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Abstract
Long non-coding RNAs (lncRNAs) are a subgroup 
of non-coding RNA transcripts greater than 200 
nucleotides in length with little or no protein-coding 
potential. Emerging evidence indicates that lncRNAs 
may play important regulatory roles in the pathogenesis 
and progression of human cancers, including hepato
cellular carcinoma (HCC). Certain lncRNAs may be 
used as diagnostic or prognostic markers for HCC, a 
serious malignancy with increasing morbidity and high 
mortality rates worldwide. Therefore, elucidating the 
functional roles of lncRNAs in tumors can contribute to 
a better understanding of the molecular mechanisms 
of HCC and may help in developing novel therapeutic 
targets. In this review, we summarize the recent 
progress regarding the functional roles of lncRNAs in 
HCC and explore their clinical implications as diagnostic 
or prognostic biomarkers and molecular therapeutic 
targets for HCC.

Key words: Hepatocellular carcinoma; Long non-coding 
RNAs; Function; Biomarker; Therapeutic target

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Emerging evidence indicates that long non-
coding RNAs (lncRNAs) may play important regulatory 
roles in the pathogenesis and progression of human 
cancers, including hepatocellular carcinoma (HCC). 
Therefore, elucidating the functional roles of lncRNAs 
in tumors can contribute to a better understanding of 
the molecular mechanisms of HCC and may help in 
developing novel therapeutic targets. In this review, we 
summarize the recent progress regarding the functional 
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roles of lncRNAs in HCC and explore their clinical 
implications as diagnostic or prognostic biomarkers and 
molecular therapeutic targets for HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC), a major type of 
primary liver cancer, is the second leading cause 
of cancer death worldwide[1]. Unfortunately, the 
incidence and mortality rates of HCC have continued 
to increase globally. The high mortality of HCC patients 
is mainly due to late diagnosis, leading to limited 
therapeutic options. Accordingly, there is an urgent 
need to elucidate the molecular mechanisms involved 
in the initiation and progression of HCC to identify 
reliable biomarkers for early diagnosis and therapeutic 
targets to improve the survival of these patients. 
Recent data have demonstrated that the complexity 
of human carcinogenesis cannot be accounted for 
by genetic alterations alone and that epigenetic 
changes may also be involved[2]. In fact, it is becoming 
increasingly evident that dysregulated epigenetic 
regulatory processes play a central role in cancer 
onset and progression[3]. In human HCC, for example, 
epigenetic changes in various cancer-related genes 
are more frequently observed than genetic changes[4], 
suggesting the crucial impact of epigenetic alterations 
in hepatocarcinogenesis.

Epigenetic alterations include changes in DNA 
methylation, histone modifications, and non-coding 
RNA-mediated gene silencing[5]. Recent studies have 
revealed that the vast majority of the human genome 
is actively transcribed into non-coding RNAs (ncRNAs), 
only 1%-2% of which encode proteins[6,7]. As most 
cancer studies to date have principally focused on 
protein-coding genes, the function of ncRNAs in cancer 
remains largely unknown. Nonetheless, accumulating 
evidence is shedding light on the functional importance 
of ncRNAs in cancer biology, and these molecules 
are emerging as new regulators of diverse biological 
functions, with important roles in oncogenesis and 
tumor progression[8]. NcRNAs can be roughly classified 
into the following two groups based on length: small 
ncRNAs (< 30 nucleotides) and long ncRNAs (lncRNAs; 
> 200 nucleotides)[9]. Small ncRNAs, especially 
microRNAs (miRNAs), have been studied extensively. 
In contrast, lncRNAs are the least studied transcripts 
and their functions remain largely unknown, even 
though they constitute the majority of ncRNAs.

LncRNAs were initially regarded as “transcriptional 

noise” of the transcriptome. However, the recent 
application of next-generation sequencing, particularly 
RNA-sequencing (RNA-Seq), has broadened and 
deepened our knowledge of lncRNAs related to various 
types of diseases, including cancer. It is clear that 
lncRNAs act as critical regulators of multiple cellular 
processes, especially gene expression. It has been 
well documented that many lncRNAs are frequently 
aberrantly expressed in human cancers in which they 
may serve as oncogenes or tumor suppressors[10-12], 
suggesting that they may act as novel drivers of 
tumorigenesis. Compared with protein-coding genes, 
lncRNA alterations are highly tumor- and cell line-
specific[13], and this characteristic of specificity 
makes lncRNAs promising biomarkers for diagnosis. 
Importantly, lncRNAs play critical regulatory roles 
in the pathogenesis and progression of cancers, 
including cell proliferation, differentiation, apoptosis, 
tumorigenesis, and progression[14-17]. All of these 
findings point to lncRNAs as promising diagnostic 
or prognostic biomarkers and potential therapeutic 
targets for cancer.

Given the critical roles of lncRNAs in the initiation 
and progression of cancer, it is not surprising that 
lncRNAs have aroused considerable interest in HCC 
research. To date, multiple HCC-related lncRNAs 
have been identified. In vitro and in vivo functional 
experiments have shown that in HCC cells, lncRNAs 
are involved in the regulation of diverse biological 
processes, such as proliferation, migration, apoptosis, 
the cell cycle, tumorigenesis, and metastasis. 
Moreover, increasing evidence indicates that lncRNAs 
may play irreplaceable roles in the initiation and 
progression of HCC. As lncRNAs may serve as 
diagnostic or prognostic biomarkers and therapeutic 
targets for HCC, elucidating the roles of lncRNAs in 
tumors can contribute to a better understanding of 
the molecular mechanisms of HCC and assist in the 
development of novel therapeutic targets. In this 
review, we summarize the recent progress regarding 
the functions of lncRNAs in HCC and explore their 
clinical implications as diagnostic or prognostic 
biomarkers and molecular therapeutic targets.

