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Analysis of population-specific 
pharmacogenomic variants using 
next-generation sequencing data
Eunyong Ahn1,2 & Taesung Park   1,3

Functional rare variants in drug-related genes are believed to be highly differentiated between 
ethnic- or racial populations. However, knowledge of population differentiation (PD) of rare single-
nucleotide variants (SNVs), remains widely lacking, with the highest fixation indices, (Fst values), from 
both rare and common variants annotated to specific genes, having only been marginally used to 
understand PD at the gene level. In this study, we suggest a new, gene-based PD method, PD of Rare 
and Common variants (PDRC), for analyzing rare variants, as inspired by Generalized Cochran-Mantel-
Haenszel (GCMH) statistics, to identify highly population-differentiated drug response-related genes 
(“pharmacogenes”). Through simulation studies, we reveal that PDRC adequately summarizes rare 
and common variants, due to PD, over a specific gene. We also applied the proposed method to a real 
whole-exome sequencing dataset, consisting of 10,000 datasets, from the Type 2 Diabetes Genetic 
Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) initiative, and 3,000 
datasets from the Genetics of Type 2 diabetes (Go-T2D) repository. Among the 48 genes annotated with 
Very Important Pharmacogenetic summaries (VIPgenes), in the PharmGKB database, our PD method 
successfully identified candidate genes with high PD, including ACE, CYP2B6, DPYD, F5, MTHFR, and 
SCN5A.

Rare variants with large effect sizes have been predicted to exist in the human genome1, 2; also the large effect sizes 
of these variants have actually been observed, using real data analysis, but without analysis of population differ-
entiation (PD)3, 4. These rare variants tend to be evolutionarily recent alterations, having many functional vari-
ants, within drug-related genes (“pharmacogenes”), thought to be highly differentiated between populations5, 6.  
However, PD approaches, for identifying rare variants, remain quite lacking; to date, the highest frequency indices 
(i.e., Fst values), from both rare and common variants annotated to specific genes, were used only to nominally 
understand PD at the gene level7, 8. Considering the fact that Fst values are proportional to minor allele frequen-
cies (MAFs), this gene-level Fst summary is mostly governed by effect sizes (here, the effect sizes are PD) of com-
mon variants. Moreover, since previous various established methods (e.g., XP-EHH, and iHS) mainly focus on 
identifying haplotypes, however, adjacent common variants can strongly affect the results, and thus severely limit 
the identification of loci in alleles with intermediate frequency9, 10. Furthermore, in those methods, many rare 
variants in datasets significantly affect their performance by increasing the number of switch errors in the phased 
haplotypes11–13. Also the method recently proposed by Berg and Coop14 was mainly for detecting correlations 
between genetic values and specific environmental variables. As results, these methods are inappropriate for our 
primary objective, i.e., finding genes with a high level of PD resulting from natural selection, in very recent evolu-
tionary history (based on sequenced data with a large number of rare variants). On the other hand, our proposed 
method, PD of Rare and Common variants (PDRC), captures PD of both rare and common variants, and sum-
marizes the results at the gene level. In our method, even while a linkage disequilibrium block is not analyzed, we 
summarize the information in a functional block, and simultaneously focus on very recently selected rare variants 
in sequenced data, shedding light on inconsistently inherited traits.

Allele frequency differences in pharmacogenes, especially between Africans, Europeans, and Asians, explain 
the danger of extrapolating therapeutic outcomes from one ethnic group to another15, 16. For instance, while a 
new drug may be approved by one specific nation’s health regulatory body, many other governments still require 
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their own clinical studies, for their own citizens17. To that end, for ethnic PD differences, the PharmGKB database 
(www.pharmgkb.org) provides lists of Very Important Pharmacogene (VIPgene) summaries that associate with 
significant numbers of variant annotations and phenotypes (e.g., metabolism of, or response to, one or several 
drugs). Thus, although genome-wide variant mapping, to specific genes, was not a focus of our initial research, 
determining the PD of VIPgenes will enable investigators to find ethnic sensitivities, to therapeutic outcomes, 
for specific diseases. Additionally, PDRC can be extended to find very recent selection, resulting in considerable 
numbers of population-specific rare variants, and can even demonstrate associations between a gene and multiple 
phenotypes (“pleiotropy”), based on sequenced data. For instance, in the future, this approach will enable one to 
find tissue-specific or cancer-subtype-specific PD in somatic cells, based on data from the emerging technology 
of single-cell sequencing.

