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The use of biomarkers for the detection of fungal infections is of interest to 
complement histopathological and culture methods. Since the production of 
antibodies in immunocompromised patients is scarce, detection of a specific antigen 
could be effective for early diagnosis. D-Galactofuranose (Galf) is the antigenic 
epitope in glycoconjugates of several pathogenic fungi. Since Galf is not biosynthesized 
by mammals, it is an attractive candidate for diagnosis of infection. A monoclonal 
antibody that recognizes Galf is commercialized for detection of aspergillosis. The 
linkage of Galf in the natural glycans and the chemical structures of the synthesized 
Galf-containing oligosaccharides are described in this paper. The oligosaccharides 
could be used for the synthesis of artificial carbohydrate-based antigens, not enough 
exploited for diagnosis.

Lay abstract: D-Galactofuranose (Galf) is the unit in polysaccharides and glyco
conjugates of several pathogenic fungi that is recognized by the immune system. 
Since Galf is not synthesized by mammals, it is an attractive candidate for diagnosis 
of infection. Since the production of antibodies in immunocompromised patients 
is scarce, detection of a specific antigen could be effective for early diagnosis. An 
antibody that recognizes Galf is commercialized for the detection of aspergillosis. 
Chemically synthesized Galf-containing oligosaccharides, reviewed in this paper, could 
therefore be used for the synthesis of artificial carbohydrate-based antigens and in 
diagnosis.
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Effective serodiagnosis of systemic fungal infections 
is of increasing importance, particularly with regard 
to the identification of the infective organism. Early 
diagnosis, before infection is advanced, is still a chal-
lenge for efficient therapy. Clinical signs and culture 
detection methods for diagnosis of fungal infections 
are often slow, not specific and/or lack sensitivity [1,2]. 
Although they remain being the usual approaches 
for diagnosis of mycoses  [3], lately, faster, noncul-
ture-based methods have been developed, including 
immunoassays based on the presence of circulat-
ing galactofuranose (Galf ) antigens  [4,5,6,7,8,9]. Since 
immunocompromised patients are not capable of 
producing enough antibodies for their detection in 
conventional serological tests, monoclonal antibod-
ies have been obtained for the detection of specific 
antigens [5].

Aspergillosis is the most studied fungus-related disease 
and thus it will be preferentially referred. Invasive asper-
gillosis affects the lungs mainly in immunocompromised 
patients [10]. A review on molecular methods for diagnosis 
of invasive aspergillosis has been recently published [11].

The monosaccharide D-galactose (D-Gal) is very 
common in nature as a component of oligosaccharides 
and glycoconjugates  [12]. It is interesting to remark 
that mammals are only able to synthesize the sugar 
in the pyranose configuration whereas some bacteria, 
fungi and protozoa have the unique enzyme UDP-
Galp mutase (UGM) that catalyzes the conversion of 
UDP-Galp to UDP-Galf, which is the donor of Galf 
in the biosynthesis of Galf-containing molecules [13,14]. 
The presence of Galf was also reported in some nema-
todes [15,16]. In fungi, recombinant UGM from Asper-
gillus fumigatus was described  [17]. Studies on the 
crystal structure and substrate-binding mechanism, 
revealed differences with the prokaryotic UGM  [18]. 
The synthesis of the substrate UDP-Galp is medi-
ated by a UGE, which catalyzes the interconversion of 
UDP-Glc and UDP-Galp  [19]. In A. fumigatus, three 
genes encoding putative UGE have been reported [20], 
however, only one of them was required for the synthe-
sis of Galf-containing galactomannans and was essen-
tial for normal growth. Based on homology, a UGE 
was identified in A. niger [21]. A genetic and transcript
omic analysis of the cell wall of A. niger in response to 
the absence of Galf was described [22].