Classification of LNCRNAs
As they can be categorized according to their various 
properties, such as transcript length, genomic location 
and context, sequence and structure conservation, 
effects on DNA sequences, functional mechanisms 
and targeting mechanisms, association with protein-
coding genes or subcellular structures, many different 
classifications of lncRNAs have been proposed[18,19]. 
For example, according to their genomic location 
relative to neighboring protein-coding genes, lncRNAs 
have generally been categorized into five classes: 
sense, antisense, intronic, intergenic, and bidirectional 
lncRNAs[20]. LncRNAs may also be classified according 
to their targeting mechanisms: signal, decoy, guide, 
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and scaffold[21].
However, there has been no systematic and 

unambiguous classification of lncRNAs to date, and 
many existing lncRNA classifications are conflicting and 
overlapping. Different criteria (databases, projects, 
and methodologies) used to classify lncRNAs may be 
primarily responsible for the classification overlap. 
In reality, lncRNAs are not a homogeneous class of 
molecules but rather a mixture of multiple functional 
classes with distinct biological mechanisms and/
or roles[22]. Many lncRNAs are not easily classified 
into any particular category, and it is likely that the 
same lncRNAs may be listed in different groups in all 
classifications[23,24]. In addition, the vast majority of 
lncRNAs remain functionally uncharacterized, which 
hampers their functional classification.

Given their complexity, from biogenesis to function, 
these overlapping and conflicting classifications 
would inevitably add another layer of difficulty to 
our understanding of lncRNA biology. Interestingly, 
the authors of a recent review highlight the roles of 
large systems biology-based datasets as conceptual 
guidelines for lncRNA classification and functional 
annotation[19]. Specifically, advances in high-throughput 
transcriptome sequencing technologies will contribute 
to uncovering previously unknown functions of lncRNAs, 
and as such, the arbitrary classifications will need to be 
redefined.

Subcellular localization 
patterns of LNCRNAs
LncRNAs have diverse subcellular localization 
patterns, ranging from bright sub-nuclear foci to 
almost exclusive cytoplasmic localization; some 
lncRNAs are found in both compartments[25,26], with 
the majority preferentially localized to the nucleus 
and chromatin[20,27-29]. Importantly, it is becoming 
increasingly clear that the function of lncRNAs depends 
on their subcellular localization[30]. In general, nuclear 
lncRNAs are recognized as important transcriptional 
and epigenetic modulators of nuclear functions[15,31,32], 
whereas cytoplasmic lncRNAs have been described 
as modulating mRNA stability and translation[32,33]. 
Compared with the mostly highly abundant cellular 
RNAs, the vast majority of lncRNAs that are typically 
less abundant in a population of cells can be highly 
abundant in individual cells[25,34]. To more precisely 
locate and confirm the sub-cellular localization of 
lncRNAs, two recent reports have suggested that 
rather than using conventional RNA fluorescence in situ 
hybridization (FISH) techniques that have a relatively 
low sensitivity, it may be more effective to study 
lncRNAs by applying single-molecule RNA FISH[25,35].

MECHANISMS OF LNCRNA-MEDIATED 
GENE EXPRESSION
To date, the biological functions and molecular 

mechanisms of most lncRNAs remain largely elusive, 
with only very few being partially characterized. 
Nevertheless, existing evidence demonstrates that 
these molecules play critical roles in the regulation of 
specific cellular processes, specifically in protein-coding 
gene expression at the epigenetic, transcriptional and 
post-transcriptional levels[36-40].

Epigenetic regulation
Epigenetic regulatory mechanisms can act at 
genomic (DNA methylation or demethylation) or 
nucleosomal and chromatin (post-translational histone 
modifications and chromatin remodeling complexes) 
levels[41]. As stated above, the majority of lncRNAs 
localize preferentially to the nucleus and chromatin, 
and increasing evidence indicates that some nuclear 
lncRNAs epigenetically regulate gene expression 
by altering chromatin structure[42]. There are two 
underlying mechanisms by which lncRNAs mediate 
changes in chromatin and gene expression. First, 
they can directly interact with chromatin-modifying 
enzymes, functioning as guides in cis or trans by 
recruiting chromatin modifiers to specific genomic loci 
to mediate DNA methylation or histone modification, 
thereby modulating chromatin states and impacting 
gene expression[32,43-47]. Second, lncRNAs function as 
adaptors that link specific chromatin loci with ATP-
dependent chromatin-remodeling complexes[48,49], 
serving as guides to target these complexes to regulate 
nucleosome remodeling and gene expression[47,50,51].

In addition, lncRNAs have been identified as 
crucial regulators of epigenetic processes such 
as X-chromosome inactivation[52,53], genomic im
printing[53,54], cellular differentiation determination[55,56], 
and cell identity maintenance[57]. Thus, lncRNAs 
play crucial roles in the epigenetic regulation of 
gene expression. In particular, investigation of the 
interrelationships between lncRNAs and epigenetic 
modifications will provide new insight into cancer 
diagnosis and therapy.

Transcriptional regulation
At the level of transcriptional regulation, lncRNAs 
regulate gene expression by (1) recruiting and guiding 
transcription factors to the promoter region of target 
genes to regulate their transcription; (2) functioning as 
transcriptional activators or repressors to mediate gene 
transcription; (3) interacting with RNA polymerase 
II to regulate gene transcription; (4) interfering with 
transcription of adjacent genes in cis; (5) forming 
lncRNA-DNA hybrids to repress transcription of a 
target; and (6) affecting protein localization to regulate 
gene expression[24,58-63].