Since the advent of high-throughput (“next generation”) sequencing technology, it has been identified that, 
throughout the entire human genome, the majority of single-nucleotide variants (SNVs) are rare (86% of the total, 
with MAFs less than 0.5%)18, and population-specific (53–2%18, 19) (Supplementary Figure S1). Furthermore, rare 
variants are likely to exert important effects on pharmacogenetically driven phenotypes20–22. Evolutionarily, dif-
ferences in gene expression, caused by rare variants, contribute to phenotypic diversity23–25. Thus, PD, through-
out the human genome, can cause differential ethnic sensitivities to drug responses, through variations that are 
likely causal for specific genes’ expression and consequently, pathological phenotypes26. Thus, PD considerations 
are also crucial to drug development, approval, and treatment [PMID: 25669658]; global drug development, or 
bridging studies, are also important for new drug approval; identification of population-specific rare variants is 
essential for better understanding of genomic effects on ethnic specific drug responses.

Examination of PD of pharmacogenes requires methods that capture either variant-level or gene-level PD. 
When the scope of PD is expanded to a gene from a variant, our approach can achieve the following three advan-
tages for population genetics research: (1) overcoming small effect-sizes, which cannot be detected by current 
variant based identification methods; (2) discovering genes under very recent selection, which also cannot be 
detected by current selection analyses; and (3) suggestion of additional levels of genetic evidence to explain dif-
ferences in inherited traits, among populations. In this study, we compare our PDRC method to previously used 
PD determination algorithms, validating its superior performance at determining PD of numerous SNVs, as 
related to real whole-exome sequencing (WES) of 10,000 datasets, from the Type 2 Diabetes Genetic Exploration 
by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) initiative, and 3,000 WES datasets from 
the Genetics of Type 2 diabetes (Go-T2D) repository.

Herein, we demonstrate that previous PD analysis methods, for common variants7, 27, 28, are not appropriate 
for analyzing PD of rare variants. We then suggest a new PD analysis method, for rare variants, that is flexible in 
that it can combine rare and common variants efficiently. Our proposed PD method, Rare and Common variants 
(PDRC), is based on the Generalized Cochran-Mantel-Haenszel (GCMH) test for conditional independence in 
three-way contingency tables29, 30. Recently, the CMH test was used for rare variants analysis31. However, it has 
not been used for developing gene-level statistics, but only for meta-analysis, to summarize the statistics from 
each study32

Results
The proportion of rare variants in VIP genes.  We first procured whole exome sequencing (WES) data-
sets, the first consisting of 10,000 datasets, from the Type 2 Diabetes Genetic Exploration by Next-generation 
sequencing in multi-Ethnic Samples (T2D-GENES) initiative, and the second consisting of 3,000 datasets from 
the Genetics of Type 2 diabetes (Go-T2D) repository33. From the PharmGKB data analysis, we selected 48 genes, 
annotated as “Very Important Pharmacogenes” (VIPs) in PharmGKB (PMID: 11908751). We removed two genes 
from the original 50 because one was on the sex chromosome and the other was not present in our WES data. 
Thus, we analyzed 48 VIP genes to determine those with high levels of population differentiation (PD). Since 
most of the variants in our WES data were less common or rare34, the selected 48 VIP genes mostly consisted 
of rare variants. The proportions of common variants in VIP genes are shown in Fig. 1. The overall proportion 
of common variants in VIP genes was 2.80% (max: 8.22%, min: 0%), and most MAFs of variants from the WES 
dataset were less than 0.05.

Very small Fst from the variants in 48 VIP genes.  We first calculated fixation index (Fst) values for all 
the variants of each VIP gene. For this, we used Weir’s estimate, because it is unbiased, even when the sample 
sizes are unequal35. Since most of the variants were rare, their Fst values were also very small36. For this reason, the 
median Fst values for the 48 VIP genes were all less than 0.01, and only six VIP genes had at least one variant with 
an Fst greater than 0.25. These high Fst values were all from common variants, with MAFs greater than 0.05. For 
instance, rs1229984(T/C) showed the largest Fst, 0.55, among the variants annotated to the 48 VIP genes, where 
the minor nucleotide for East Asian is T instead of C, and the frequency of the allele C of East Asian is 0.7445. The 
nine variants with Fst values greater than 0.25, from the six VIP genes, are summarized in Table 1. Although the 
MAFs of two variants, rs4846051 in MTHFR and rs6012687, in PTGIS, were not much higher than 0.05 (0.0532 
and 0.0628, respectively), the Fst values of the two variants were 0.3000 and 0.2803, respectively. Moreover, racial 
or ethnic differences were found in the allele frequencies of rs4846051, related to the variation of response to 
methotrexate, in rheumatoid arthritis37.

Figure 2 shows that the distribution of Fst in our WES data varied according to the VIP genes’ MAFs. This also 
shows that the maximum Fst, for all the variants with MAFs < 3%, was less than 0.25. Thus, Fst could not detect the 
variants of PD when their MAFs were smaller than 3%. In our WES data, 97.5% of the variants had MAFs smaller 
than 3%. Thus, the majority of variants in our data could not be identified, more specifically, as variants of PD. On 
the other hand, the common variants with MAFs >5% could be easily identified as variants of PD, by using Fst.

http://www.pharmgkb.org
http://S1
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For the VIP genes, 97.14% of variants had MAFs of less than 3%. Thus, the mere use of Fst made it difficult to 
identify VIP variants related to PD.

