
Gross Motor Ability Predicts Response to Upper Extremity 
Rehabilitation in Chronic Stroke

Sarah Hulbert George, MS,
Department of Biophysics, The Ohio State University, 1012 Wiseman Hall, 400 W. 12th Ave, 
Columbus, OH 43210 U.S.A.

Mohammad Hossein Rafiei, PhD,
Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 470 
Hitchcock Hall, 2070 Neil Ave., Columbus, OH 43220 U.S.A.

Alexandra Borstad, PhD,
Department of Physical Therapy, The College of St. Scholastica, 1200 Kenwood Avenue, Duluth, 
MN 55811 U.S.A

Hojjat Adeli, PhD, and
Departments of Civil, Environmental and Geodetic Engineering, Biomedical Informatics, 
Biomedical Engineering, Neurology, and Neuroscience, The Ohio State University, 470 Hitchcock 
Hall, 2070 Neil Ave., Columbus, OH 43220 U.S.A.

Lynne V. Gauthier, PhD
Physical Medicine and Rehabilitation, The Ohio State University, 480 Medical Center Drive, 
Columbus OH 43210, USA

Abstract

The majority of rehabilitation research focuses on the comparative effectiveness of different 

interventions in groups of patients, while much less is currently known regarding individual 

factors that predict response to rehabilitation. In a recent article, authors presented a prognostic 

model to identify the sensorimotor characteristics predictive of the extent of motor recovery after 

Constraint-Induced Movement (CI) therapy amongst individuals with chronic mild-to-moderate 

motor deficit using the enhanced probabilistic neural network (EPNN). This follow-up paper 

examines which participant characteristics are robust predictors of rehabilitation response 

irrespective of the training modality. To accomplish this, EPNN was first applied to predict 

treatment response amongst individuals who received a virtual-reality gaming intervention 

(utilizing the same enrollment criteria as the prior study). The combinations of predictors that 

yield high predictive validity for both therapies, using their respective datasets, were then 

identified. High predictive classification accuracy was achieved for both the gaming (94.7%) and 

combined datasets (94.5%). Though CI therapy employed primarily fine-motor training tasks and 

the gaming intervention emphasized gross-motor practice, larger improvements in gross motor 
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function were observed within both datasets. Poorer gross motor ability at pre-treatment predicted 

better rehabilitation response in both the gaming and combined datasets. The conclusion of this 

research is that for individuals with chronic mild-to-moderate upper extremity hemiparesis, 

residual deficits in gross motor function are highly responsive to motor restorative interventions, 

irrespective of the modality of training.

Introduction

Motor restorative therapies aim to restore motor function by emphasizing practice with the 

more affected upper extremity while minimizing compensatory movement by the less 

affected upper extremity. Recently, the authors showed that this therapeutic approach may 

not be appropriate for all individuals who have sufficient motor ability to participate (George 

et al., 2017). George et al. (2017) presented a novel prognostic computational model to 

identify which baseline sensorimotor characteristics predicted the extent of motor recovery 

during Constraint-Induced Movement (CI) therapy, an established motor restorative 

intervention (Taub et al., 1993; Wolf et al., 2006; Taub et al. 2006), employing the enhanced 

probabilistic neural network (EPNN) model of Ahmadlou and Adeli (2010). They found that 

the extent of motor restoration, as measured by the Wolf Motor Function Test (WMFT) 

(Taub et al. 1993, Taub et al. 2006, Wolf et al. 2006), varied markedly among individuals 

and was generally poor amongst those with higher baseline ability.

The purpose of this follow-up research is to determine robust predictors of motor restoration 

irrespective of the type of motor training. This is accomplished by applying the 

aforementioned machine learning-based model to a very different treatment modality: motor 

training delivered at home via Recovery Rapids, a Kinect-based video game (Maung et al. 

2013, Fuhry et al. 2016). Like CI therapy, this motor restorative video game-based 

intervention involves high repetition practice with the more affected upper extremity for 

several hours per day over two weeks, progressive shaping of motor tasks, and an emphasis 

on carry-over of motor gains to daily activities (Gauthier et al. in press, Morris et al. 2006). 

There are several important differences between the two types of therapies, however. 

