infinitely 
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many factors and hence avoids the need for specification of the number of factors, a 

notoriously difficult problem in past work [33]. It also introduces sparsity on the factor 

loading by shrinking them towards to zero as the number of factors increases through use of 

[τa]m, since [τa]m is stochastically increasing if αa2 > 1. Moreover, it was shown in [32] that 

the multiplicative gamma process shrinkage prior ensures the weak consistency of the 

posterior distribution and provides a large support for the positive definite covariance matrix. 

The efficient adaptive Gibbs sampler, proposed in [32], is used to sample Λa, which can 

handle the infinite number of factors. The prior distributions for αa1 and αa2 are taken to be 

Gamma(2, 1) as in [32]. As in a standard Bayesian factor analysis model, the prior 

distribution for ηai is taken to be MVN(0, IMa).

3.2. Computational Details

The selected prior distributions lead to semi-conjugacy for the majority of introduced model 

parameters. Therefore, Gibbs sampling is a straightforward approach to performing Markov 

chain Monte Carlo (MCMC) posterior sampling. Use of the DP prior distribution results in 

an infinite number of mixture components, which can be computationally difficult to handle 

in practice. Numerous algorithms have been proposed for sampling in DP mixture models 

[34, 35, 36, 37, 38]. Here, we use the method proposed in [34] and [35], where the 

parameters in the mixture components follow a generalized Polya urn scheme obtained by 

integrating out the distribution of these parameters over the prior distributions. The detailed 

sampling algorithm is provided in Section 3 of the Supplementary Materials.

In simulation studies, 20,000 MCMC samples are generated and the first 5,000 samples are 

discarded as burn-ins. All subjects are randomly assigned to ten different clusters to start 

with. The initial values for the A, B, aμ0, bμ0, Σ, Σa, and Σb parameters are set based on the 

intercept and slope coefficients estimates from the linear mixed-effect model with random 

intercepts and random slopes fitted for each gene separately, where [A]n×G = (a1, …, an)T 

and [B]n×G = (b1, …, bn)T. The initial values for σa0 and σb0 are both set to be 1. The initial 

values for the other parameters are chosen according to the assigned prior distributions.

For our analyses of real data, 60,000 samples are collected after a burn-in period of 15,000 

iterations from three separate chains for a total of 180,000 posterior samples available for 

making posterior inference. Starting values for each chain are selected to be overdispersed 

with respect to the target marginal posterior distributions based on preliminary runs of the 

model. This allows us to calculate the potential scale reduction factor convergence 

diagnostic [39]. Convergence monitoring is conducted on all parameters based on the visual 

inspection of Gelman-Rubin plots and trace plots, and the Gelman-Rubin diagnostic 

statistics.

4. Simulation Studies

In this section, we apply BClustLonG to simulated data and evaluate its performance in 

comparison to four competing methods. The first three methods for comparison are two-step 

empirical procedures. In the first step, a linear mixed-effects model with random intercepts 

and slopes is fitted for each gene separately and estimates of the intercepts and slopes are 

obtained for each individual. Then, a clustering method is applied to the standardized 
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parameter estimates from step one to obtain the optimal number of clusters and underlying 

cluster structure. For the second step, we adopt two model-based clustering methods, 

MCLUST [40] and EPGMM [41], and one distance-based clustering method, K-means. 

EPGMM also uses a factor analysis model to approximate the covariance matrices while 

MCLUST employs eigen-decomposed covariance matrices, both of which can deal with 

high-dimensional data. For brevity, we denote these two-step procedures as MCLUST, 

EPGMM, and K-means, respectively. Another method for comparison is similar to our 

proposed model except that the factor analysis component is removed. Instead, diagonal 

covariance matrices are assumed for both vectors of intercepts and slopes in Equations (4) 

and (5). This method, referred to as BCluseLonG0 from here on, allows us to assess the 

necessity of the factor analysis structure in our proposed method. Note that the correlations 

among genes are ignored in BCluseLonG0. In contrast, the correlations among genes are 

ignored when estimating intercepts and slopes in MCLUST and EPGMM, but the covariance 

matrices for the intercept and slope vectors are estimated during clustering. Another major 

difference between our framework and the two-step procedures is that BCluseLonG is a DP 

mixture model while MCLUST and EPGMM are finite mixture models, for which the 

number of mixture components is determined based on Bayesian Information Criterion. To 

run MCLUST, EPGMM, and K-means, we adopt the Mclust function in R package 

“mclust”, pgmmEM function in R package “pgmm”, and kmeansruns function in R package 

“fpc”, respectively. For EPGMM, the algorithm is run with CCC and CCU models and the 

numbers of factors under consideration are from one to six (See [41] for details on the CCC 

and CCU models). The possible numbers of clusters under consideration range from one to 

five for each method and we use default values for all other parameters.