SKAT analysis for all VIPgenes.  We additionally performed the sequence kernel association test (SKAT)38 
for all VIPgenes, even while our objective and the scope of analyses were limited to detecting differences between 
a pair of populations, at the gene-level. As expected, an association was found for most pairwise comparison of 
ancestral groups for VIP genes (472 from 480 pairs) after Bonferroni correction39. Specifically, for all VIPgenes, 
there were large differences in African Americans, due to their distinct genetic history40. Since SKAT can only 
perform for pairwise comparison of ancestral groups, these results are rather limited. For a more comprehensive 
comparison of all five ancestral groups, SKAT must be extended, to compare multiple groups.

The PDRC tests for VIP genes.  Three different weighting schemes, equal weights, inverse of MAF, and 
inverse of MAF2 (square of MAF) were adopted to compute PDRC test statistics. If we identified highly differ-
entiated pharmacogenes among the 48 VIP genes by p-value, the number of those identified varied substantially 
in different weighting schemes. The p-values from PDRC tests, with equal weight, were very small, while the 
weight based on the inverse of MAF mitigated this phenomenon, as we already mentioned, such that the imple-
mentation of weight based on the inverse of MAF could reduce the false positive rate. Note that only two genes, 
BRCA1 and CYP2B6, were identified by all nine of our different analyses (three strategies and three different 
weighting schemes), when we considered the p-values after Bonferroni correction. Considering that the equal 
weight is prone to increased false positive rates, the test result from the equal weighting scheme can be easily vio-
lated. Additionally, we evaluated the distribution of PDRC test statistics for each selection strategy and weighting 
scheme (Table 2), using all 18,281 genes in our WES datasets. We then calculated the 95th percentile for all PDRC 

Figure 1.  Rare variants in VIP genes. The blue-colored bars depict the number of rare/less common, and the 
bars are colored red to describe the amount of common variants, in the 48 VIP genes, of our datasets. Only a 
few of the variants in VIP genes in our datasets were common enough to be detected as highly differentiated 
variants, via Fst.

Gene SNP MAFa Fst

F5 rs13306334 0.1656 0.4027

F5 rs9332658 0.1755 0.3763

F5 rs6020 0.2105 0.3365

MTHFR rs4846051 0.0532 0.3000

ADH1B rs1229984 0.1657 0.5591

CYP3A4 rs2687116 0.1303 0.4819

CYP3A4 rs2242480 0.2959 0.2803

PTGIS rs6012687 0.0628 0.2581

CYP2D6 rs1081003 0.1346 0.3291

Table 1.  List of Variants with Fst values greater than 0.25. a Minor Allele Frequency of variants, as measured 
from our exome sequencing data.
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results. We selected the PD genes among the top 5% of genes and provided a more detailed description. The top 
5% percentile of the PD measurement, from all the genes in the datasets, has often been used for PD detection41–44

Firstly, we obtained the gene-based summary statistics by using an ‘all variant’ selection strategy. Although 
the impact of synonymous variants on proteins was not confirmed, we assumed that all the SNPs possessed the 
potential for phenotypic variation. With the weights based on the inverse of MAF, PD values of all 48 genes were 
identified (p-value [Bonferroni, n = 48] < 0.05), making it possible to claim that all the VIP genes are highly dif-
ferentiated (Table 3). On the other hand, considering the 95th percentile of the statistics, 6 genes, ACE, CYP2B6, 

Figure 2.  Boxplots of the Fst values of our WES data, according to MAFs of variants. The percentages of the 
variants which have the range of MAF over the number of all the variants in WES data are shown in x axis 
with parenthesis; the red line represents Fst cut-off 0.25 according to Wright’s Fst criteria23. Cardoso, et al.23 and 
Strauss, et al.24 defined a gene with PD if it contains at least one Single Nucleotide Polymorphism (SNP) with Fst 
value greater than 0.25.

Weighting 
Scheme

Selection strategy

All Rare/Less Common Protein Altering

Statistics −log10(p-value) Statistics −log10(p-value) Statistics −log10(p-value)

Equal Weight 8667.888 >100 6689.85 >100 3791.395 >100

1/MAF 109.9717 22.44083 108.2756 22.07928 47.79004 9.300198

1/MAF2 54.35791 10.67047 54.17336 10.63187 28.91686 5.420125

Table 2.  95th percentile of PDRC statistics for each selection strategy and weighting scheme.

Gene

PDRC statistics (all) PDRC statistics (rare/less common) No. of variant Fst

Weight:1 Weight: 1/MAF Weight:1/MAF2 Weight:1 Weight:1/MAF Weight:1/MAF2 Common Rare Max.

