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ABSTRACT

Although DNA microarrays are powerful tools for
profiling gene expression, the dynamic range and the
sheer number of signals produced require efficient
procedures for distinguishing false positive results
(noise) from changes in expression that are ‘real’
(independently reproducible). We have developed an
approach to filter noise from datasets generated
when high density oligonucleotide-based micro-
arrays are used to compare two distinct RNA popula-
tions. First, we performed comparisons between
chips hybridized with cRNAs prepared from an iden-
tical starting RNA population; an ‘Increase’ or
‘Decrease’ call in such a comparison was defined as
a false positive. Plotting the average distribution of
these false positive signal intensities across 18 such
comparisons of nine independent RNA preparations
allowed us to develop a series of noise-filtering look-
up tables (LUTs). Using a database of 70 separate
chip-to-chip comparisons between distinct RNA
preparations prepared by different workers at
different sites and at different times, we show that the
LUTs can be used to predict the likelihood that a
given transcript called Increased or Decreased in one
comparison will again be called Increased or
Decreased in a replicate comparison. Evidence is
presented that this LUT-based scoring system
provides greater predictive value for reproducible
microarray results than imposition of arbitrary fold-
change thresholds and accurately predicts which
microarray-identified changes will be validated by
independent assays such as quantitative real-time
PCR.

INTRODUCTION

The use of high-density DNA microarrays for profiling expres-
sion of thousands of genes in tissues and cells has increased
dramatically in the few years since their introduction. The
broad-based, comprehensive profiling of cellular mRNA tran-
scripts made possible by microarrays can provide unantici-
pated insights about the molecular mechanisms that regulate

cellular function. However, the impressive quantity of data
microarrays provide is associated with a substantial amount of
noise (1). To illustrate, a microarray-based comparison of two
RNA samples prepared prior to and after an experimental
manipulation often yields a list of a few hundred mRNAs
whose levels appear to be changed. Given that microarrays
often monitor up to 10 000 genes at a time, a false positive rate
as low as 1% will result in 100 false difference calls (2). Thus,
noise can often rival signal in large-scale gene expression
profiling. It is clearly not practical to confirm every change
identified in a microarray-based comparison with independent
and time-consuming assays. Systematic approaches to distin-
guish false positives (noise) from changes that are real (inde-
pendently reproducible) are needed (3–5).

The most common strategy for decreasing noise in micro-
array-based comparisons is to establish an arbitrary global
threshold for fold-change (typically 2–3-fold). An individual
mRNA species has to equal or exceed this mandated level of
difference between control and experimental RNA prepara-
tions before it is considered to have undergone a change that is
likely to be true (6,7). There are several limitations to this
approach, not least of which is that applying an arbitrary cut-
off may mask biologically significant changes (see Discussion
for more details) (3,4).

In this report, we have used datasets generated with commer-
cially available high-density oligonucleotide-based micro-
arrays as an experimental model to develop a new systematic,
empirically-based approach for identifying noise. There were
several reasons why a commercial, oligonucleotide-based
microarray was selected. First, these GeneChip microarrays
(www.affymetrix.com) are used widely for a variety of exper-
imental applications (8). Secondly, they are mass-produced
and contain a robust series of controls designed to minimize
chip-to-chip variation. Briefly, each gene is represented by at
least one probe set that is composed of multiple (∼20) oligo
probe pairs. Each probe pair consists of two 25 base sequences,
one perfectly complementary to a portion of a given transcript,
the other with all but the 13th base matching the transcript.
Signal produced by hybridization to a mismatch probe is
considered noise, and serves as an internal control for the
signal produced by the corresponding perfect match probe.
Finally, GeneChips are supported by a proprietary software
package that provides extensive information about each probe
set.

We have analyzed this probe-set specific information, which
comes in the form of several parameters, to devise a method for
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algorithmically defining noise in any given single GeneChip
array. We show that our approach to noise filtration not only
permits an experiment-wide assessment of overall data quality,
but also allows the user to score and rank individual genes
according to their likelihood of manifesting changes that are
reproducible.