Post-transcriptional regulation
LncRNAs regulate the expression of genes responsible 
for biological functions at the post-transcriptional 
level by modulating messenger RNA (mRNA) stability, 
translation, degradation, and pre-mRNA alternative 
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can disrupt multiple cellular oncogenic pathways 
by exerting oncogenic and/or tumor suppressive 
functions. LncRNAs also drive many important cancer 
phenotypes through interactions with other cellular 
macromolecules, including DNA, protein, and RNA[76]. 
In brief, the role of lncRNAs in cancer initiation and 
progression is evident, yet the detailed mechanisms of 
their involvement in this process need to be clarified.

To date, researchers have elucidated genetic, 
epigenetic, and transcriptional regulatory mechanisms 
responsible for dysregulation of lncRNAs in cancer[77]. 
For instance, genetic regulatory factors, such as genetic 
instability and single-nucleotide polymorphisms, can 
be found in lncRNAs and might contribute to their 
aberrant expression in cancer[77]. Additionally, aberrant 
expression of lncRNAs with oncogenic properties 
can be caused by gene amplifications and point 
mutations[78]. Epigenetic regulation, such as DNA 
methylation or histone acetylation in the promoter 
region of lncRNAs, can alter their expression in 
cancer[79,80], and expression of some cancer-associated 
lncRNAs can also be initiated by some key transcription 
factors, such as Myc and p53[81,82], or signaling cascades 
such as Notch[83]. Taken together, the above-mentioned 
regulatory factors contribute to aberrant expression 
of lncRNAs in cancer, with the dysregulated lncRNAs 
consequently acting as important regulators of cancer 
initiation and progression.

Dysregulated expression of 
LNCRNAs in HCC
It has been proven that aberrant lncRNA expression 
leads to dysregulation of downstream effectors and 
that lncRNAs may provide a cellular growth advantage 
resulting in HCC[84], suggesting that lncRNAs may 
serve as promising diagnostic biomarkers and poten
tial therapeutic targets for HCC. Thus far, multiple 

splicing genes. These molecules also function as 
competing endogenous RNA (ceRNA) or endogenous 
microRNA (miRNA) sponges, act as precursors of 
miRNAs, and interact with proteins to mediate their 
activity or alter their localization[58,64-71]. Through these 
mechanisms, lncRNAs play crucial roles in the post-
transcriptional regulation of gene expression.

Taken together, these distinct molecular me
chanisms allow dysregulated lncRNAs to up-regulate or 
down-regulate gene expression, thereby determining 
their regulatory functions in various biological 
processes. Nevertheless, the complicated mechanisms 
underlying such regulatory behaviors need further 
investigation. The biological functions and molecular 
mechanisms of action of lncRNAs are presented in 
Figure 1.

FUNCTIONAL ROLES OF LNCRNAs AND 
MECHANISMS UNDERLYING LNCRNAs 
DYSREGULATION IN CANCER
Numerous investigations have indicated that aberrantly 
expressed lncRNAs play critical roles in cancer initiation 
and progression. However, the biological functions 
and mechanisms of the majority of lncRNAs in 
cancer remain largely unknown. In general, lncRNAs 
regulate gene expression in cancer at the epigenetic, 
transcriptional, and post-transcriptional levels. Con
sequently, lncRNAs affect cell proliferation, survival, 
migration, or genomic stability[72], thereby contributing 
to tumor development. Specifically, evidence to date 
demonstrates that lncRNAs are frequently aberrantly 
expressed in human cancers in which they may 
serve as oncogenes or tumor suppressors[73,74]. These 
lncRNAs can mediate several cancer-associated 
processes, including epigenetic regulation, the DNA 
damage response, cell cycle control, and miRNA 
silencing[75]. Furthermore, dysregulated lncRNAs 

LncRNAs

Transcriptional regulationEpigenetic regulation Post-transcriptional regulation

Chromatin remodeling
Histone modification
DNA methylation
X-chromosome inactivation
Genomic imprinting

Guiding and recruiting transcription 
factors
Acting as transcriptional activators or 
repressors
Binding RNA PII
Targeting adjacent genes
Forming IncRNA-DNA hybrids
Affecting protein localization

Modulating mRNA stability, translation, 
degradation, and pre-mRNA alternative 
splicing
Functioning as ceRNAs or precursors of 
miRNAs
Mediating protein activity and localization

Figure 1  The regulatory mechanisms of long non-coding RNAs. LncRNAs: Long non-coding RNAs; RNA PII: RNA polymerase II; ceRNAs: Competing 
endogenous RNAs; mRNA: Messenger RNA; miRNAs: MicroRNAs.
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dysregulated lncRNAs have been identified as parti
cipating in the initiation and progression of HCC. Here, 
we briefly summarize seven well-documented lncRNAs 
in HCC: H19, HOTAIR, HULC, HOTTIP, MALAT1, MVIH, 
and MEG3. FTX, a novel lncRNA associated with HCC, 
is also discussed. Up-regulated expression of lncRNAs 
in HCC is thought to have an oncogenic function, 
whereas a few lncRNAs exhibiting down-regulated 
expression in HCC may act as tumor suppressors (Table 
1).