DPYD 685.41 129.22 62.52 1660.63 131.13 62.52 8 365 0.0731

F5 5561.83 148.38 83.68 5766.33 149.95 83.68 33 543 0.4027

MTHFR 1752.40 117.12 52.88 2814.08 114.40 52.88 10 262 0.3000

SCN5A 5608.12 148.77 65.16 14227.78 149.18 65.16 6 614 0.2084

CYP3A4 13393.42 13.15 7.88 304.07 12.15 7.88 2 160 0.4819

CYP3A5 8674.38 51.27 15.36 5369.90 50.29 15.36 1 165 0.2125

EGFR 40.72 107.68 53.18 6729.38 108.06 53.18 11 448 0.1594

CYP2E1 18902.68 68.42 24.36 9627.48 65.97 24.36 3 177 0.2128

ACE 3382.44 154.36 53.90 16909.20 154.33 53.90 9 585 0.1887

CYP2B6 96.18 204.00 66.52 1358.99 204.16 66.52 2 228 0.0728

Table 3.  10 genes from PDRC tests, using ‘all’ or ‘rare/less-common’ variant selection strategies. Data are PDRC 
statistics yielded from the ‘all’ and ‘rare/less common’ strategies. Numbers of common and rare variants in each 
selected gene are described. Max. Fst is the maximal Fst value estimated from variants of each gene.



www.nature.com/scientificreports/

5Scientific Reports | 7: 8416  | DOI:10.1038/s41598-017-08468-y

DPYD, F5, MTHFR, and SCN5A, seemed to be specifically differentiated among the VIP genes. With weights 
based on the inverse of MAF2, PD values for all 48 genes identified (p-value [Bonferroni, n = 48] < 0.05), and the 
statistics from four genes, CYP2B6, DPYD, F5, and SCN5A, were larger than the 95th percentile.

Secondly, when the PDRC test uses a ‘rare/less-common’ variant selection strategy, the results are similar to 
tests using all the variants (Table 3). Due to the fact that the weights, based on the MAFs, enable the PDRC test 
to put more weight on rare variants, PDRC tests using two different variant selection strategies, ‘all’ and ‘rare/
less-common’ yielded the same list of genes.

Thirdly, when the PDRC test uses a ‘protein-altering’ variant selection strategy, a different list of genes was 
obtained (Table 4). In this case, the PDRC test identified PD in 10 and 12 genes with PD, with weights of the 
inverse of MAF and the inverse of MAF2, respectively (p-value [Bonferroni, n = 48] < 0.05). By the evaluated 95th 
percentile, one (CYP2E1) and six genes (BRCA1, CYP2B6, DPYD, F5, MTHFR, and EGFR) were selected with 
weights of the inverse of MAF and inverse of MAF2, respectively. Since the PDRC test combined all the effects 
of common and rare variants, while up-weighting rare variants, it successfully selected highly differentiated VIP 
genes that could not be detected by Fst.

Genes identified via PDRC test with supporting evidence.  From our PDRC test results using an 
‘all’ or ‘rare/less-common’ variant selection strategy, PDs for all 48 VIP genes were identified, and supported by 
known PD values in many SNPs of VIP genes, based on microarray-derived previous research45. When we addi-
tionally evaluated the 95th percentile of PDRC statistics, with weights based on either inverse of MAF or MAF2 
(square of MAF) six genes, BRCA1, CYP2E1, ACE, CYP2B6, SCN5A, and EGFR, were selected, with no variants 
having Fst values greater than 0.25. Therefore, we propose these six genes to be specifically differentiated phar-
macogenes, among other VIP genes. Besides, we found supporting evidence for high PD levels in these six genes, 
from either ethnic variation at the genetic46–52, or epigenetic, level53–57. The ethnic variations in genetic sequences 
of six genes have been reported, but the PDs of these genes could not be identified via Fst. Genetic polymorphisms 
can be combined at the gene level, and their synergic variability could potentially affect the PD of either gene 
expression or phenotypes. For this reason, the gene-based statistic, PDRC, is advantageous for finding poten-
tial PDs at the epigenetic level. In fact, we specifically found evidence for PD at epigenetic level of three genes 
CYP2B6, ACE, and SCN5A; we will describe them in the following paragraph.

Hepatic CYP2B6 expression is variable by ethnicity.53 Note that the maximum Fst among the SNPs in CYP2B6 
was less than 0.08, but the combined effect of the rare variants seemed to affect the variation in gene expression. In 
fact, there were only two common variants in CYP2B6 from our WES data. This result shows that although a gene 
does not contain any SNPs, with large Fst values, it can be a gene with a high level of PD having large effects on 
expression levels. The Mantel-Haenszel odds ratios from each pair of ancestry groups are summarized in Table 5. 
Here, the European ancestry group is used as a baseline ancestry. African Americans tended to have more minor 
alleles than Europeans in our WES data (Mantel-Haenszel odds ratio, 2.33; 95% CI, 2.23 to 2.42). If we suppose 
that the minor allele potentially reduces a gene’s fitness, defined as the availability of a gene to perform a particular 
function, this may play a role in female African Americans having the lowest CYP2B6 expression53.