MATERIALS AND METHODS

Preparation of cRNA targets and hybridization

Total cellular RNA was isolated (RNeasy kit, Qiagen) from
five different mouse tissues under several different conditions:
(i) distal small intestine of germ-free adult NMRI mice prior
to, or 10 days after, colonization with Bacteroides thetaio-
taomicron, Escherichia coli or a complete intestinal microflora
(9); (ii) liver from germ-free mice prior to and 10 days after
intestinal colonization with a conventional gut microflora;
(iii) age-matched stomachs from (a) adult germ-free FVB/N
mice, (b) germ-free FVB/N transgenic mice that express the
human histoblood group antigen, Lewisb, in gastric pit cells
(10) and (c) germ-free transgenic mice that have an engineered
ablation of their acid-producing gastric parietal cells (11);
(iv) stomachs of age-matched mice belonging to groups (a)–(c)
but 8 weeks after colonization with a clinical isolate of the
human gastric pathogen Helicobacter pylori; (v) gastric pari-
etal cell-enriched and -depleted fractions generated by lectin
panning of stomach mucosa harvested from: conventionally-
raised normal FVB/N mice, ex-germ-free normal FVB/N mice
2 and 8 weeks after H.pylori infection, and age-matched germ-
free controls (J.Mills, A.J.Syder, C.V.Hong, F.Raaii, and
J.I.Gordon, manuscript in preparation); and (vi) the bladders of
adult female C57Bl6 mice before and 1.5 or 3.5 h after infection

with either a clinical isolate of uropathogenic E.coli that
expresses the FimH adhesin (NU14) or a FimH-negative
isogenic strain (NU14-1) (12).

‘Analytic duplicates’ were prepared as follows. Equal
amounts of RNA, prepared from each mouse in a given control
or treatment group were pooled. Each single RNA pool
was then divided into two equal portions (30 µg/portion).
Biotinylated cRNA targets were prepared independently from
each 30 µg sample, using the protocol outlined previously (13).
‘Biological duplicates’ represented two independently isolated
pools of RNA from two different groups of animals. Each of
the two groups had been subjected to the same control or
experimental conditions.

All cRNAs were hybridized to Affymetrix Mu11KsubA and
Mu11KsubB chip sets according to protocols recommended by
Affymetrix. Data from each chip were scaled so that the
overall fluorescence intensity across each chip was equivalent
(average target intensity set at 150).

RESULTS

Initial definition of noise: comparing microarrays probed
with duplicate cRNA targets

During the analytic phase of a microarray comparison
(i.e. after a biological sample has been collected), noise can be
generated at multiple steps including chip manufacture,
preparation of cRNAs for microarray interrogation, hybridiza-
tion or washing steps, and global normalization of overall
signal intensities between chips. In this report, we have taken
an empirical approach to defining noise to ensure that each of
the potential analytic noise-generating steps would be considered.

Figure 1. Summary of scheme used to generate duplicate Same–Same comparisons. (A) outline of origins of RNA preparations used for Same–Same comparisons.
(B) Flow chart of how RNAs, generated from mice of given genetic background were processed to produce duplicate GeneChip hybridizations. (C) Schemes used
to generate Same–Same comparisons for A chips. One of the approaches employed to compare biologically distinct RNAs is also illustrated (labeled ‘true differ-
ent’). Identical approaches were used for B chip comparisons.
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Numerous GeneChip datasets were generated, using the
scheme in Figure 1. The datasets comprise the work of two
different investigators, with RNA processing and chip hybrid-
ization occurring at two independent laboratories at different
times. The tissue source was the gastrointestinal tracts of
inbred strains of mice having four distinct genetic back-
grounds. For each genetic background, ‘treated’ RNA was
prepared from groups of mice (n = 5/group) that had been
subjected to a physiological or pathophysiological manipula-
tion. RNA was also isolated from a group of unmanipulated
control animals.

Figure 1A lists the nine treated and untreated RNAs from the
four different inbred strains. Equal-size aliquots from each
RNA were used as templates to independently prepare two
‘target’ cRNAs (target refers to the cRNA produced from an
RNA sample; ‘probe’ refers to the oligonucleotides repre-
sented in the microarray). Each of the duplicate cRNA targets
was then hybridized to the two chips (A and B) that together
comprise the Affymetrix Mu11K GeneChip set (Fig. 1B). The
combined A and B chips represent ∼11 000 mouse genes from
Unigene Build 4.

After hybridizing the two cRNAs generated from the same
RNA sample to two separate A chips, the expression profiles
generated from the two A chips were compared to one another.
These comparisons were termed ‘Same–Same’ (Fig. 1C). A
similar approach was used for the B chips. Differences in gene
expression identified from such Same–Same comparisons
were defined as noise (see below). Thus, the nine RNAs
yielded a bank of 18 interrogated A chips and nine A chip
Same–Same comparisons, plus a similar number of interro-
gated B chips and B chip Same–Same comparisons.