H19
The human H19 gene (H19) is a paternally imprinted 
gene located on human chromosome 11p15.5, a 
locus that contains several imprinted genes, such as 
insulin-like growth factor 2 (IGF2) and H19. Although 
H19 has been investigated for years, its role in 
tumorigenesis is still controversial. Increasing evidence 
suggests that H19 is highly expressed in many human 
cancers[73,85-88], indicating that it acts as an oncogene 
and that its activation may play a critical role in 
tumorigenesis. Nonetheless, several studies have 
shown that H19 functions as a tumor suppressor[89-92]. 
Apparently, H19 has a dual role in tumorigenesis, 
reflecting the complexity of H19 function. According 
to the literature, H19 function in HCC is seemingly 
much more complicated than that in other types of 
cancers; indeed, its function in hepatocarcinogenesis is 
largely debated. Numerous investigations have shown 
that the H19 gene behaves as an oncogene, with its 
activation contributing to hepatocarcinogenesis. For 
example, hypoxia induces H19 expression in HCC 
cells both in vitro and in vivo. Furthermore, silencing 
H19 expression attenuates tumor growth in vivo, 
suggesting that H19 behaves as an oncogene and 
enhances the tumorigenic potential of HCC cells 
in vivo[93]. A mechanism by which H19 exerts its 
oncogenic activity in hepatocarcinogenesis has been 
proposed. Alterations in gene expression at the H19/
IGF2 locus are associated with malignancies[87]. In 

particular, H19 is a precursor of miR-675, and H19 
and miR-675 are increasingly described as having key 
roles in the progression and metastasis of cancers of 
different tissue origins[94]. Recent data indicate that 
H19-derived miR-675 favors tumor progression in HCC 
by repressing expression of twist-related protein 1[95], 
and miR-675 up-regulates H19 by activating EGR1 in 
human liver cancer[96]. These findings suggest that the 
oncogenic role of H19 is mediated through miR-675. 
Aflatoxin B1 (AFB1) presents another mechanism 
related to the oncogenic function of H19. AFB1 induces 
expression of transcriptional factor E2F1 (E2F1), and 
AFB1-induced E2F1 up-regulates the expression of 
H19 in HCC HepG2 cells, thereby promoting cellular 
growth and invasion[97].

Regardless, current evidence supports a role of 
H19 as a tumor suppressor. A study investigating the 
effect and mechanism of H19 and miR-675 on HCC cell 
migration and invasion reported that inhibition of H19 
and miR-675 expression can promote the migration 
and invasion of HCC cells via the AKT/GSK-3β/Cdc25A 
signaling pathway[98]. This finding suggests that H19 
acts a tumor suppressor in HCC cells. Intriguingly, 
recent data indicate that H19 is down-regulated in 
intratumoral HCC tissues compared with peritumoral 
tissues[99]. Additionally, H19 plays a role in promoting 
tumor initiation but exerts its tumor-suppressive effect 
on subsequent tumor progression and metastasis in 
HCC[99]. These findings suggest a tumor-promoting 
mechanism for H19 in peritumoral HCC tissues and 
also indicate that H19 has distinct roles at different 
stages of HCC development. Given the complexity 
of H19 function in HCC, there is a need for further 
investigation to resolve the discrepancy.

In particular, a recent study found that up-regulation 
of H19 has a statistically significant linear correlation 
with AFP mRNA levels in HCC tumor samples[95], 
suggesting its role as a potential non-invasive diagnostic 
biomarker in HCC. Therefore, it should be feasible to 
detect both AFP and H19 simultaneously to achieve 

Table 1  Hepatocellular carcinoma associated long non-coding RNAs in this review

LncRNA Chromosomal location Dysregulation Biological roles Ref.

H19 11p15.5 Up-regulated Promotes HCC growth Matouk et al[93]

Down-regulated Inhibits migration and invasion of HCC cells Lv et al[98]

HOTAIR 12q13.13 Up-regulated Promotes HCC growth Geng et al[107]

HOTTIP 7p15.2 Up-regulated Promotes proliferation of HCC cells Quagliata et al[115]

HULC 6p24.3 Up-regulated Promotes HCC growth Zhang et al[127]

MALAT1 11q 13.1 Up-regulated Promotes invasion Lai et al[148]

MVIH 10q22-q23 Up-regulated Promotes HCC growth, microvascular invasion, 
and intrahepatic metastasis

Shi et al[153]

MEG3 14q32.2 Down-regulated Inhibits cell growth Zhu et al[166]

Lnc-FTX Xq13.2 Up-regulated Promotes proliferation and cell cycle 
progression of HCC cells

Liu et al[175]

Down-regulated Inhibits proliferation and cell cycle progression 
of HCC cells

Liu et al[176]

HCC: Hepatocellular carcinoma; LncRNA: Long non-coding RNA; H19: H19, imprinted maternally expressed transcript; HOTAIR: HOX antisense intergenic 
RNA; HOTTIP: HOXA transcript at the distal tip; HULC: Highly up-regulated in liver cancer; MALAT1: Metastasis-associated lung adenocarcinoma 
transcript 1; MEG3: Maternally expressed gene 3; MVIH: Microvascular invasion in HCC; FTX: Five prime to Xist.
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better performance in HCC management.

HOTAIR
HOX transcript antisense intergenic RNA (HOTAIR) 
is a human gene located on chromosome 12q13.13 
that is co-expressed with HOXC genes. HOTAIR has 
been identified as regulating chromatin silencing 
of the adjacent HOX locus[100]. Recent studies have 
revealed that HOTAIR functions as a molecular 
scaffold to link polycomb repressive complex 2 
(PRC2) and lysine-specific demethylase 1/REST 
corepressor 1/RE1-silencing transcription factor 
(LSD1/CoREST/REST) complexes and direct them to 
specific gene sites, leading to altered histone H3 lysine 
27 (H3K27) methylation and H3K4 demethylation and 
ultimately resulting in epigenetic gene silencing[46,101]. 
Accumulating evidence demonstrates that HOTAIR is 
dysregulated in a variety of human cancers and that 
overexpression of HOTAIR is associated with cancer 
cell proliferation, apoptosis, invasion, progression, and 
metastasis as well as poor survival[102-105].