Recovery Rapids harnesses the benefits of a virtual world (i.e., no task set-up time) to 

dramatically increase task variability. As such, the client switches rapidly between different 

types of motor movements. In contrast, CI therapy utilizes blocked practice, in which the 

same task is practiced repeatedly for a period of about 10-20 minutes. Game-based therapy 

through Recovery Rapids also involves substantially more repetitions per time (> 1000 per 

hour on average), is largely delivered at home without direct therapist supervision, 

incorporates limited tactile feedback (participants do not touch objects), and distal (fine-

motor) training comprises a smaller percentage of tasks (∼30% versus >90%).

The authors hypothesized that there are likely to be some commonalities in individual 

sensorimotor presentation that would make that individual a better candidate overall for 

motor restorative therapies, irrespective of therapeutic modality. Additionally, they expected 

that training-related factors would interact with individual characteristics to produce 

different patterns of poor versus good responders for the two different interventions. 

Specifically, they hypothesized that those with poorer function on the domain being trained 
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would benefit more from the intervention. Consistent with this hypothesis, George et al. 

(2017) found that those with relatively greater fine-motor ability at baseline benefited less 

from CI therapy, an intervention that targets fine motor tasks. In keeping with this hypothesis 

and the authors' prior findings, we hypothesized that those with poorer gross-motor 

performance at baseline would be better candidates for gaming therapy, as this approach 

does not provide as many fine-motor training opportunities. To test this hypothesis, the best 

combination of predictors from the prior paper will be compared with an identical analysis 

for the Recovery Rapids gaming therapy. To determine which elements of sensorimotor 

presentation predict more favorable outcome irrespective of therapeutic modality, the most 

predictive combinations of baseline sensorimotor ability for both gaming therapy and CI 

therapy will be identified.

This research aims to identify those individual characteristics at baseline that can predict 

response to two different motor restorative therapies. Improved predictions of treatment 

response based on a person's individual characteristics at baseline will enable therapists to 

devise cost-efficient personalized care plans with the goal of balancing restorative versus 

compensatory intervention approaches to maximize the motor functions of their patients.

Methodology

Participants

Participants were 19 individuals with chronic (>6 months) mild to moderate upper extremity 

hemiparesis who had experienced a stroke of any etiology. All participants met the motor 

inclusion criteria utilized in the EXCITE trial of CI therapy (Wolf et al., 2006), but were 

enrolled largely irrespective of cognitive or mobility status. The sample utilized in this 

analysis is thus more inclusive than in prior CI therapy trials. Those who were unable to 

provide informed consent, or who had received Botox treatment in the past 12 weeks were 

excluded. Inclusion criteria and recruitment approaches for this study were the same as those 

used in the earlier study by the authors (George et al. 2017). See Table 1 for participant 

demographics.

Intervention

The gaming therapy intervention was designed such that physical/occupational therapists 

manage patients in a consultative role with the majority of the motor practice occurring 

through Recovery Rapids, an in-home gaming rehabilitation system (Maung et al. 2013). 

The gaming system utilizes the KinectOne™ sensor to capture particular therapeutic 

movements (gestures), each of which is tied to a game objective. Gestures include elbow 

flexion/extension, shoulder flexion with elbow extension, shoulder abduction, shoulder 

adduction, overhead reaching, forearm supination, grasp release, and wrist extension. The CI 

therapy principal of shaping (progressively increasing task difficulty as a person improves) 

is incorporated. In just one example, the user attempts to capture parachutes as they fall from 

above. An introductory difficulty level for this gesture may require only 30 degrees of 

shoulder flexion. As a user demonstrates the capacity to perform more difficult movements, 

the software requires greater shoulder flexion, then increased concurrent elbow extension 

and forearm supination to accomplish the same game objective. See Figure 1 for a depiction 
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of the gaming environment (http://gamesthatmoveyou.com/). Carry-over of motor 

improvements to daily life is promoted through an interactive Motor Activity Log problem-

solving module that occurs after each 15-20 minutes of the game play.

Five therapist/patient contact hours occurred over 4 home visits. The first session (2 hours) 

involved instruction in game play, customizing the game to the participant, establishing the 

treatment contract, and establishing the home program (target functional activities to 

accomplish daily). Thereafter, sessions focused on review of progress with the home 

program, modifying game customization as needed, and on “transfer package” elements that 

could not be readily addressed through the game (Morris et al. 2006, Taub et al. 2013). 