Same–Same comparisons among the 36 chips were
performed using standard protocols for GeneChips. Briefly,
GeneChip software was used to perform a scaling operation
that (i) measured the intensity of each signal generated by each
probe set on the chip and (ii) defined an average value across
the entire array. A global scaling was then performed by the
software so that all probe set signal intensities, across the chip,
were adjusted to produce a new (scaled) average intensity for
the chip that was shared by all other scaled chips. In theory,
once chips in a Same–Same comparison are scaled to a
common average intensity, the signal produced by any indi-
vidual gene transcript on one chip can be directly compared to
the intensity of that transcript on a ‘Partner’ chip. Because the
scaling procedure itself could be an important generator of
noise (see below), we standardized the nomenclature and
procedure for all Same–Same comparisons. The chip with the
higher scaling factor was always designated as the ‘Baseline’
chip. The higher scaling means that the Baseline chip had a
lower intensity on average than its Partner chip and, therefore,
was multiplied by a higher scaling factor to reach the arbi-
trarily selected, chip-wide average intensity value.

As noted in the Introduction, GeneChips contain multiple
internally controlled probes for each gene [the typical probe set
for a gene consists of 20 perfect match (PM) oligos and 20
corresponding single base mismatch (MM) oligos]. For a given
transcript in any given chip-to-chip comparison, GeneChip
software generates a ‘Difference call’ parameter (Increase or
Decrease) based on a consideration of signal specificity as well
as intensity. In other words, the call is based on an evaluation
of the intensities of the signals generated from each PM oligo

versus each MM oligo on one chip relative to the corre-
sponding PM versus MM signal intensities on the other chip. If
cRNA target generation and hybridization/washing steps were
reproducible, and if the scaling procedure did not introduce
any artifacts, then there should be no differences in expression
levels detected by any of the probe sets represented on the two
chips in a Same–Same comparison. Accordingly, transcripts
called Increased in a Same–Same comparison represent
instances where the signal on the higher intensity (Partner)
chip is falsely elevated. Decrease calls represent instances
where the signal on the lower intensity (Baseline) chip has
been falsely elevated. We defined all Increase or Decrease
calls in a Same–Same comparison as false positives.

Table 1 presents results obtained from the nine Same–Same
comparisons involving 18 chip pairs. For example, when the
duplicate cRNAs generated from RNA preparation 1 (Fig. 1A
and B, Genetic Background #1, untreated RNA), were
compared using two A chips, 870 of the 6508 probe sets
yielded Difference calls (overall false positive rate = 13%). Of

Table 1. Summary of Difference calls in all nine Same–Same comparisons

Each starting RNA was split in two and applied to two separate A chips and
two separate B chips (see Fig. 1). The two A chips were compared to each
other, and the total number of Difference calls determined. The same was
done for the B chips. ‘Total’, total Difference calls, irrespective of fold-
change; ‘% False positive’, total Same–Same Difference calls expressed as a
percentage of total probe sets on chip; ‘SFR’, the ratio of the Baseline chip
scaling factor divided by that of its Partner (a measure of the relative differ-
ence in overall intensity between the two Same–Same chips).

RNA
prep #

Total Increased Decreased % False
positive

SFR ≥2-fold difference

Total % False
positive

A chip

1 870 799 71 13 10.12 447 7

2 787 717 70 12 5.21 322 5

3 1028 955 73 16 6.04 477 7

4 853 779 74 13 4.81 382 6

5 359 291 68 6 1.86 158 2

6 159 16 143 2 1.04 86 1

7 87 41 46 1 1.2 33 1

8 1282 1206 76 20 3.01 636 10

9 1437 1308 129 22 2.34 832 13

B chip

1 293 182 111 4 1.47 167 3

2 323 166 157 5 1.7 182 3

3 247 153 94 4 1.6 120 2

4 97 71 26 1 12.7 44 1

5 141 104 37 2 2.32 61 1

6 209 175 34 3 4.71 115 2

7 71 41 30 1 1.15 41 1

8 204 117 87 3 2.27 107 2

9 713 431 282 11 1.39 485 7
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these, 799 were called Increased when the Partner chip with
overall higher intensity signals from its probe sets was
compared to the Baseline chip with overall lower intensity
signals. [The scaling factor ratio (SFR) shown in Table 1 refers
to the ratio of the Baseline chip’s scaling factor to its Partner’s
scaling factor.] Decrease calls in the Same–Same comparison
involving RNA preparation 1 were produced by 71 probe sets.