It has been reported that HOTAIR expression 
in HCC tissues is significantly higher than that in 
adjacent non-cancerous tissues[106,107]. In addition, the 
expression levels of HOTAIR in liver cancer cell lines 
were found to be higher than those in normal liver cell 
lines[106]. These findings suggest that HOTAIR exhibits 
oncogenic activity in HCC. Thus far, several studies 
have investigated the clinical implications of HOTAIR in 
HCC. Patients with HCC that overexpress HOTAIR have 
an increased risk of recurrence following hepatectomy, 
and there is also a correlation between HOTAIR 
overexpression and increased risk of lymph node 
metastasis[108]. A high level of HOTAIR expression has 
potential as a candidate biomarker for predicting HCC 
recurrence in liver transplantation (LT) patients[106]. 
Furthermore, patients with high expression of HOTAIR 
have a significantly shorter recurrence‑free survival 
than patients with low expression of HOTAIR[109]. Taken 
together, these findings support the role of HOTAIR 
as a metastatic biomarker. Indeed, just as in most 
other types of cancer, HOTAIR is considered most 
valuable as a prognostic indicator in HCC, particularly 
as a metastatic biomarker rather than as a diagnostic 
biomarker[110].

Various mechanisms have been proposed for the 
oncogenic activity of HOTAIR in HCC. For example, 
a regulatory network between miR-218 and HOTAIR 
was elucidated, whereby HOTAIR inactivates P16 
(Ink4a) and P14 (ARF) signaling by down-regulating 
miR-218 expression in HCC via EZH2 targeting of the 
miR-218-2 promoter regulatory axis and enhancing 
Bmi-1 expression, resulting in hepatocarcinogenesis[111]. 
In addition, up-regulation of HOTAIR promotes 
proliferation, migration, and invasion of human HCC 
cells by activating autophagy[112], by inhibiting RNA 
binding motif protein 38 (RBM38)[113], or in part by 
modulating miR‑1[114].

HOTTIP
HOXA transcript at the distal tip (HOTTIP), which is 
transcribed from the 5’ tip of the HOXA locus, has 
been observed to be up-regulated in various cancers, 
including HCC[115]. For example, a recent meta-analysis 
demonstrated that a higher expression level of HOTTIP 
is correlated with positive lymph node metastasis 
(LNM) and poor overall survival (OS) in patients with 
diverse cancers[116], suggesting that HOTTIP might be 
a potentially promising predictor of LNM and survival in 
human cancer.

Another recent study showed that HOTTIP ex
pression is significantly up-regulated in HCC tissues 
compared with adjacent non-neoplastic tissues[115]. 
Patients with higher levels of HOTTIP and homeobox 
protein Hox-A13 (HOXA13) showed increased me
tastasis formation and decreased OS. Moreover, 
knockdown of HOTTIP inhibited the proliferation of 
liver cancer-derived cell lines[115]. These findings 
indicate that HOTTIP might serve as a potential 
predictor of LNM and survival in patients with HCC. 
Intriguingly, these authors have also observed marked 
up-regulation of HOXA13 in HCC, with HOTTIP and 
HOXA13 having a highly positive correlation. In 
addition, knock-down of HOTTIP expression led to a 
reduction in HOXA13 expression in HCC cell lines[115], 
suggesting that HOTTIP may serve as a transcriptional 
regulator of HOXA13 in HCC cells. HOTTIP is located 
at the 5’ end of the HoxA cluster, and can enhance 
expression of upstream HoxA genes, most prominently 
HOXA13[117]. Furthermore, HOXA13 has been shown 
to play a critical role in hepatocarcinogenesis. In a 
recent study, HOXA13 expression was found to be 
significantly up-regulated in HCC tissues compared 
with corresponding paracarcinomatous tissues, and all 
HOXA13-positive paracarcinomatous tissues exhibited 
different levels of atypical hyperplasia. Moreover, 
HOXA13 overexpression may be associated with 
tumor angiogenesis in HCC[118]. These findings indicate 
that HOXA13 may play a crucial role in hepatocyte 
carcinogenesis. Another study found that HOXA13 
was the only HOX network gene to be constitutively 
overexpressed in all tested HCCs, independently 
of stage[119], suggesting its involvement in the 
tumorigenic process of HCC. These authors speculated 
that HOXA13 deregulation is involved in HCC, possibly 
through nuclear export of eIF4E-dependent trans

cripts[119]. In addition, overexpression of HOXA13 was 
shown to rescue the phenotype of HOTTIP knock-
down HCC cells, further supporting that up-regulation 
of HOTTIP in HCC may enhance expression of HOXA13 
and eventually mediate HCC carcinogenesis[120]. Overall, 
HOTTIP exerts its oncogenic functions in hepato
carcinogenesis at least partly by modulating HOXA13. 
Additionally, the HOTTIP/HOXA13 axis may represent 
a predictor of prognosis in patients with HCC and a 
potential therapeutic target for this fatal disease.

Increasing evidence reveals that lncRNAs can 
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interact with miRNAs. Indeed, lncRNAs can act as 
miRNA sponges, reducing their regulatory effect; in 
turn, miRNAs may directly interact with lncRNAs and 
silence their expression[121,122]. MiR-125b has been 
shown to be a post-transcriptional regulator of HOTTIP 
in HCC, whereby loss of miR-125b expression might 
contribute to the frequent up-regulation of HOTTIP[120]. 
In another recent study, the authors found that both 
miR-192 and miR-204 function as tumor suppressors 
to reduce HOTTIP expression via the Argonaute2-
mediated RNA interference pathway in HCC. Further
more, glutaminase has been identified as a potential 
downstream target of the miR-192/-204-HOTTIP axis 
in HCC[123].

In summary, the afore-mentioned results suggest 
the existence of a complex regulatory interaction 
between HOTTIP and HoxA genes or miRNAs. Up
regulation of HOTTIP contributes to hepatocarcino
genesis at least partly by regulating expression of 
HoxA genes, especially HOXA13, and interacting with 
miRNAs. Further studies are required to determine 
whether the regulatory loop between HOTTIP and 
HOXA13 or miRNAs may serve as potential therapeutic 
targets for HCC.