“Transfer package” elements include reviewing the treatment contract, daily self-assessment 

of arm use, guided problem-solving to increase the use of the weaker upper extremity for 

activities of daily living, and collaboratively establishing a home program focused on 

functional task practice. Participants agreed to play Recovery Rapids for 30 hours over a 

two-week period.

Outcome Measures

Three outcome measures were utilized: the WMFT, the Brief Kinesthesia Test (BKT), and 

Touch Test Monofilaments (TM). The WMFT was utilized to assess the motor function of 

the upper limbs (Taub et al. 1993, Taub et al. 2006, Wolf et al. 2006). As in George et al. 

(2017), the WMFT scores, recorded in seconds, were natural-log-transformed to account for 

the non-uniform interpretation of performance time improvement (i.e., an improvement from 

5s to 3s is greater than an improvement from 105 to 103s). The BKT is a measure of error in 

guided reaching with visual occlusion considered to represent upper limb kinesthetic sense 

(Borstad and Nichols-Larsen, 2016). TM is sensitive to tactile impairment; it identifies the 

lightest force in grams perceived consistently by an individual on the index finger (Callahan 

et al. 1995). These same sensorimotor measures were used in the authors' earlier research 

(George et al. 2017) and are summarized in Table 2

Table 3 summarizes the collected patient data used for the prognostic computational EPNN 

model. From these data, there were 2 missing values corresponding to the somatosensory 

measures of only one participant. These were replaced using a simple regression analysis. 

Each participant was categorized based on their natural-log-transformed WMFT treatment 

change score as either a non-responder (>-0.15; class 1), moderate-responder (-0.15:-0.40; 

class 2), or best responder (<-0.40; class 3). Classification thresholds are consistent with the 

earlier research (George et al. 2017). These categories are represented in the last column of 

Table 3. A histogram of WMFT change is shown in Figure 2.

Sensitivity Analysis and Prognosis Model

In order to identify the best method of classification, the authors previously used three 

different algorithms to classify participants: k-nearest neighbors (Siddique and Adeli, 2013), 

the probabilistic neural network, and the enhanced probabilistic neural network (EPNN) 

(Ahmadlou and Adeli, 2010) and reported the most accurate results by EPNN (George et al. 

2017). Therefore, EPNN was also utilized in this follow-up research. Using the available 
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data a total of 262,125 combinations of 18 motor, somatosensory, and stroke-affected side 

predictors exist.

Sensitivity analyses were performed to identify the prediction accuracy of each predictive 

model. The flowchart of the sensitivity analysis is presented in Figure 3. It consists of 8 

steps and 3 decision diamonds. In step 1, one out the 262,125 combinations is selected. In 

step 2, each participant's motor and somatosensory data are arranged based on the selected 

combination. In step 3, the data corresponding to a single participant is input to the EPNN 

(predictor layer in EPNN). In step 4, the motor and somatosensory data of the single 

participant is compared statistically to the same predictor data of all other patients in the 

pattern layer of EPNN. In step 5, the summation layer determines how similar the single 

participant's predictor data are to the average values in each of the three categories: non-, 

moderate-, and best-responders. In step 6, the predictor data are assigned the category with 

the maximum average similarity (decision layer in EPNN). In step 7, if the participant was 

classified correctly, an accurate prognosis is counted. Steps 3 to 7 are repeated for every 

patient. Once the data for all participants have been analyzed in this manner, the accuracy 

percentage of the prognosis corresponding to the selected combination is computed in step 8 

as follows: (number of accurate prognosis/total number of participants)× 100. This process 

is repeated for every combination (the outer loop in Figure 3).

Implementation

All possible combinations of motor and somatosensory predictors (Table 2) are considered 

to identify the combinations with the most accurate prognosis. Because the stroke patient 

data available for training a sophisticated neural network classification model (EPNN) were 

limited in this research, the model was trained and tested 19 times (equal to the number of 

stroke participants), each time using the data for a different patient for testing and the 

remaining 18 sets of data for training (steps 3 to 6 in Figure 3). This results in an RTT (rate 

of testing to training) of about 5.0%. The accuracy values reported in this research are the 

average of testing accuracies of the 19 trials (step 8 in Figure 3).