Same–Same comparisons involving the nine RNAs and the
A and B chips resulted in a mean false positive percentage of 8
± 7% (range = <1–22%; see Table 1). The mean false positive
percentage was reduced to 4 ± 3% when the criterion of ≥2-
fold change was imposed on transcripts called Increased or
Decreased. Even with this added stringency, 7/9 Same–Same
comparisons involving the A chips, and 6/9 of Same–Same
comparisons involving the B chips produced >100 false posi-
tive changes (Table 1).

Identifying the source of false positives

In 16/18 of the Same–Same comparisons, the vast majority of
the difference calls were Increases. Because the lower intensity
chip was designated as the Baseline, this finding suggested that
scaling may have introduced artifacts that contributed to noise
in a non-random way.

For transcripts whose intensities are within the range of
detection on both chips, scaling should work well to stand-
ardize chip-to-chip variation, and such transcripts should be
read as ‘No Change’ in Same–Same comparisons (e.g. Fig. 2
lines colored teal). However, we reasoned that with chip-wide
scaling, two types of errors are bound to affect probe sets (tran-
scripts) at the extremes of intensities. First, without scaling,
many transcripts that are just over the threshold of detection on

the higher intensity Partner chip will be below the level of
detection on the low intensity Baseline chip. No amount of
scaling can reliably increase transcript intensities that are
below detection (multiplying zero by any number still gives
zero; e.g. Fig. 2, red lines). Thus, in a Same–Same comparison,
these pairs of near-threshold transcripts will be falsely called
Increased over Baseline after scaling (designated low signal
intensity scaling factor errors). Secondly, genes that are above
the linear range of signal intensity on the higher intensity chip
may still be near this threshold on the lower intensity chip.
Multiplying such transcripts by a scaling factor will result in
falsely elevated Baseline intensities and, thus, false Decrease
calls (designated high signal intensity scaling factor errors;
Fig. 2, dark blue line). Note that array-wide scaling is not
specific to Affymetrix GeneChips. Any scaled comparison of
microarrays with genes at or outside the linear range of detec-
tion will be prone to these two types of error (i.e. as SFRs
increase, the number of false positives should also rise).

An initial approach for distinguishing true positives from
noise

To develop strategies for minimizing false positive calls, we
first characterized (i) a dataset of all transcripts called
Increased in a Same–Same comparison and (ii) a dataset of all
Increased calls produced from comparison of two biologically
distinct RNAs. The characterization involved plotting a tran-
script’s intensity on the scaled Baseline chip as a function of its
intensity on the scaled Partner chip (intensity is defined by
GeneChip software as the ‘Average Difference’ for all PM
versus MM oligos across the probe set recognizing a given
transcript).

Figure 2. Predicted effects of global scaling on Difference calls. Each line connects signal intensities of corresponding probe sets in a pair of chips used for a
Same–Same comparison. Different colors represent different consequences of global scaling. Signal intensity is expressed in arbitrary units to allow comparison
of the left and right panels. For the purposes of illustration, prior to scaling, the average signal intensity of the Baseline chip was set at 2-fold lower than its Partner
chip. The average intensity of the Partner chip was set at the designated scaling target intensity. Thus, after scaling, the intensity values of all of the probe sets on
the Baseline chip rise 2-fold, while the values on the Partner chip do not change.
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Figure 3 presents an example of such a scatter plot
comparing two datasets: one representing Increased calls from a
Same–Same A chip comparison obtained from RNA preparation
1; the other representing Increased calls from a comparison of
biologically distinct RNAs (Fig. 1C, a ‘true different’ compar-
ison). Figure 3 shows that the transcripts called Increased in
the Same–Same comparison generally have lower intensities
on the Partner chip than do the transcripts called Increased in
the comparison of the biologically distinct RNA preparations.
Moreover, the Same–Same transcripts called Increased cluster
near relatively low Baseline chip intensity values (<250; low
signal intensity scaling factor errors would be predicted to
contribute to this clustering at low Baseline chip intensity
values). These findings were not unique to the Same–Same
dataset shown in Figure 3: similar results were obtained with
all the other Same–Same datasets (i.e. from RNA preparations
2–9; data not shown).