ACE, angiotensin-converting enzyme, yielded the second largest test statistic when ‘all’ variants were used, 
with the weight of inverse of MAF. The maximum Fst value among the SNPs in ACE was less than 0.2. ACE also 
was the predominant enzyme for bradykinin metabolism in human, where bradykinin is a potent endogenous, 
endothelium-dependent vasodilator. Consequently, reduced bradykinin expression could affect hypertension58. 
Since angiotensin is a vasoconstrictor, ACE inhibitors are widely prescribed for the treatment of hypertension, 
although their efficacy has been reported to vary among different ethnic groups48. In addition, another previ-
ous study reported an interactive effect of ethnicity and an ACE gene insertion/deletion polymorphism associ-
ated with vascular reactivity48, and our current analysis result also showed ethnic sensitivity to ACE inhibitors. 
In our WES data, African Americans tended to have more minor alleles than Europeans (Mantel-Haenszel 
odds ratio = 1.90; 95% CI, 1.85 to 1.96), which is concordant with the phenotype of significantly attenuated 

Gene 
Sym

PDRC statistics (protein-altering) No. of variant Fst

Weight:1 Weight:1/MAF Weight:1/MAF2
Non Protein 
altering

Protein 
altering

Protein altering 
common Max.

DPYD 724.50 5.32 32.22 229 144 3 0.0731

F5 2280.62 0.90 43.78 271 305 13 0.4027

MTHFR 958.49 4.22 32.22 181 91 3 0.3000

ADH1B 8207.13 7.33 2.38 78 39 1 0.5591

EGFR 970.60 17.55 30.41 323 136 1 0.1594

CYP2E1 2818.22 51.69 7.73 113 67 0 0.2128

ACE 6183.58 10.44 20.50 332 262 0 0.1887

BRCA1 1403.64 20.15 29.45 248 244 3 0.1377

CYP2B6 968.54 20.62 31.96 115 115 1 0.0728

Table 4.  Nine genes from PDRC tests, using ‘protein-altering’ variant selection strategy. Data are PDRC 
statistics yielded from the ‘protein altering’ strategy. Numbers of protein-altering and common & protein-
altering variant in each selected gene are described. Max. Here, Fst is the maximal Fst value estimated from the 
variants of each gene.
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vasodilation in Africans, when compared to Europeans48. The Mantel-Haenszel odds ratios and their confidence 
intervals are summarized in Table 5.

SCN5A, the sodium channel (voltage-gated) type V alpha subunit, includes variants with Fst values less than 
0.14. However, the rate of cardiovascular disease (CVD), a SCN5A-related pathological phenotype, is likely 
related to ethnicity49, 54, 55. For instance, the prevalence of CVD is higher in rural southeastern regions of the US, 
with the largest African American population, compared to other regions54, 55. Similarly, Hispanics and African 
Americans have different genetic backgrounds, and patterns of linkage disequilibrium (LD), compared to popu-
lations of European descent49–51. Also, it is possible that genetic variation in SCN5A associates with electrocardi-
ography (ECG), and cardiac traits that can vary, depending on the ancestral populations55, and this possibility is 
supported by the results of our analysis. African Americans, South Asians, and East Asians tended to have more 
minor alleles than Europeans in our WES data (Table 5). For instance, the Mantel-Haenszel odds of SCN5A from 
African Americans are 2.98 times higher than those from Europeans, at a 95% confidence level between 2.87 
times higher and 3.10 times higher. This result also supports that PD of SCN5A potentially affecting ethnic varia-
tion of CVD prevalence, which is higher in African Americans than Europeans.

Discussion
With the advent of low-cost, high-throughput sequencing technologies, a large number of rare variants have been 
identified in the human genome34, and it has been widely accepted that recent positive selection could result in 
between-group population differentiation (PD), in the human genome59, 60. Most rare variants are assumed to be 
driven by very recent positive selection, but have not yet reached fixation60, implying adaptation of modern-day 
humans to localized evolutionary pressure60. Similarly, when we identified pharmacogenes from whole-exome 
sequencing (WES) data, most rare variants were also population-specific. However, although most rare variants 
were identified as population-specific61, methods for measuring PD, using rare variant datasets, have not been 
well developed. In this study, we proposed a new PD analysis method, PD of Rare and Common variants (PDRC), 
based on the Generalized Cochran-Mantel-Haenszel (GCMH) test, for gene level analysis of PD in rare and 
common variants. Because PDRC can put more weight on rare variants, it enables us to avoid the minor allele 
frequency (MAF) dependency problem of chi-square statistics. Thus, PDRC can find significant genes, according 
to their PD, by placing more weight on rare variants. Since PD could potentially be used to identify distinct ethnic 
sensitivities in drug responses, we sought to find pharmacogenes, associated with PD, using our WES data. In 
addition to gene-level analysis, our PDRC method can be extended to find very recently selected genes. Such anal-
yses will result in considerable identification of genes with population-specific rare variants, and even associations 
between genes and multiple phenotypes, based on sequencing data.