Results

Accuracy of the Gaming Models and Rates of Selection

Within the gaming therapy cohort, EPNN yielded maximum classification accuracies of 

94.7% for 8 out of the 262,125 combinations. The next highest accuracy obtained was 

89.5% for 80 out of 262,125 combinations. The most frequently selected predictor in the 8 

combinations with the highest accuracy was WMFT forearm to table (gross motor), which 

was selected in all eight combinations. The next most frequently selected predictors 

comprised mainly gross motor predictors: WMFT extend elbow weight (gross motor), and 

WMFT hand to table (gross motor), WMFT basket (gross motor), and stroke-affected side, 

which were selected 6 times. Somatosensory predictors, BKT and TM, were selected in 1 

and 3 combinations, respectively. Table 4 presents the 8 different combinations of predictors 

with average accuracies of 94.7%.
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Table 5 presents a comparison of the rates of selection of predictors for the combinations 

with accuracy of about 90% and greater using the CI and gaming therapies. For the gaming 

therapy, the most frequently selected predictors consist of a combination of gross, fine and 

somatosensory predictors: WMFT forearm to table (gross motor), WMFT basket (fine and 

gross motor), WMFT towel (fine motor), stroke affected side, and TM (somatosensory), with 

rates of selection of 80.7%, 71.6%, 63.6%, 60.2%, and 55.7%, respectively. The least 

selected predictors consist of only fine motor tasks: WMFT stack checkers (fine motor), 

WMFT key (fine motor), WMFT pencil (fine motor), WMFT can, and WMFT lift paper clip 

(fine motor) with rates of selection of 0.0%, 0.0%, 3.4%, 12.5%, and 21.6%, respectively.

As a point of comparison, in the earlier research for CI therapy, EPNN yielded maximum 

classification accuracies of 100% (52 combinations), with fine motor tasks comprising the 

most frequently selected predictors (George et al. 2017). Selection rates for these, along with 

other combinations achieving accuracies of at least 90% are also included in Table 5.

Table 6 summarizes the rates of selection of 18 predictors in the prognosis model for the 

gaming and CI therapies, and the combined model with accuracies of about 90% and greater.

Robust Predictors Across Intervention Type

To identify the most robust sensorimotor predictors of motor restoration irrespective of 

training modality, 72 combinations from the combined CI therapy and gaming therapy data 

sets with average accuracies above 90%, were identified. To determine the direction of effect 

for each predictor, scatterplots of baseline scores versus change in the WMFT are created 

and shown in Figure 4. This figure demonstrates how the selection rates of various 

predictors vary with overall accuracy of the model. The direction of effect was consistent for 

all predictors whereby poorer baseline performance yielded greater improvement. To 

illustrate this point, Figure 5 shows the change in fine and gross motor performance as a 

function of the initial motor performance.

Parsimonious Combinations

In the current study using gaming therapy, among the 8 combinations with the maximum 

accuracy of 94.7%, three were found to be the most parsimonious, meaning they achieved 

the highest accuracy with the fewest predictors. They are combination numbers 4, 5, and 7 in 

Table 4 (bolded and shaded). Combination number 7 includes only four predictors: WMFT 

forearm to table (gross motor), WMFT reach retrieve (gross motor), WMFT towel (fine 

motor), and BKT (somatosensory). Combination number 5 includes 5 predictors: WMFT 

forearm to table (gross motor), WMFT hand to box (gross motor), WMFT reach retrieve 

(gross motor), WMFT can (fine motor), and WMFT towel (fine motor). Combination 

number 4 also includes 5 predictors. Interestingly, this combination is contained in the 

remaining 5 combinations in Table 4. These predictors are: WMFT extend elbow weight 

(gross motor), WMFT forearm to table (gross motor), WMFT hand to table (gross motor), 

WMFT basket (fine and gross motor), and stroke affected side.

Note that a parsimony analysis is irrelevant for the combined gaming and CI therapy 

approach because only one combination was found to have the maximum accuracy of 94.5% 

(first row in Table 6 under the Combined section).
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Sensitivity Analysis on the Parsimonious Combinations

In the current study, in order to identify the influence of each selected predictor on the 

prediction accuracy, another sensitivity analysis was performed on the three most 

parsimonious combinations for gaming therapy. This sensitivity analysis is similar to that 

reported in the earlier work of the authors (George et al. 2017). For each combination of 

interest, each selected predictor is removed, one at a time, and the classification accuracy is 

computed each time. Those accuracies are then compared with the one combining all 18 

predictors. For the first combination (combination number 4 in Table 4), the model was run 

5 times, each time removing one of the 5 included predictors. The accuracy of the prediction 

drops from 94.7% to 63.2%, 78.9%, 84.2%, 84.2, and 68.4%, by removing each predictor in 

turn one at a time: WMFT extend elbow weight (gross motor), WMFT forearm to table 

(gross motor), WMFT hand to table (gross motor), WMFT basket (fine motor), and stroke 

affected side respectively.