Specifically, we compare the performance of the five methods (BClustLonG, BClustLonG0, 

MCLUST, EPGMM, and K-means) in four different data generating scenarios. In order to 

preserve the properties of our observed data and create realistic simulation scenarios of 

interest, many features of the simulated data are taken directly from the injury data. The total 

number of patients is 100 (N = 100 patients), the number of genes is the same as that for the 

observed study (G = 40 genes), the sampled time points of each subject are taken directly 

from the 100 randomly selected patients in the observed data, and the true number of 

underlying clusters is two with each cluster including 50 patients.

The intercepts and slopes for patients in each cluster are drawn from multivariate normal 

distributions as follows. For all scenarios, the means of intercepts and slopes are 1G for 

patients in cluster one and are 0G for patients in cluster two, where νG is a length G vector 

with all elements being ν (ν = 0,1). The covariance matrices of the intercepts and slopes for 

patients in both clusters are taken to be (R, R), (IG, R), (R, IG), and (IG, IG) for the four 

scenarios, respectively, where IG denotes identity covariance matrix and R is the correlation 

matrix estimated from the baseline measurements in the injury data. Each scenario is named 

based on the covariance matrix specifications for the intercepts and slopes (for example, 

scenario RR indicates that R is specified for both intercepts and slopes). Finally, the data are 

simulated based on the data generating model given in Equation (3), where the matrix of 

gene specific variances Σ is taken to be IG in all simulation settings.
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We simulate 20 datasets from each scenario as described in the previous paragraph. From the 

results in Table 1, we can see that BClustLonG outperforms the other four methods in all 

four scenarios as indicated by the larger values of the adjusted Rand Index. Comparing the 

performance of BClustLonG and BClustLonG0, we can see that BClustLonG performs well 

for different specifications of covariance matrices while BClustLonG0 only has reasonably 

good performance when the corresponding covariance matrices are independent (II 

scenario). This suggests that the adoption of the sparse factor analysis model to approximate 

the covariance matrix allows the model to adapt to different scenarios (even when the true 

covariance matrices have an independent structure) and that the misspecification of 

covariance matrix could lead to misleading clustering results. K-means has similar 

performance to BClustLonG in scenario II while performing worse than BClustLonG in 

other scenarios. This makes sense as K-means ignores the correlation structure and hence it 

is not efficient when the genes are correlated.

Also, we can see that BClustLonG outperforms MCLUST and EPGMM in all data 

generation scenarios, which suggests that accounting for the uncertainties in estimating the 

intercepts and slopes could help improve the clustering results. It is worth noting that 

MCLUST and EPGMM perform poorly in the RR and II scenarios. For the RR scenario, 

where the covariance matrix is complex, EPGMM would favor a large number of factors in 

order to approximate the covariance matrix well and estimation of a large number of 

parameters could increase the uncertainties in the model and hence leads to unstable 

clustering results. Similar explanation also applies to MCLUST. And, the sparsity 

assumption in BClustLonG could be beneficial in this case. When the true covariance 

matrices have an independent structure, the sparsity assumption also helps, as shown by the 

results in II scenario.

In addition, comparing the estimated number of clusters, we can see that BClustLonG can 

accurately estimate the number of clusters while BClustLonG0 tends to overestimate when 

covariance matrices are misspecified. For MCLUST and EPGMM, the estimated number of 

clusters is generally unstable and can vary substantially across different data generating 

scenarios. It seems K-means consistently estimates the number of clusters well in all 

scenarios. In fact, K-means is rather conservative in estimating the number of clusters. In the 

additional simulations as shown in Section 1 of the Supplementary Materials, K-means 

estimates the number of clusters to be two in most settings while the true number of clusters 

is four (See Table S1 in the Supplementary Materials).

To show the robustness of BClustLonG, we conduct additional simulations. From the results 

shown in Table S1 in the Supplementary Materials, we can see that BClustLonG is robust to 

the varying number of genes and clusters, different covariance matrices, and model 

specifications, and has improved performance over competing methods in all scenarios.

5. Injury Data Analysis

Next, we apply BClustLonG to the injury data briefly described in Section 1. In the injury 

data, there are a total of 244 severe burn patients (having burns covering more than 20% of 

the total body surface area) and 167 severe blunt trauma patients. For the burn patients, the 
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blood samples were drawn irregularly from within several hours of the injury and up to one 

year after the injury while, for the trauma patients, the blood samples were taken more 

regularly within 12 hours of the injury and 1, 4, 7, 14, 21, and 28 days after the injury. The 

whole-genome gene expression profile was measured for each blood sample.