Since UDP-Galf is synthesized in the cytosol  [23] 
and Galf is incorporated in the Golgi, a UDP-Galf 
transporter is required, and has been identified in 
A. fumigatus  [24]. In this fungus, deletion of UGM 
caused attenuated virulence of the strain [18,25]. The 
Galf transferases that incorporate Galf into the gly-
cans have been studied mainly in Mycobacterium 
tuberculosis [26,27]. In Aspergillus spp, a Galf transferase 

involved in the biosynthesis of antigenic O-glycans 
was identified [28]. The glycans that contain Galf are 
involved in immunological reactions  [29,30,31], there-
fore they are envisioned as targets for diagnosis. This 
article aims to explore the perspective of methods 
based on synthetic sugar antigens for the production 
of monoclonal antibodies for serological detection of 
fungus-specific antigens.

β-galactofuranosyl structures in human 
infective fungi
Galf is mainly present in the β-configuration in fungi, 
many of them involved in mammal infections. It is also 
present in plant pathogenic fungi, but these will not be 
discussed in the present review.

Fungi that infect mammals and contain glycans 
with Galf are listed in Table 1. Galf is usually present 
as terminal sugar, linked to each other by β(1→6) or 
β(1→5) linkages or branching a mannan core at the 
O-2 or O-3 position of mannose.

In 1985, Bennet  et  al. showed that galactofura-
nosyl groups are immunodominant in A. fumigatus 
galactomannan (GM)  [45], and accordingly, Galf-
deficient mutants of A. fumigatus display an attenuated 
virulence [25].

The cell walls of A. fumigatus have at least four differ-
ent types of molecules containing Galf, which are impor-
tant for cell wall integrity (Table 1)  [29,32,33,34,35,46,47]. 
Galf units were identified in O- and N-linked chains 
of glycoproteins and also in glycoinositolphosphoryl-
ceramides  [48]. The glycoinositolphosphorylceramides 
with Galf(β1→6) linked to a mannose core were 
highly immunogenic.

Neosartorya spp., teleomorph of A. fumigatus, are 
a cause of invasive disease in immunocompromised 
patients [49]. Acute respiratory distress syndrome has 
been attributed to N. udagawae  [50]. The structure 
[→6)-Galf (β1→5)-Galf (β1→5)-D-Galf (β1→] has 
been determined in polysaccharides of some species 
of Neosartorya [36].

Fusarium is a pathogen of plants, but some species 
are pathogenic for humans, particularly Fusarium 
verticillioides and F. proliferatum  [51]. Fusarium spe-
cies cause a broad range of opportunistic infections 
in humans. In healthy individuals, the most common 
clinical manifestations are onychomycosis, skin infec-
tions and keratitis, whereas in immunocompromised 
patients disseminated infections with multiple necrotic 
lesions may occur [52].

It is important to discriminate Aspergillus from 
Fusarium infections since both differ in their response 
to common antifungals. Using a combination of two 
antibodies, both species could be differentiated by 
immunohistology (see below) [31].
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Trichophyton spp., in particular T. mentagrophytes 
and T. rubrum cause chronic dermatophyte infec-
tions, often associated with infection of the nails 
(onychomycosis)  [53]. Although they first infected 
animals, they adapted to infect humans and are now 
considered a major health problem  [54]. Cell wall 
antigens secreted by the fungus may diffuse into the 
dermis and establish the infection, due to immuno
suppressive effects. Impairment of lymphocyte pro-
liferation was shown  [55]. One of the major cell 
wall components secreted to the medium is a GM. 
Structure determinations showed that Galf termi-
nal units are β(1→3) linked to a mannan core. Poly
galactofuranosyl chains, similar to those produced by 

A. fumigatus, have not been found in Trichophyton [39]. 
Accordingly, a monoclonal antibody against the GM 
of A. fumigatus showed very low cross-reactivity with 
exoantigens from cultures obtained from clinical 
specimens  [56]. Glycosylphosphatidylinositols labeled 
with [3H]-galactose and [3H]-mannose were biosynth
esized by membrane preparations of T. rubrum. The 
lability to acid of the galactose suggested its furanosic 
configuration [57].