For the second combination (combination number 5 in Table 4), the model was run 5 times, 

each time removing one of the 5 included predictors. The accuracy of the prediction drops 

from 94.7% to 89.4%, 89.4%, 63.2%,73.7%, and 84.2%, by removing WMFT forearm to 

table (gross motor), WMFT hand to box (gross motor), WMFT reach retrieve (gross motor), 

WMFT towel (fine motor), and WMFT can (fine motor), respectively.

For the third combination (combination number 7 in Table 4), the model was run 4 times, 

each time removing one of the 4 included predictors. The accuracy of the prediction drops 

from 94.7% to 84.2%, 63.2%, 73.7%, and 84.2% by removing WMFT forearm to table 

(gross motor), WMFT reach retrieve (gross motor), WMFT towel (fine motor), and BKT 

(somatosensory), respectively.

A similar sensitivity analysis was performed on the single combination with the highest 

average accuracy of the combined approach. This combination includes 7 predictors. The 

accuracy of the prediction drops from 94.5% to 78.7%, 91.7%, 85.2%, 85.0%, 85.2%, 

88.8%, and 78.5%, by removing WMFT extend elbow weight (gross motor), WMFT 

forearm to box (gross motor), WMFT forearm to table (gross motor), WMFT hand to table 

(gross motor), WMFT basket (fine and gross motor), TM (somatosensory), and stroke 

affected side, respectively. Again, among the motor predictors, the accuracy tends to drop 

equally or more upon removal of a gross motor predictor compared to fine motor predictors.

Discussion

The enhanced probabilistic neural network was used 1) to predict the extent of motor 

recovery following gaming therapy and 2) to investigate which baseline sensorimotor 

characteristics were robust predictors of motor restoration, irrespective of therapeutic 

modality. Concerning the first point, and consistent with our hypothesis, poorer baseline 

ability on the characteristics most heavily trained during the intervention (i.e., fine motor 

tasks for in-clinic CI therapy and gross motor tasks for gaming therapy) predicted greater 

motor restoration. That is, if a participant has a poor baseline score on gross motor tasks and 

undergoes gaming therapy, our models suggest that person will be a good responder to 

therapy and have good motor restoration. Accordingly, poorer baseline scores on fine motor 

George et al. Page 7

Behav Brain Res. Author manuscript; available in PMC 2018 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tasks predicted better response to CI therapy. This effect does not result from different 

magnitudes of fine or gross motor improvement between the two interventions.

Concerning the second point, baseline ability on the gross motor tasks of the WMFT, 

compared to the fine motor tasks, seemed to be the most robust predictors of motor 

restoration across both datasets. This finding is consistent with Lee et al. (2015), who 

reported that in 174 chronic stroke patients, proximal joint movement at baseline could 

significantly predict improvement after both CI therapy (emphasizes fine motor movements) 

and a specialized robot-assisted therapy (emphasizes gross motor movements). A possible 

explanation is that the most robust predictors of outcome are those that are most consistently 

measured over time (least susceptible to variability in performance). However, according to 

Fritz et al. (2009), the most robust WMFT predictors in the combined approach had 

reliability (intraclass correlation) coefficients that were rank-ordered amongst the middle of 

the 15 items, lending little support for this potential explanation.

One partial explanation appears to be a ceiling effect, whereby poorer performers had a 

larger range of possible improvement. In support of this explanation, those with less gross 

motor ability at baseline were able to achieve the largest motor gains, which appear to be 

accounted for by dramatic gains in gross motor ability (Figure 5). It appears that many 

individuals had not yet achieved their maximum potential even several years post-stroke, 

whereas those with better baseline ability may have already approached their maximal 

possible recovery. However, although ceiling effects explain why poorer baseline gross 

motor ability predicts better gross motor gains (i.e. the direction of prediction), they do not 

account for why baseline gross motor ability was a more robust predictor of motor 

restoration than baseline fine motor ability. In fact, there was more potential for motor 

restoration of fine-motor ability than gross motor ability; participant performance on fine 

motor tasks was worse overall and, moreover, fine-motor tasks on the WMFT are least 

susceptible to ceiling effects (Woodbury et al. 2010).