HULC
Expression of the highly up-regulated in liver cancer 
(HULC) gene, which is located on chromosome 6p24.3, 
is increased in HCC[124], and several recent studies 
have helped shed light on the factors that contribute to 
its aberrant up-regulation. For example, research has 
found that expression of HULC can be enhanced by 
the transcription factor CREB (cAMP response element-
binding protein) through interaction with miR-372[125]. 
In addition, up-regulation of HULC by the hepatitis 
B virus (HBV) X protein promotes the proliferation 
of hepatoma cells through down-regulation of the 
tumor suppressor p18[126]. Furthermore, it has been 
shown that HULC might function as an miRNA sponge 
for miR-372 in HCC and may thereby regulate gene 
expression at the post-transcriptional level[125]. 

As an oncogene, HULC is implicated in hepato
carcinogenesis via regulation of multiple biological 
processes. HULC promotes the proliferation of HCC 
cells by regulating tumor cell proliferation-associated 
genes, especially cell cycle-related genes to alter the 
cell cycle in HCC cells[127]. HULC also contributes to 
HCC growth by acting mechanistically to deregulate 
lipid metabolism through a signaling pathway involving 
miR-9, peroxisome proliferator-activated receptor 
alpha (PPARA), and acyl-CoA synthetase long chain 
family member 1 (ACSL1)[128]. In addition, HULC is 
responsible for perturbations in the circadian rhythm 
by up-regulating the circadian oscillator CLOCK (clock 
circadian regulator) in hepatoma cells, resulting in 
the promotion of hepatocarcinogenesis[129]. Other 
biological processes, such as angiogenesis, alterations 
in cell metabolism, activation of a precursor cell 

compartment, and tissue remodeling, as well as 
survival, invasion and migration[124,130], may also 
contribute to hepatocarcinogenesis. Furthermore, 
HULC functions as a ceRNA to activate the epithelial-
mesenchymal transition, stimulating HCC progression 
and metastasis through the miR-200a-3p/ZEB1 
signaling pathway[130]. A recent study provides new 
insight into the molecular mechanisms underlying 
the functions of HULC in hepatocarcinogenesis. The 
authors demonstrate that HULC specifically binds to 
Y-box protein-1 (YB-1) to promote its phosphorylation 
through ERK kinase and in turn regulates the in
teraction of YB-1 with certain oncogenic mRNAs, 
consequently accelerating the translation of these 
oncogenic mRNAs in hepatocarcinogenesis[131]. All of 
these findings indicate that HULC might be involved in 
the pathogenesis and progression of HCC.

However, there are conflicting data in the literature 
regarding whether HULC in HCC is associated with 
a favorable or an unfavorable prognosis. According 
to a recent study from China, high HULC expression 
is significantly associated with higher clinical stage 
and probability of intrahepatic metastasis, and HCC 
patients with high expression of HULC had worse 
survival than those with low or no HULC expression[130]. 
Conversely, two recent studies from South Korea 
and Germany, propose that high HULC expression is 
significantly associated with a low stage and grade and 
less vascular invasion and that HCC patients with high 
HULC expression have better survival than those with 
low or no HULC expression[132,133]. These conflicting 
findings might be largely due to the inclusion of 
different racial and regional groups. Future studies 
with larger patient cohorts and various geographic 
and etiologic backgrounds are needed to confirm the 
prognostic value of HULC in HCC.

Compared with healthy controls, the plasma level 
of HULC was found to be dramatically increased in 
a large cohort of HCC patients, and higher HULC 
expression was significantly associated with larger 
tumor size, and no tumor encapsulation[134], as well as 
higher Edmondson grades and HBV-positive status[135]. 
Therefore, plasma HULC might act as a potential 
noninvasive biomarker for predicting the growth, 
progression and metastasis in HCC.

In summary, the afore-mentioned findings suggest 
that HULC may contribute to the carcinogenesis and 
progression of HCC. Therefore, HULC may act as a 
potential noninvasive biomarker for predicting the 
growth, progression, metastasis, and prognosis of 
HCC.

MALAT1 
Metastasis-associated lung adenocarcinoma trans
cript 1 (MALAT1) is also known as non-coding nuclear-
enriched abundant transcript 2. The MALAT1 locus at 
11q13.1 has been reported to harbor chromosomal 
translocation breakpoints, deletions, translocations, and 
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point mutations linked to cancer[136,137]. These studies 
have suggested that patients with these phenotypes are 
more susceptible to cancer.

Nonetheless, the molecular mechanism of MALAT1 
in cancer is currently uncertain. Previous cell culture 
studies have shown that MALAT1 is specifically retained 
in nuclear speckles to regulate alternative splicing 
of pre-mRNAs by modulating the functional levels of 
serine/arginine (SR) splicing proteins[138,139]. Moreover, 
a recent study suggests that MALAT1 function is only 
apparent in particular cell types, such as metastatic 
cancer cells[140]. These studies indicate that aberrant 
MALAT1 expression promotes tumor metastasis by 
modulating alternative pre-mRNA splicing. However, 
another study has suggested a mechanism of gene 
regulation[141]. Two molecular functions of MALAT1 in 
cell-based models, contributing to its association with 
tumor metastasis, have been proposed: regulation 
of gene expression and alternative splicing[142-144]. 
For example, regulation of expression of metastasis-
associated genes, rather than alternative splicing, is 
the critical function of MALAT1 in lung cancer meta
stasis[145]. Although alternative splicing is critical for 
regulating gene expression, it may not be a major 
mechanism for modulating gene expression, and 
alternative splicing alone cannot explain the role of 
MALAT1 in some cancer cell lines or tissues. Overall, 
MALAT1 functions as a regulator of alternative splicing 
or gene expression, governing the hallmarks of cancer 
metastasis.