A linear chain of β1→6 linked Galf attached to a 
small mannan was also found in polysaccharides of 
Malassezia spp [40]. Malassezia spp. are human patho-
gens responsible for skin diseases and they are also 
associated with catheter-related fungaemia [58].

Table 1. Structural units containing β-galactofuranose in mammal-pathogenic fungi.

Organism Structure† Study Ref.

Aspergillus Galf(β1→5)Galf 
Galf(β1→3)Man 
Galf(β1→6)Man 
Galf(β1→2)Man 
Galf(β1→5)Galf(β1→6)Man(α1→6)Man

Latgé 
Tefsen et al. 
Fontaine et al. 
Jin 
Leitã et al.

[29,32,33, 
34,35]

Neosartorya [→6)Galf(β1→5)Galf(β1→5)Galf(β1 Leal et al. [36]

Neotestudina rosatii Glc(α1→2)Galf(β1→6)Galfβ 
Glc(α1→2)Galf(β1→2)Man

Leal et al. [37]

Fusarium Galf(β1→6)Galf Ahrazem et al. 
Wiedemann et al.

[31,38]

Trichophyton Galf(β1→3)Man Ikuta et al. [39]

Malassezia Galf(β1→6)Galf Shibata et al. [40]

Sporothrix schenckii Galf(β1→6)Galf 
Galf(β1→2)Man

Mendonça-Previato et al. [41]

Cladosporium herbarum Galf(β1→6)Galf(β1→6)Galf(β1→2)
Man(α1→6)Man

Swärd-Nordmo et al. [42]

Paracoccidioides Galf(β1→6)Man(α1→2) Man Almeida et al. 
Levery et al. 
Ahrazem et al.

[30,38,118]

Neotestudina rosatii Glcp(α1→2)Galf(β1→6)Galfβ Leal et al. [37]

Fonsecaea pedrosoi Glc(α1→2)Galf(β1→6)Man(α1→2) Man Shibata et al. [44]
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†When configuration is not indicated, it corresponds to the pyranosyl configuration. All the sugars belong to the D-series.
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Sporothrix schenckii is the agent of sporotrichosis in 
humans and animals, producing skin and subcutane-
ous lesions. It is present in all continents, especially in 
tropical and subtropical areas [59,60]. In an early work, 
Galf-containing polysaccharides were isolated from the 
supernatants of S. schenckii cultures [41]. It was found 
that a mannan core is substituted by β-Galf chains 
which are responsible for cross-reactions with other 
fungal antigens. Apparently, no further studies on this 
GM were described. In turn, peptidorhamnomannans 
with both N- and O-linked carbohydrate chains as 
the immunodominant structures were obtained from 
extracts of the cell walls [61]. Later studies characterized 
a peptidorhamnomannan (Gp70) isolated from the 
yeast phase of S. schenckii as an adhesin involved in the 
host–pathogen interaction, but Galf was not reported 
as a constituent of this glycoprotein [62].

Cladosporium spp. are mainly plant pathogens but 
some may trigger allergic reactions in sensitive indi-
viduals. Prolonged exposure to a high concentration 
of spores may produce chronic asthma. A glycoprotein 
named Ag-54, which contains 80% carbohydrate, 
was an allergen purified from C. herbarum. Structural 
studies showed chains of β1→6 linked Galf bound to 
O-2 of 1→6 linked mannoses (Table 1) [42].