The most compelling reason for the selection of gross motor tasks being the most robust 

predictors of motor restoration, in the authors' opinion, is that loss of fine-motor control is 

inherently more difficult to rehabilitate than loss of gross motor function. This idea is 

supported by the fact that amongst individuals who had considerable potential for 

improvement at baseline, the extent of improvement on fine motor tasks was smaller than it 

was for the gross motor tasks. Using the formulation for computing improvement percentage 

proposed by Lin et al. (2009), amongst all participants, the average improvement on gross 

motor tasks was 28.91%, whereas average improvement on fine motor tasks was only 

9.12%. It was important, however, to consider that some of our population started with 

baseline values near normal values (Wolf et al. 2006) for some tasks, particularly for gross 

motor items. After excluding participants who performed within one standard deviation of 

normal ability at baseline, mean improvements on individual gross motor tasks were 

between about 40% and 60%, whereas mean improvements on individual fine motor tasks 

were typically between about 8% and 20%. This trend is consistent with other reports in the 

literature (Lee et al. 2011, 2015; Myrhaug and Ostensjo 2014).
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One physiological explanation for gross motor ability being easier to rehabilitate is that 

gross motor function can be mitigated by multiple neural pathways originating in different 

regions of the brain (Lawrence and Kuypers 1968, Baker et al. 2015), whereas fine motor 

function is thought to be more locally controlled in the motor cortex and descending 

corticospinal tract (Robert and Lemon 1993, Hoffman et al. 1995, Kobayashi et al. 2003, 

Lang 2004,). The reticulospinal tract is the most widely studied alternative pathway for gross 

motor control of the upper limbs (Schepens and Drew 2004; Drew and Rossingol 1984; 

Davidson and Buford 2004, 2006; Hirschauer and Buford, 2015). In the cases of 

neurological insult to the corticospinal motor tract, this alternative pathway may facilitate 

recovery of gross motor function (Herbert et al.,2015a; Ortiz-Rosario et al., 2014; Hulbert et 

al. 2015). However, the reticulospinal tract appears inefficient for producing fine motor 

movements, at best demonstrating involvement only in whole-hand grasping (Baker et al. 

2015). Another alternative pathway for control of gross motor movements is the uncrossed 

rubrospinal tract, which may serve as a potential mechanism for the less affected hemisphere 

to contribute to recovery of the more affected upper extremity; however, its projections 

cannot be traced to spinal segments below C3 in humans, suggesting that the rubrospinal 

tract is more likely to influence motor neurons involved in proximal movement (Nathan and 

Smith 1982). In sum, there appears to be considerably more neurological substrate 

(corticospinal pathways, reticulospinal pathways, and rubrospinal pathways) that can be 

harnessed for rehabilitation of gross motor function, whereas recovery of fine motor ability 

is primarily mitigated by corticospinal pathways alone.

Study Limitations

The main limitation is the small sample size of this study. Another limitation when 

comparing these findings with the authors' earlier research (George et al. 2017) is that both 

datasets involved a prospective cohort design and, as such, there is risk of selection bias 

when directly comparing findings from the two studies. Given these limitations, these 

findings will need to be replicated on a larger sample, such as that being currently collected 

in a multisite randomized controlled trial of the gaming therapy system versus CI therapy 

(Gauthier et al., in press). Despite these limitations, there is some consistency between the 

two datasets, namely that gross motor function is most strongly influenced by both 

treatments and that tactile information does not appear to be a robust predictor of 

neurorestoration following either game-based or CI therapy.