By evaluating measures for PD, we showed that both the chi-square test and Fst are dependent on MAF. For a 
given MAF, the maximum chi-square test statistic is shown to be proportional to MAF (S1 text62). The motivation 
of introducing the weight of MAF was to reduce the effect of MAF on the chi-square statistics. Without using the 
weight, the PDRC test statistic L2 is also highly dependent on MAF62. However, by introducing weights, based 
on the inverse of MAF or MAF2, Bk (nk −μk) becomes less affected by MAF, as does the PDRC test statistic L2. 
Similarly, this MAF-based weighting scheme has been widely used for genetic association tests that assign more 
weight to rare variants, and less weight to common variants38, 63. In our PD analysis, the introduction of weight 
tends to avoid reporting too many genes, with extremely small p-values, when the sample size is large.

Furthermore, if we assume that rare variants are driven by positive selection, the introduction of MAF weight 
is biologically meaningful, having only recently been introduced (but not yet fixed) in the genome. Under positive 
selection, MAF could be regarded as a rough measure of the age of the variant38. In this sense, the observable PD 
of rare and young variants is likely to be smaller than others, because the recent mutation could not have had 

CYP2B6


θMHi and 95% confidence interval

African American and European 2.3266 (2.2333, 2.4237)

East Asian and European 1.4618 (1.3844, 1.5434)

American Hispanic and European 1.2242 (1.1358, 1.3196)

South Asian and European 1.4167 (1.3406, 1.4972)

ACE

African American and European 1.9047 (1.8543, 1.9562)

East Asian and European 1.5142 (1.4702, 1.5597)

American Hispanic and European 0.9461 (0.8972, 0.9977)

South Asian and European 1.6006 (1.5525, 1.6500)

SCN5A

African American and European 2.9808 (2.8671, 3.0991)

East Asian and European 2.3238 (2.2309, 2.4203)

American Hispanic and European 1.3359 (1.2425, 1.4363)

South Asian and European 2.3298 (2.2336, 2.4302)

Table 5.  Mantel-Haenszel log odds ratios and confidence intervals of 3 genes. European are used as baseline to 
estimate the Mantel-Haenszel log odds ratios.
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sufficient time to be fixed in the population. Therefore, when we calculate a gene-level summary, it is biologically 
convincing to multiply a bigger weight to a more recently made variant.

In summary, we propose a new test (PDRC) for identifying genes having PD, based on next-generation 
sequencing (NGS) data. Our PDRC test provides a gene-based statistic for summarizing the effects of both rare 
and common variants. The possible impact of linkage- disequilibrium (LD), among rare variants in real WES 
datasets, on PDRC statistics, was investigated through permutation; it was also controlled by the implemen-
tation of weights, based on the inverse of MAF or MAF2. Also, through simulation studies, we demonstrated 
that PDRC tests well preserved type I error, which was not affected by the MAF distribution of genes, when the 
variants were considered independent of each other. Through an application to a real 13 K exome sequencing 
dataset, the PDRC test successfully identified pharmacogenes, with high levels of PD, from 48 Very Important 
Pharmacogenes (VIPs), according to different weighting schemes and selection strategies. To compare our results 
with known findings, at both the genetic and/or epigenetic levels, we specifically selected six genes, whose statis-
tics were larger than the 95th percentile, and simultaneously, without any variants, with Fst >0.25. Although the 
PD in these six genes could not be identified by Fst values, earlier studies have claimed the existence of PD at the 
genetic46–52, or epigenetic levels53–57, also supporting our findings46–58, 64, 65.

The gene-level-PD captured by our PDRC method can be used for the identification of recent adaptations 
by humans from sequencing data. For decades, genomewide research of natural selection has found that very 
recent beneficial genetic adaptation is often fixed in the human genome66–68. To that end, notable numbers of 
population-specific rare variants in our data also support recent adaptation that could provide selection of PD 
throughout the human genome.