Paracoccidioides brasiliensis is endemic to regions of 
Latin America, causing a mycosis which spreads from 
the lungs to many organs and if not treated could be 
fatal [63]. Paracoccidioidomycosis (PCM) is commonly 
diagnosed by identifying budding yeast cells in bio-
logical fluids or histologically [64]. Glycolipids extracted 
from yeast and mycelium forms of P. brasiliensis reacted 
with sera from patients. The antibodies were directed 
mainly to the galactofuranosyl units in the glyco
lipids [65]. A review on glycolipids in fungi and trypano-
somatids discusses the role of Galf in the infectivity [66]. 
However, the main diagnostic antigen of P. brasiliensis 
is the exocellularly secreted glycoprotein gp43, which 
contains a terminal Galf unit attached (β1→6) to a 
mannose in an N-linked oligosaccharide chain [30].

Antigenic Galf is usually present as an exposed ter-
minal sugar in the glycan (Table 1). However, in some 
fungi an internal Galf is present. This is the case of 
Neotestudina rosatii, from which three polysaccharides 

containing the units Glc(α1→2)Galf (β1→6)Galf- 
and Glc(α1→2)Galf (β1→2)Man linked to a mannan 
were extracted [37].

Neotestudina rosatii is one of the etiologic agents 
of subcutaneous infections in humans. This species 
occurs with other fungi causing eumycetoma, and its 
taxonomic classification is uncertain [67].

A glycoprotein with N- and O-glycans was extracted 
from Fonsecaea pedrosoi, the etiologic agent of chromo-
blastomycosis. The hexasaccharide containing internal 
Galf (Table 1) was the main O-linked chain [44,68]. Spe-
cific antibodies against F. pedrosoi were strongly inhib-
ited by the hexose, but the contribution of the internal 
Galf to the antigenicity was not evaluated. Probably, 
the main epitope in F. pedrosoi is the external α-Galp, 
a recognized antibody in humans [69].

In the previously mentioned examples, Galf is pres-
ent in the β-anomeric configuration. However, the 
less common α-Galf has also been found in some 
organisms, such as, P. brasiliensis. Interestingly, the 
configuration of the sugar depends on the phase, 
whereas β-Galf is present in the yeast form infecting 
the mammal, α-Galf is a constituent of the mycelial 
GM (Table 2) [38,70].
Galf was also found in glycoinositolphospho
lipids obtained from the yeast phase of Histoplasma 
capsulatum, the causative agent of histoplasmosis, 
an endemic mycosis  [71]. Histoplasma capsulatum is a 
dimorphic fungus which grows in the soil as a filamen-
tous mycelium, but it converts to a yeast-like form in the 
tissues of infected animals. The purified glycoinositol
phospholipids were shown to react with sera from histo-
plasmosis patients [71]. The authors tentatively assigned 
the α-configuration for the Galf from the yeast form, 
in contrast with the configuration found for the Galf in 
the same phase in P. brasiliensis. The configuration of 
galactofuranosides is unequivocally assigned by NMR 
spectroscopy [12], which was not used by Barr et al. in 
1984  [71]. The glycosphingolipids from the mycelial 
phase were not described.

In A. niger, α-Galf(1→2) linked to mannose was 
characterized  [72]. Although this species is less patho-
genic for humans than A. fumigatus, it could produce 
allergic reactions in high concentrations.

Table 2. Structural units containing α-galactofuranose in mammal-pathogenic fungi.

Organism Structure† Study Ref.

Paracoccidioides brasiliensis Galf (α1→6) Man(α1→2) Man Ahrazem et al. 
San-Blas et al. 

[38,70]

Histoplasma capsulatum Galf (α1→6) Man (α1→2 or 6) Barr et al. [71]

Aspergillus niger Galf (α1→2) Man Takayanagi et al.  [72]

†All the sugars belong to the D-series.
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Table 3. Structures with galactofuranose units found in fungal glycans which have been chemically synthesized.