Conclusion

Results of this study suggest that those with near-normal gross motor function at baseline are 

least likely to benefit from motor restorative training. Though small improvements in fine-

motor functioning can be realized through the motor restorative interventions studied here, 

the potential for dramatic improvement of fine motor abilities appears more limited than for 

gross motor abilities. These findings suggest that for individuals with near-normal proximal 

movement and residual distal impairment, interventions that focus primarily on overcoming 

non-use (such as the transfer package of CI therapy (Morris et al. 2006)), rather than 

reducing impairment, may be the most appropriate. For individuals with mild to moderate 

impairment on gross motor tasks (and at least some distal upper extremity movement), 
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interventions emphasizing intense motor practice in conjunction with overcoming non-use 

would appear to be highly beneficial.
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Figure 1. 
Screenshot of the CI therapy game. See http://youtu.be/uAysIGueN9U for a video 

demonstration.
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Figure 2. The histogram of the participants' change in the natural log of WMFT scores from pre 
to post gaming therapy
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Figure 3. Flowchart of the sensitivity analysis using the prognostic computational model for 
predicting the extent of motor recovery during CI therapy
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Figure 4. 
a) The selection rates of predictors that were not selected in the best combination in Table 6 

versus accuracy including the combinations with at least that accuracy or more and b) The 

selection rates of predictors that were selected in the best combination in Table 6 versus 

accuracy including the combinations with at least that accuracy or more
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Figure 5. 
a) Change in average of natural logarithm of all WMFT gross motor tests from pre therapy 

to post therapy (R2 = 0.55) versus average of natural logarithm of all WMFT gross motor 

tests before therapy; b) Change in average of natural logarithm of all WMFT fine motor tests 

from pre therapy to post therapy (R2 = 0.02) versus average of natural logarithm of all 

WMFT fine motor tests before therapy
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Table 1
Demographic and clinical characteristics of 19 participants in gaming therapy

Item Number of case (Average) Minimum Maximum

Age 47.5 14.1 69.6

Sex 8 females N/A N/A

Chronicity (years) N/A 0.55 5.34

Stroke affected side 8 left N/A N/A

Handedness At least 6 right N/A N/A

Affected side was dominant At least 4 participants N/A N/A
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Table 2
Behavioral measures used in the prognostic model

Type of test Number of items Function assessed Behavioral measures
Fine or 
Gross 
motor

Motor 15 Upper limb functional performance (timed)

Forearm to table (side) Gross

Forearm to box (side) Gross

Extend elbow (side) Gross

Hand to table (front) Gross

Hand to box (front) Gross

Extend Elbow Weight Gross

Reach and retrieve Gross

Lift can Fine

Lift pencil Fine

Lift paper clip Fine

Stack checkers Fine

Flip card Fine

Turnkey in lock Fine

Fold towel Fine

Lift Basket Fine

Somatosensory 2

Reaching error with visual occlusion 
(proprioception)

Brief kinesthesia test (affected 
side) N/A

Touch perception threshold Touch test monofilaments 
(affected side) N/A
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Table 5
Comparison of the rates of selection of predictors for the combinations with accuracy of 
about 90% and greater using the CI and gaming CI therapies

Predictors

Rate of selection (%)

Current study
(Gaming therapy)

CI therapy
(Hulbert at al. 2017)

Difference
(Gaming –CI therapy)

8.WMFT forearm to table (gross motor) 80.7 46.9 33.8

2.WMFT basket (fine motor) 71.6 57.4 14.2

16.WMFT towel (fine motor) 63.6 71.5 -7.9

1.Stroke Affected Side 60.2 29.6 30.6

18.TM (somatosensory) 55.7 35.3 20.4

10.WMFT hand to table (gross motor) 51.1 50.2 0.9

5.WMFT extend elbow weight (gross motor) 48.9 39.4 9.5

17.BKT (somatosensory) 43.2 59.8 -16.6

4.WFMT extend elbow (gross motor) 40.9 37.2 3.7

9.WMFT hand to box (gross motor) 36.4 56.9 -20.5

7.WMFT forearm to box (gross motor) 34.1 51.6 -17.5

6.WMFT flip cards (fine motor) 26.1 35.8 -9.7

15.WMFT reach retrieve (gross motor) 22.7 63.0 -40.3

12.WMFT lift paper clip (fine motor) 21.6 56.4 -34.8

3.WMFT can (fine motor) 12.5 52.4 -39.9

13.WMFT pencil (fine motor) 3.4 57.5 -54.1

11.WMFT key (fine motor) 0.0 43.6 -43.6

14.WMFT stack checkers (fine motor) 0.0 32.0 -32.0

WMFT: Wolf motor function test; BKT: Brief kinesthesia test; TM: Touch monofilament
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