Furthermore, If the ADME of a drug is closely related to a PD of pharmacogenes, we will be able to identify the 
scope of further investigation, and also devise ways researchers can screen drugs targeting genes with high PD, 
which can potentially be prone to be sensitive to ethnic factors, and also to suggest distinct pairs of ancestral allele 
groups, based on Mantel-Haenszel odds ratios29, 69. While it is hard to obtain whole genome sequencing data, at 
such large sample sizes, from the human genome, our method can be simply applied to WGS data. Longer com-
puting time could be the only challenge to the application of our PDRC method to WGS data analysis. Besides, 
our method can be applied to other organisms, including viruses and bacteria, and more specifically the human 
microbiome. Specifically, RNA viruses tend to rapidly mutate, because of the lack of proofreading by their pol-
ymerase70. Therefore, when a target for vaccination is explored, our method potentially enables discovery of the 
most efficient ways to immunize the targeted host against the pathogen; and, considering that our PDRC method 
can capture the PD in bacterial genes, it could also be potentially applied to antibiotic resistance research.

In conclusion, our PDRC method precisely detects associations between multiple phenotypes and specific 
genes, based on sequencing data, and also facilitates interpretation of the possible biological impact, of rare 
variants, on specific traits of interest. This approach can accurately identify specific genes with high levels of 
PD, under very recent evolutionary selection. Here, we effectively identified highly population-differentiated 
pharmacogenes, by summarizing the effects of both rare and common variants, at the gene level. Such knowl-
edge will greatly improve the design of therapeutic strategies for patients of distinct ethnicities, or even finding 
cancer-subtype-specific or tissue-specific somatic mutations, based on the emerging technology of single-cell 
sequencing. These results will also improve understanding of the recent evolution of SNVs, in specific genes, and 
possibly even indicate the selective pressure responsible for their respective associated phenotypes.

Materials and Methods
WES Datasets.  We obtained whole exome sequencing (WES) data set from two consortia, T2D-GENES 
(Type 2 Diabetes Genetic Exploration by Next-generation sequencing in Ethnic Samples) and Go-T2D (the 
Genetics of Type 2 Diabetes Consortium)33. T2D-GENES is a NIDDK-funded research consortium that seeks 
to identify genetic variants for Type 2 Diabetes (T2D) through multiethnic sequencing studies. Go-T2D 
is a high-resolution study of type 2 diabetes genetic architecture through whole-genome sequencing of 2850 
Europeans. T2D-GENES comprises three projects, from which we used data from Project 1. Project 1 seeks to 
assess whether less common variants play roles in T2D risk, in addition to similarities and differences in the 
distribution of T2D risk variants across ancestry groups. Presently, the T2D-GENES and Go-T2D initiatives 
are carrying out deep whole-exome sequencing (WES) of 13 K individuals, from which we used 12,844 unre-
lated individuals (6,474 cases, 6,370 controls) for our analysis. The total numbers of the five ancestry groups 
were as follows: 2025 African Americans, 2164 East Asians, 1938 American Hispanics, 2199 South Asians and 
4518 Europeans. Among the five populations, cases and controls were well balanced for each ethnic group. 
From the European population, about 2000 samples were collected for case and control groups, respectively. 
Similarly, about 1000 samples were selected for case and control groups, respectively, from other ethnic groups. 
A more detailed description is given in the main paper33. Sequencing was completed at the Broad Institute using 
the Agilent (Santa Clara, CA) v2 capture reagent on HiSeq machines. After quality control, 3,130,381 variants 
matches to the datasets. In total, there were 62,489 common variants (MAF > 0.05) and 2,951,589 rare variants 
(0 < MAF < 0.01).

PharmGKB Database.  We used the PharmGKB (http://www.pharmgkb.org) database (PMID: 11908751) 
to select pharmacogenes for our PD study. This database is publicly available and encompasses clinical informa-
tion, including dosing guidelines and drug labels, potentially clinically actionable gene-drug associations and 
genotype-phenotype relationships. Specifically, the very important pharmacogenes (VIP genes) represent the 
genes that greatly impact drug responses. These VIP genes have been widely used to decode the genomic effect 
on drug responses71, 72. VIP genes in PharmGKB were written by Scientific Curators, through extensive litera-
ture review, to provide a concise summary of key genes involved in drug responses, and whether these genes 
have been used for understanding pharmacogenomics15. Among 50 VIP genes in PharmGKB, one is on the sex 

http://www.pharmgkb.org
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chromosome and another was not included in our WES dataset. Thus, we used 48 genes for our analysis to iden-
tify pharmacogenes with PD.