Structure Study Ref.
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HO

O
OH

OH
HO

HO n

A

n = 0 
n = 0–5 
n = 2

R = H, Bn 
R = CH3 
R = C8H17 
R = C2H5 
R = H, Pr 
R = H, allyl 
R = (CH2)2CHNH2COOH 
R = arm–biotin

van Heeswijk et al. 
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The antigenic properties of β-galactofuranosides 
are well known [29,30,31] but the immunological role of 
α-Galf was apparently not described. The differences 
in the Galf configuration in the galactomannans of the 
infective P. brasiliensis and A. fumigatus could explain 
the low cross-reactivity in serological tests using a 
specific antibody [73].

Structural analysis of Galf-containing 
polysaccharides or glycoconjugates
In earlier works, the identification of Galf units in 
glycoconjugates was performed using chemical meth-
ods. Taking advantage of the greater lability of fura-
nosic linkages with respect to the pyranosic bonds, 
terminal Galf units may be selectively released from 
the molecule by mild acid hydrolysis, separated by 
chromatographic techniques or by dialysis, depend-
ing on the MW of the remaining degraded molecule, 
and then analyzed by chromatographic methods or 
even GC–MS. Also, the exocyclic chain of terminal 
Galf could be selectively oxidized by periodate under 
mild conditions, and upon reduction with NaBH

4
 

converted to arabinofuranose, which may be identified 
after acid hydrolysis by GC–MS. Application of these 
methods is exemplified in the report on the determin
ation of the structure of glycolipids of P. brasilien-
sis [65]. Information on the substitution position of the 
galactofuranosyl linkages is provided by methylation 
analysis [74].
NMR has also been useful for the identification of 
Galf units in oligosaccharides. 1H NMR spectra usu-
ally show deshielded anomeric signals for Galf units, 
compared with those of pyranosic units. Particularly 
useful is the 13C NMR spectroscopy because the fura-
nosyl ring has a specific signal pattern, easily distin-
guishable from the pyranosyl analog. For β-Galf units, 
signals corresponding to the anomeric carbon, and 
C-2 and C-4 resonate significantly deshielded in com-
parison with pyranosic signals. In addition, α-Galf 
has also a particular pattern. Advances in NMR spec-
troscopy have facilitated the characterization of oligo

saccharides. Thus, bidimensional techniques allow not 
only the identification of the monosaccharides and 
their anomeric configuration but also to stablish the 
position of substitution and sequences [35,39,75].

Chemically synthesized oligosaccharides of 
antigenic glycans
The use of chemically synthesized oligosaccharides of 
defined structure avoids the disadvantages of glycans 
obtained from natural sources, such as, the difficulty 
of isolating and purificating sufficient quantities, and 
problems associated with their heterogeneity. Also, 
more specificity may be achieved by using a neoan-
tigen. Following this line, a biotinylated tetrasaccha-
ride with Galf(β1→5)Galf linkages was synthesized 
(Table 3A; n = 2). This synthetic antigen was recog-
nized by the monoclonal antibody EB-A2 against 
Aspergillus [76].

In Table 3, the structures of Galf-containing oligo-
saccharides, which have been chemically synthesized 
and are part of fungal glycans, are shown. Most efforts 
have been directed to the synthesis of oligosaccharides 
containing Galf(β1→5)Galf, the antigenic unit in 
Aspergillus [26,77,78,79,80,81,82].

Several chemical syntheses for the Galf(β1→6)Galf 
disaccharide have been reported (Table 3B) [26,83,84,85]. 
This is the minimal epitope in Fusarium glycans  [31]. 
A hexasaccharide with the same linkages was synth
esized  [86]. The two trisaccharides containing both 
types of linkages (Table 3C & D) were prepared [26,87,88] 
because of their importance as repeating units in the 
arabinogalactan of M. tuberculosis  [93], but is also 
present in a polysaccharide extracted from Neosarto-
rya  [36]. Galf is frequently linked to mannose form-
ing galactomannans. The synthesis of the disaccharide 
Galf(β1→3)Man (Table 3E)  [89,90,91] and the more 
complex heterotetrasaccharide (Figure 1F)  [92], which 
was indicated as the minimal epitope in the mycelial 
cell wall of A. fumigatus [35], were described.