In our analyses, we focus on the measurements taken within 400 hours (about two weeks) 

after the injury, during which the patients experience rapid changes in the gene expression 

profiles in response to the injury [8], since we are more interested in the magnitudes and the 

rates of changes. We only include patients having at least three measurements within 400 

hours after the injury in order to have relatively reliable slope estimates, resulting in 26 burn 

patients and 159 trauma patients with each patient having three to five measurements. It is 

challenging to select informative genes out of the tens of thousands of genes available for 

clustering given that we have no information on the true underlying clusters [42]. As 

commonly done, the genes with the largest variances are selected for clustering, since they 

explain a large proportion of the variance in the data, which is likely related to the 

underlying clustering structure in the data [43]. Here, we select 40 genes with large 

variances both in intercepts and slopes estimated by a linear mixed-effect model using the 

185 patients from our study.

In this dataset, two major clusters exist, that is burn and trauma patients. However, the “true” 

number of clusters is unknown, as there might be subgroups within burn and/or trauma 

patients, due to the different clinical features such as the severity of the injury. Also, the 

adjusted Rand index could be affected by the inferred number of clusters. Thus, in order to 

make a fair comparison among all methods, we pre-specify the number of clusters to be 2 

for all methods (i.e. the HCLUST method is used for BClustLonG to determine the 

clustering structure, as mentioned in Section 2.2). As a result, the adjusted Rand indices are 

0.94, 0.02, 0.18, 0.07, and 0.24 for BClustLonG, BClustLonG0, MCLUST, EPGMM, and 

K-means, respectively, suggesting that BClustLonG performs better in separating burn and 

trauma patients into two clusters than other methods.

Then, we compare the performance of two versions of our model in order to establish the 

need for incorporating the longitudinal data into the modeling framework. The first version 

(INT) represents a modification of the full BClustLonG model where only the intercepts are 

allowed to inform about potential clusters in the data. The second version (BOTH) is the 

previously described BClustLonG method where both intercepts and slopes are allowed to 

inform about clustering. We are interested in determining which model can better separate 

burn patients and trauma patients based on their gene expression profiles and to determine if 

the longitudinal nature of the data is informative for clustering (i.e. slopes). The adjusted 

Rand indices are 0.94 and 0.82 for the BOTH model and INT model, respectively. As shown 

by the posterior similarity matrices in Figure 2, the burn patients (Subject IDs 1 to 26) are 

more tightly clustered when using the BOTH model compared to the INT model. A similar 

result is observed for the trauma patients. These findings suggest that the rates of changes 

(slopes) in certain genes are different for burn patients and trauma patients in addition to the 

differences in the magnitudes of initial changes (intercepts), as also suggested in Figure 1.
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Next, we take a closer look at the clustering results from the full BClustLonG model 

(BOTH). Based on the posterior similarity matrix (Figure 2(b)), we can see that the 

magnitudes and the rates of changes in these 40 genes not only separate trauma patients 

from burn patients, but also identify several subgroups within trauma patients. In fact, there 

are four identified clusters in the injury data (including the burn patients) based on the 

MPEAR criterion. To see the differences in the trajectories for the these four clusters, we 

select one of the 40 genes, SIGLEC9, and plot its trajectory for each patient in each cluster 

with a fitted line for each cluster. From Figure 3, we can see that the trajectories of 

SIGLEC9 show differences in both intercepts and slopes for the four clusters. In particular, 

the patients in cluster 1 (all of them are burn pateints) have relatively stable expression of 

SIGLEC9 over time while the expression values of SIGLEC9 are decreasing for patients in 

all other clusters (the majority is trauma patients), although the baseline values are similar 

across all clusters. Comparing patients in clusters 2, 3, and 4, we can see that, in addition to 

the differences in the baseline values, the expression values of SIGLEC9 are decreasing 

faster for patients in cluster 4, although the trajectories from all three clusters display 

decreasing trends. This suggests that different trauma patients respond to the injury in 

different ways and hence respond differently during the recovery process as well. Although 

there is no obvious difference between clusters 2 and 3 for this particular gene, clusters 2 

and 3 do differ in other genes. Detailed investigation of the trajectories of these genes for 

patients in different clusters together with their clinical outcomes (e.g. if complications 

developed during the process) might provide insights into the molecular mechanisms of the 

host response to the trauma injury.