Test for Population differentiation for rare and common variants (PDRC).  For identifying genes 
with PD from the WES data, we proposed a new method, PDRC. The PDRC test is a gene-level summary test 
based on generalized Cochran-Mantel-Haenszel (GCMH) statistics29, 30. The main motivation of using the PDRC 
test was for extracting gene-based summary statistics that infer an average partial association between ancestral 
groups and genotypes. Initially, Cochran (1954) proposed a test, ‘average partial association,’ for a set of 2 × 2 
tables, using a mean difference weighted across q tables, as determined by levels of the covariates29, 30. In particu-
lar, we considered detecting PD through the analysis of q s × r (s ≥ 2, r ≥ 2)) contingency tables under the multiple 
hypergeometric model assumption30. Here, q is the number of SNPs in a gene; s (=5) represents five ancestry 
groups, (1 for African Americans, 2 for East Asians, 3 for American Hispanics, 4 for South Asians and 5 for 
Europeans); r (=2) represents whether an allele is minor or major. For our analysis, we constructed a contingency 
table for each variant in a gene, and then combined them within a gene. Let = k( 1, 2, , q) index a set of (s r× ) 
contingency tables, which correspond to the number of SNPs in a gene. Let i( 1, 2, , 5)= index five ancestry 
groups and j (=1, 2) index minor or major alleles, respectively. Let =′n n n n n( , , , , , , )k k rk s k srk11 1 1   , where 
nijk denotes the number of subjects in the sample jointly classified as belonging to the ith ancestry group, the jth 
allele category and the kth SNP table. In addition, let .Ni k denote the marginal total number of subjects in the ith 
ancestry group. In that case, Nj k,  is the marginal total number of subjects with the jth allele category, and N k..  is 
the overall marginal total sample size in the kth SNP table.

Using the GCMH test by Landis et al.30, we introduced the weight (i.e. the inverse of the MAF) into the PDRC 
test, for handling both rare and common variants, as follows:

θ θ θ θ= = = =H : 1 (1)ij k ij k ij k ij k0 ( ) ( ) ( ) ( )1 2 3 4

n n n n n( , , , , , ) (2)k k k j k i j k11 12 1, 1, 1, 1,= … …− − −
′

n n n n n n n( , , , ) / (3)k k k k k I k J k k1 1 1 2 1, , , 1,µ = …. . . . − . . −
′

..

δ δ
=

− −

−′ ′
+ ′ .. ′+ . ′ .. . ′

.. ..
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rare variants often did not exhibit strong linkage disequilibium (LD)73, 74, but independence was also assessed via 
permutation (S2 text). From our permutation results, weights based on the inverse of MAF reduced the rate of 
false positives. Therefore, implementation of this type of weights is recommended for analyzing WES datasets like 
ours.

We reported the weighted Mantel-Haenszel odds ratio69, θ̂MHi
, to show which ancestral alleles are distinctly 

different from European alleles (S3 text). We introduced the weight into the Mantel-Haenszel odds ratio and 
estimated variance69, 75, as follows, using the last cells as a baseline.

θ̂ = ∑ ⋅ +

∑ ⋅ +
. .

. .

w n n n n
w n n n n

( )/( )
( )/( ) (7)

MH
k k i k k i k k

k k i k k i k k

1 52 5

2 51 5
i

where, i = 1, 2, 3 and 4. For the estimation of variance of θ̂MHi
, we extended the methodology by Robins et al.75 

Landis et al. showed that = ⊗B u vk k k, where uk is a vector of row scores and vk is a vector of column scores30. 
When = −u Ik i( 1) and = −v Ik j( 1), L2 is the generalized CMH statistic for two nominal variables. In the PDRC test, 
three types of weights are used: equal weight, inverse of MAF and inverse of MAF2. More details on these weights 
are given in the Discussion.

Simulation.  We conducted a simulation to analyze the type-1-error rate of PDRC test for the analysis of 
population differentiation (PD) in genes. The null distributions (i.e., no PD in the genome), were generated from 
several scenarios (S4 Text).

VIP gene analysis through PDRC test.  According to the 1000 Genomes Project (PMID: 21030618), 17% 
of low-frequency variants with MAF ranges of 0.5–5% were observed in a single ancestry group, and 53% of rare 
variants (MAF < 0.5%) were observed in a single ancestry group19 and similarly, half of the variants in VIP genes 
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in our datasets were population-specific rare variants (Figs 2 and 3). Therefore, our studies of population-specific 
rare variants are also important for studying pharmacogenes with high PD. Therefore, we investigated the VIP 
genes in our WES data through the proposed PDRC test. Since the PDRC test statistics could summarize PD 
information from both rare and common variants, VIP gene analysis, via the PDRC test, has some flexibility in 
choosing variants in gene analysis, in order to identify genes with high PD.

Variant selection strategy for specific genes.  The process of selecting variants representing a specific 
gene is not straightforward. In our analysis, we considered the following three strategies for choosing variants: (1) 
all variants, including common and rare ones; (2) less common or rare variants; and (3) protein-altering variants. 
Since some of the variants do not alter the encoded protein, the phenotypic variation caused by genotypic varia-
tion might be summarized only by protein-altering variants76. However, non-protein-altering variants might also 
cause variation of gene expression, with phenotypic consequences77, 78. Lastly, less common and rare variants are 
expected to have larger effects than common variants79. Thus, these three strategies are used in the PDRC test for 
summarizing effects at the gene level.
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