The synthesis of Galf-containing molecules 
requires the efficient preparation of derivatives of 

Structure Study Ref.
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O
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HO
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O
O

HO

O
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O
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R = CH3 Fu et al. [92]

Table 3. Structures with galactofuranose units found in fungal glycans which have been chemically synthesized 
(cont.).
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D-Gal in the furanosic configuration, free from the 
pyranosic forms, as precursors of Galf units in the 
target molecules. Furthermore, efficient glycosylation 
methodologies and the consequent availability of 
galactofuranosyl donors as well as conveniently sub-
stituted derivatives as glycosyl acceptors are required 
(Figure 1) [27,94,95,96].

Most sugars lead by conventional methods to 
pyranosic derivatives, which are thermodynamically 
more stable. However, in conditions under which 
other monosaccharides lead mainly to pyranosic 
products, large proportions of galactofuranosic deriv-
atives can be obtained from galactose. This is the case 
of the traditional Fisher glycosylation, which yields 
a mixture of furanosic and pyranosic glycosides that 
must be separated by chromatography [27]. An exam-
ple may be found in the preparation of the pentenyl 
galactofuranosides which were used as precursors in 
glycosylation reactions [97].

The peracylated derivatives are commonly used 
as precursors, particularly penta-O-benzoyl-Galf 
(BzGalf ) that may be obtained as crystalline 
products, in one step, from galactose [98]. Glycosyl-
ation of BzGalf promoted by a Lewis acid affords the 
β-galactofuranosides, as a result of anchimeric assis-
tance. In Figure 2, an example for the synthesis of 
the natural disaccharides Galf (β1→5)Galf   [83] and 
Galf (β1→6)Galf  [78] is shown.

One of the most popular glycosylation proce-
dures is the trichloroacetimidate method [99], which 
is compatible with acid-sensitive acceptors and was 
used first for the synthesis of Galf (β1→3)GlcNAc 
[100]. As this is an area of active research, several 
more methods have been designed and extensively 
reviewed  [26,95,96]. The synthetic oligosaccharides 
could be precursors for artificial antigens to be used 
for diagnosis [101] or for the construction of synthetic 
vaccines [102,103].

Immunologic detection of Galf-containing 
molecules
A monoclonal antibody, which recognized 
Galf (β1→5)Galf epitopes was produced by immuniz-
ing rats with an extract of A. fumigatus mycelia. The 
antibody called EB-A2 also detected the GM of other 
Aspergillus species, using an ELISA assay  [104,105]. It 
was commercialized as Platelia™ Aspergillus ELISA 
(Bio-Rad Laboratories and Sanofi Diagnostics, CA, 
USA). The specificity and sensitivity of the assay 
were reviewed  [106]. Multivalent gold nanoparticles 
carrying Galf were recognized by this antibody [107]. 
The presence of GM in circulation depends on the 
manifestation of the disease. For instance, negative 
results are commonly obtained for the detection of 
GM in sera of allergic bronchopulmonary aspergill
osis. Reviews on diagnosis of aspergillosis have been 
published  [108,109,110]. Apparently, this is the only 
commercialized test based on detection of Galf. It 
was shown that EB-A2 detects GM in supernatants 
of several Fusarium species [111,112]. However, Wiede-
mann et al. described a novel monoclonal antibody, 
AB 135–8, which recognizes Galf in Fusarium but as 
part of a different antigen [31]. In fact, the structural 
unit Galfβ(1→6)Galf, was characterized in a poly-
saccharide extracted from Fusarium [75] but it was not 
reported in Aspergillus (Table 1). The same antigenic 
disaccharide was found in Malassezia galactoman-
nans, which did not react with the EB-A2 antibody 
against A. fumigatus, but apparently was not tested 
with AB 135–8 against Fusarium. Antibodies against 
M. furfur did not react with galactomannans of 
A. fumigatus, T. rubrum or F. pedrosoi, confirming 
the presence of a different linkage for the Galf units, 
but apparently these were not tested with AB 135–8 
against Fusarium [40].