Increasing evidence shows that MALAT1 is fre
quently up-regulated in both liver cancer cell lines 
and human HCC tissue samples[146], suggesting that it 
plays an oncogenic role in HCC. A few studies to date 
have investigated the roles and clinical implications 
of MALAT1 in HCC. In one study, MALAT1 expression 
was found to be significantly up-regulated in HCC 
tumor tissues compared with corresponding non-
tumor tissues. Furthermore, MALAT1 was found to 
act as a marker with high sensitivity for human HCCs 
at both early and late stages[147], suggesting that the 
gene can serve as a potential diagnostic tool for HCC. 
In another study, patients with high expression levels 
of MALAT1 had a significantly increased risk of tumor 
recurrence after LT, and silencing MALAT1 with siRNA 
in HepG2 cells effectively reduced cell viability, motility, 
and invasiveness and also increased susceptibility to 
apoptosis[148]. These findings suggest that MALAT1 
may play a critical role in HCC progression and serve 
as a potential predictor of HCC recurrence after LT. 
Importantly, inhibition of MALAT1 may be a potential 
therapeutic target for treatment of HCC.

A recent study investigated the role of specificity 
protein 1/3 (Sp1/3) in the regulation of MALAT1 
transcription in HCC cells, and the authors found that 
Sp1 and Sp3 play roles in up-regulating MALAT1 
expression[149]. Several potential mechanisms linking 
MALAT1 with HCC oncogenesis have been proposed. 

For instance, MALAT1 was found to be up-regulated 
in HCC and to act as a proto-oncogene to promote 
HCC cell growth through Wnt pathway activation and 
induction of oncogenic serine/arginine-rich splicing 
factor 1 (SRSF1). In addition, inhibition of SRSF1 
expression or mTOR activity abolished the oncogenic 
properties of MALAT1, and the authors concluded that 
MALAT1 promotes HCC development through SRSF1 
up-regulation and mTOR activation[150]. Nevertheless, 
the molecular mechanisms underlying the biological 
functions of MALAT1 in HCC remain largely elusive and 
require further investigation.

MVIH
The lncRNA microvascular invasion in hepatocellular 
carcinoma (MVIH) is located in the intron of the 
RPS24 gene, which encodes a protein belonging to the 
S24E family of ribosomal proteins[151]. MVIH functions 
as a tumor promoter and is thus up-regulated in 
many human cancers. Furthermore, MVIH has been 
shown to activate angiogenesis[152]. Thus far, only a 
few studies have shown that MVIH is involved in the 
pathogenesis and progression of HCC, and the function 
and mechanism of MVIH in HCC still need to be fully 
investigated.

A recent study found that MVIH expression was 
significantly increased in HCC tissues and cells and 
that MVIH promoted HCC cell growth and inhibited 
apoptosis by inhibiting miR-199a expression in 
vitro and in vivo[153]. Taken together, these findings 
provide evidence that MVIH acts as an miR-199a 
sponge, linking regulation of gene expression in 
HCC pathogenesis. In addition to its role in HCC 
pathogenesis, MVIH has also been shown to activate 
angiogenesis. A previous study demonstrated that 
MVIH is generally overexpressed in HCC and plays 
a key role in activating angiogenesis; consequently, 
dysregulation of MVIH might serve as a predictor of 
poor recurrence-free survival of HCC patients after 
hepatectomy[154]. It is well-known that pathological 
angiogenesis is essential for oncogenesis, tumor 
invasion and metastasis. The above-mentioned results 
suggest that blocking MVIH function might inhibit 
tumor angiogenesis. Thus, MVIH might serve as a 
promising therapeutic target for HCC antiangiogenic 
therapy. 

MEG3
Maternally expressed gene 3 (MEG3) is an imprinted 
gene located at chromosome 14q32.3; imprinting 
of this gene is controlled by the upstream intergenic 
differentially methylated region (IG-DMR)[155]. Al
though MEG3 is expressed in many normal tissues, 
its expression is lost in various human cancers or 
cancer cell lines. Numerous studies have verified the 
functional role of MEG3 as a tumor suppressor in 
many human cancers[156-158]. Therefore, loss of MEG3 
expression may contribute to tumor pathogenesis in 
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a wide range of tissues of different origin. In recent 
years, hypermethylation of the MEG3 promoter or the 
MEG-3IG-DMR has been shown to contribute to loss 
of MEG3 expression in human cancer cells[159-161], and 
increasing evidence shows that hypermethylation of 
the MEG3 promoter plays an important role in loss 
of MEG3 expression in tumors[156,158,162-165]. Overall, 
hypermethylation in specific MEG3 regions might result 
in permanent gene transcriptional silencing and the 
consequent loss of its antiproliferative function, thus 
contributing to oncogenesis[159].

MEG3 expression was found to be markedly 
reduced in HCC tissues and cell lines compared with 
that in adjacent normal liver tissues and normal 
hepatocytes[79,166]. Furthermore, ectopic expression 
of MEG3 in hepatoma cells significantly inhibits 
proliferation and induces apoptosis[166,167], and forced 
expression of MEG3 in HCC cells significantly decreases 
both anchorage-dependent and -independent growth 
and induces apoptosis[79,160]. These data therefore 
indicate that MEG3 functions as a tumor suppressor 
in hepatoma cells and plays an important role in 
hepatocarcinogenesis. Several studies have investigated 
the mechanism underlying loss of or reduction in MEG3 
expression in HCC. Similar to many other cancers, it 
has been revealed that loss of MEG3 expression in HCC 
is associated with hypermethylation of its promoter 
region[79,160,167,168]. 