The means of the Gelman-Rubin diagnostic statistics for all parameters across all chains are 

1.018 with standard deviation 0.07 and 1.001 with standard deviation 0.003 for the BOTH 

and INT models, respectively. These results, along with visual inspection of the trace plots, 

suggest there is no significant evidence of convergence issues. In Section 2 of the 

Supplementary Materials, we also conduct a sensitivity analysis regarding the prior 

distributions for αa1 and αa2, which are taken to be Gamma(2,1) in each of our analyses. As 

shown in Figure S1 of the Supplementary Materials, the clustering structures obtained from 

BClustLonG using different hyperparameters in the prior distributions for αa1 and αa2 are 

similar, suggesting that BClustLonG is generally robust to the choice of prior distributions 

for αa1 and αa2.

6. Discussion

In this paper, we developed a new Bayesian method, called BClustLonG, for clustering 

based on longitudinal gene expression profiles. By taking into account the mixture structure 

and the correlations among genes when estimating the model parameters, our model was 

able to improve the clustering performance over other methods. Through both simulation 

studies and real data application, BClustLonG is shown to be a useful tool for analyzing 

longitudinal gene expression profiles. In addition, the adoption of the DP mixture model and 

the infinite sparse factor analysis model makes the inference of the number of clusters and 

factors an inherent feature of our proposed method, which can be very useful in practice.
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In our method, the longitudinal trajectories of all genes are approximated by linear 

regression models, which is reasonable for our settings where each subject only has a few 

time points, thereby making more complex non-linear modeling extremely difficult. Also, 

including only the intercepts and slopes for clustering improves interpretation of the 

findings, as both intercepts and slopes are clinically meaningful. However, our model 

framework is quite general and can be extended to deal with non-linear trajectories. For 

example, we can add polynomial terms of time in Equation (2). However, the number of 

parameters that need to be estimated will increase as the number of terms increases, as the 

covariance matrix for each of the added terms has to be estimated. Some further assumptions 

might be needed to reduce the number of parameters in those situations to achieve good 

bias-variance balance.

It has been widely recognized that most genes in a gene expression dataset are redundant 

and selecting informative genes before clustering can improve the results [43]. Based on our 

experience, BClustLonG can deal with the cases where the number of informative genes is 

on the scale of tens or hundreds. However, if the number of informative genes increases 

drastically, slow mixing issues might present in the DP mixture model, in which case more 

advanced algorithms such as the split merge algorithm might be used to improve the mixing. 

In our analysis, we pre-selected the genes based on the variances before clustering. A 

possible extension of our current model is to incorporate the variable selection feature into 

the model, that is to perform variable selection and clustering simultaneously, which avoids 

the need to pre-select genes. However, resulting computational complexities may be difficult 

to overcome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Expression trajectories of gene SIGLEC9 over time for 26 burn patients and 26 randomly 

selected trauma patients.
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Figure 2. 
The posterior similarity matrices from the two versions of our model in the injury data 

application. INT: only include intercepts for clustering; BOTH: include both intercepts and 

slopes for clustering.
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Figure 3. 
The trajectories of gene SIGLEC9 for the four clusters in the injury data.
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Table 1

Comparisons of BClustLonG, BClustLonG0, MCLUST, EPGMM, and K-means in simulation settings. The 

numbers in each cell indicate the average adjusted Rand index (Avg.Rand) and the average number of clusters 

(Avg.Clust) estimated by each method under each scenario with standard deviations in parentheses.

Scenarios BClustLonG BClustLonG0 MCLUST EPGMM K-means

RR
Avg.Rand 0.972 (0.054) 0.303 (0.065) 0.407 (0.114) 0.050 (0.224) 0.566 (0.123)

Avg.Clust 2.2 (0.4) 7.9 (1.7) 3.5 (0.8) 1.1 (0.2) 2.0 (0.0)

RI
Avg.Rand 0.990 (0.017) 0.447 (0.073) 0.627 (0.121) 0.840 (0.362) 0.756 (0.096)

Avg.Clust 2.1 (0.3) 5.5 (1.4) 3.0 (0.6) 1.8 (0.3) 2.0 (0.0)

IR
Avg.Rand 1.000 (0.000) 0.474 (0.066) 0.695 (0.127) 1.000 (0.000) 0.860 (0.086)

Avg.Clust 2.0 (0.0) 5.6 (1.2) 3.1 (0.9) 2.0 (0.0) 2.0 (0.0)

II
Avg.Rand 0.998 (0.009) 0.998 (0.009) 0.000 (0.000) 0.000 (0.000) 0.998 (0.009)

Avg.Clust 2.0 (0.0) 2.0 (0.0) 1.0 (0.0) 1.0 (0.0) 2.0 (0.0)
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