The Platelia test was negative for yeast and mold 
forms of S. schenckii [113]. Controversial results were 
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reported for Cryptococcus neoformans. While a posi-
tive test was reported for a patient with C. menin-
gitis  [114], a later report revealed no cross-reaction 
with culture extracts, purified polysaccharides, 
clinical specimens and specimens from animals fol-
lowing experimental infection  [115]. These results 
are explained by the composition of the cell wall of 
C. neoformans. Although galactoxylomannan is a 
constituent of the cell wall, and D-Gal is its major 
component, this sugar is mainly in the pyranosic 
configuration, with only 2% tentatively assigned to 
Galf, considering a small peak in the 13C NMR spec-
trum [116], which is as explained above, is not enough 
to guarantee the configuration. More recently, it was 
demonstrated that Galf is not required for growth or 
virulence of C. neoformans [117].

In P. brasiliensis, Galf is the immunodominant unit 
in a glycosylinositolphosphoryl ceramide [43], however, 
the main diagnostic antigen is the glycoprotein gp43. 
Studies of N-deglycosylation gave rise to a protein of 
38 kDa, which strongly reacted with sera from patients 
with PCM  [118]. Also, recombinant gp43 isoforms as 
N-mannosylated proteins were expressed in the yeast 
Pichia pastoris and showed good specificity for detec-
tion of PCM in sera  [119]. These results indicate the 
presence of other epitopes in gp43, although the cause 
of cross-reactivity with sera from patients with other 
mycoses would be the terminal Galf  [118120]. Immuno
diagnosis of gp43 in PCM using a latex test was 
recently described [73].

In the previous examples, Galf is present in the 
galactomannans in the β-anomeric configuration. A 
few examples of α-Galf may be seen in Table 2. The 
antigenic properties of α-Galf were apparently not 
described. As expected, isolates from H. capsulatum 
in yeast and mold phases were not recognized by the 
monoclonal antibody against the Aspergillus GM [113]. 
However, it was reported that some patients with dis-

seminated histoplasmosis gave positive results with this 
antibody [121].

Conclusion & future perspective
Galf is an antigenic structural unit in many infec-
tious fungi, which is not biosynthesized by humans. 
The preparation of synthetic neoglycoconjugates 
containing β-Galf for the diagnosis of some extended 
mycoses as aspergillosis is a field worth to explore. 
The synthetic antigens would help define the struc-
ture of the corresponding epitopes and in a more 
ambitious project they could be the starting line for 
the synthesis of carbohydrate-based vaccines [102]. In 
reviewing the natural structures, it is challenging to 
understand why in some dimorphic fungi the com-
monly found β-Galf changes the anomeric configu-
ration to α-Galf, in the transition between phases. 
The α-Galf transferases necessary for the construc-
tion of the linkages in some galactomannans have 
not yet been described.
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Executive summary

Biomarkers
•	 Diagnosis of fungal infections and identification of the causative agent is important for the selection of an 

accurate therapy. The use of biomarkers may provide faster results and complement culture and histological 
methods.

Carbohydrate-based markers
•	 Galactofuranose (Galf) is an attractive candidate as a biomarker for diagnosis of infections, since it is the 

antigenic epitope in glycans of several pathogenic fungi and is not biosynthesized by mammals. An ELISA 
assay based on the EB-A2 antibody that detects the Galf in the GM of Aspergillus is commercialized. The 
different linkages of the Galf to other sugars in the fungal carbohydrates may provide specificity, a line of 
research that needs further studies.

Chemically synthesized oligosaccharides of antigenic glycans
•	 The impressive advance achieved in the chemical synthesis of the natural oligosaccharides encourages their 

use as specific antigens.
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