It has been proven that MEG3 can inhibit cell 
proliferation and promote apoptosis through a p53-
related pathway[169]. Several studies have also confirmed 
that overexpression of MEG3 results in an increase in 
p53 protein and stimulates its transactivational activity 
in HCC cells[166,170,171]. Further investigation showed that 
MEG3 functions as a tumor suppressor in hepatoma 
cells by interacting with p53 to enhance p53-mediated 
transcriptional activity and influence the expression of 
partial p53 target genes[166]. In addition, dysregulated 
tissue-specific expression of miR-29a in HCC epi
genetically modulates MEG3 expression through 
promoter hypermethylation[79].

Kaplan-Meier analysis demonstrated that patients 
with low MEG3 expression have worse overall and 
relapse-free survival compared with those with high 
expression of MEG3, and Cox proportional hazard 
analyses showed MEG3 expression to be an independent 
prognostic factor for HCC patients[171]. These findings 
suggest that decreased expression of MEG3 contributes 
to HCC development and progression. Overall, MEG3 
may serve as a useful molecular diagnostic marker and 
a potential therapeutic target for HCC.

FTX
The gene five prime to XIST (FTX) is located upstream 
of XIST, within the X-inactivation center (XIC). FTX 
is thought to positively regulate the expression of 
XIST, which is essential for the initiation and spread 
of X-inactivation[172], and recent studies have indicated 

the pro-oncogenic potential of FTX in several types of 
cancer, including renal cell carcinoma[173] and glioma[174].

Surprisingly, there are two opposite findings 
regarding the role of FTX in HBV-related HCC in a 
Chinese population. In one study, FTX and FTX-derived 
miR-545 were found to be up-regulated in HCC tissues 
compared with matched tumor-adjacent tissues, 
and patients with high FTX expression exhibited 
poor survival[175], indicating that FTX functions as an 
oncogenic lncRNA in HCC. Conversely, in another study, 
FTX was found to be significantly down-regulated in 
HCC tissues compared with that in normal liver tissues, 
and patients with higher FTX expression exhibited 
longer survival, suggesting that FTX acts as a tumor 
suppressor in HCC[176]. There are several possible 
explanations for these two contradictory findings. 
First, FTX might play distinct roles in HCC because 
it can function as a precursor for miRNAs and as an 
endogenous miRNA sponge (also termed ceRNA). FTX 
can encode a related cluster of miRNAs (miR-374a and 
miR-545) in most mammalian species[177]. Accordingly, 
in HCC, FTX can function as an oncogene when it 
serves as the precursor of miR-545, with which it is co-
transcribed, or as a tumor suppressor when it acts as 
a microRNA sponge for miR-374a to inhibit the binding 
of miR-374a to its targets. Second, in two studies, FTX 
was either up-regulated or down-regulated in HCC 
compared with non-tumor liver samples, suggesting a 
high FTX variability across different cohorts of patients. 
Third, different levels of FTX distribution at different 
sites of the HCC nodule may exist, and inadequate 
tumor sampling may also be a factor. Fourth, different 
methods were used to detect FTX in these two 
studies, with the former using quantitative reverse 
transcription-quantitative polymerase chain reaction, 
and the latter in situ hybridization.

PROBLEMS AND PERSPECTIVES
In this review, we summarize the recent progress 
regarding the functional roles of lncRNAs associated 
with HCC, including H19, HOTAIR, HULC, HOTTIP, 
MALAT1, MVIH, MEG3, and FTX. As potent gene 
regulators, these HCC-related lncRNAs are involved 
in diverse biological functions, such as cell prolife
ration, apoptosis, migration, invasion, metastasis, and 
angiogenesis, thereby contributing to the initiation 
and progression of HCC. In addition, these HCC-
related lncRNAs may serve as potential diagnostic or 
prognostic biomarkers and also as therapeutic targets 
for HCC.

Intriguingly, due to their highly specific expression 
patterns in particular types of cancer[178], efficient 
detection in the bodily fluids of patients (e.g., blood, 
plasma, and urine) and relatively stable local secondary 
structures, lncRNAs have the potential to serve 
as novel noninvasive biomarkers[13]. For example, 
HULC is detected with a higher frequency in the 
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plasma of HCC patients than in healthy controls[135], 
suggesting the possibility of using HULC as a potent 
circulating biomarker to facilitate early diagnosis of 
HCC. Nevertheless, further investigations in larger 
patient cohorts are necessary to validate the diagnostic 
effectiveness of circulating HULC in HCC.

Despite the importance of lncRNAs in HCC, our 
current understanding of HCC-related lncRNAs remains 
rather limited. First, the behavioral characteristics 
and mechanisms underlying HCC-related lncRNAs 
contributing to HCC remain largely unclear. Second, 
“driver lncRNAs” associated with tumorigenesis and 
progression of HCC have not yet been identified. To gain 
insight into lncRNA functions and mechanisms of action 
in HCC, several major issues need to be addressed: 
(1) technological advances in high-throughput RNA-
Seq and high-resolution imaging of RNAs are required. 
In addition, computational algorithm analysis and 
integrated datasets are also essential; (2) rather than 
acting alone, the regulatory role of lncRNAs typically 
occurs through a large complex network that involves 
mRNAs, miRNAs, DNA, and proteins[179]. Therefore, it is 
critical to understand how lncRNAs interact with RNA, 
DNA, and proteins and how aberrant crosstalk may be 
regulated in HCC; and (3) most of the previous studies 
concerning lncRNAs have been retrospective single-
center analyses with a relatively small sample size. 
Thus, a multicenter prospective cohort study with a 
large sample is needed to gain a deeper understanding 
of the explicit roles of lncRNAs in HCC in various ethnic 
populations[85].
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