Given the apparent non-random distribution of noise in these
plots, we proceeded to standardize the process of differenti-
ating Same–Same comparisons from comparisons of two
biologically distinct RNAs. To do so, a grid was generated that
subdivided the entire range of Baseline chip and Partner chip
intensities. We first considered the cohort of all Increased calls
in a given Same–Same comparison. Baseline chip transcript
intensity was plotted on the x-axis of the grid: intensities were
divided into 22 arbitrarily defined groupings that together
encompassed the full range of possible Baseline intensity
values. Partner chip intensities were plotted on the z-axis of the
grid, with values collated into ≤8 arbitrarily defined groupings.
[To systematize division of Partner chip intensities into these
groups, the entire range of these intensities was first assigned
values of 0–53 based on the following scheme. After Partner
chips were subjected to global scaling, Partner chip intensity
values ≤0 were redefined as having a value of 0 (Affymetrix
software uses the Average Difference between all perfect
match and mismatch probe pairs across a probe set to deter-
mine probe set/transcript intensity; thus, negative intensities
are possible). For Partner chip probe set intensities ≥0, values

were redefined in increments of 50 (i.e. 1–50 = 1, 51–100 = 2)
up to values of 1000 (951–1000 = 20). The same approach was
used for values of 1001–2000, but the increment was 100 (e.g.
a Partner chip intensity of 1950 was re-assigned 30). From
2001–4000, the increment for grouping was 200 (intensity of
3650 = 39). From 4001–8800, the increment was 400 (e.g.
5301 = 44). All Partner intensities >8800 were redefined as 53.
The iterative nature of this scheme permitted rapid conversion
of each Partner chip probe set intensity value (from the Gene-
Chip software Average Difference parameter) to the redefined
value with a short series of simple ‘For...Next’ loops in the
Excel macro language, Visual Basic for Applications (VBA).
Bins were created using Baseline chip intensity groupings and
combinations of the redefined Partner chip values. For
example, for the 0–50 Baseline chip intensity grouping (one of
the most common), eight Partner chip groupings were used.
Partner chip group 1 (representing the lowest possible Partner
chip intensities in that Baseline grouping) included all Partner
chip intensities with redefined values of ≤1. Partner chip group
2 contained redefined Partner chip intensities of 2. Groups 3, 4
and 5 contained redefined intensities of 3, 4 and 5, respec-
tively. Group 6 included redefined Partner chip intensities
values of 6 and 7, group 7 contained redefined values of 8 and
9, while group 8 included all redefined values ≥10.] The y-axis
of the grid was used to plot Increase calls at each x–z coordinate as
a fraction of the total Increase calls represented on the whole
grid. The histogram in Figure 4A represents the mean distribu-
tion of all Increase calls obtained for each of the nine A chip
Same–Same comparisons. Figure 4C shows the corresponding
plot for the B chip Same–Same comparisons. Figure 4B and D
provide analogous compiled data for comparisons of several
sets of biologically distinct RNAs.

The grids presented in Figure 4A–D allowed us to differentiate
Increase calls in Same–Same comparisons from those gener-
ated in comparisons of biologically distinct RNAs (i.e. false
positives from true positives). The most obvious feature
emerging from the Same–Same comparisons is that Increase
calls cluster overwhelmingly at low intensity values, whereas
Increase calls from the comparisons of biologically distinct
RNAs distribute over a wide range of intensities (e.g. compare
in Fig. 4C and D).

These distinctions are not unique to Increase calls. Figure 4E–H
plot Decrease calls generated from the Same–Same compari-
sons and from comparisons of biologically different RNAs.
Decrease calls in the Same–Same comparisons cluster at the
extremes of Baseline chip intensity values (Fig. 4E and G). As
discussed above, we predicted that there should be a clustering
of false Decrease calls with high intensity values (see high
intensity signal scaling factor error defined in Fig. 2). On the
other hand, the clustering of false Decrease calls at low inten-
sity values cannot be simply explained by noise generated
from scaling factor differences. Rather, the results indicate
variation in the signal emanating from probe sets recognizing
low abundance transcripts. These variations can occur in either
direction, although they should, on average, favor the higher
intensity chip and produce false Increase calls (low intensity
signal scaling error).

Unlike the Same–Same comparisons, Figure 4F and H show
that Decrease calls in comparisons of biologically distinct
RNAs distribute over a wide range, rather than being clustered
at one or both extremes of Baseline intensity values. The

Figure 3. Distribution of signals produced from a single Same–Same compar-
ison compared to signals produced from a comparison of two biologically dis-
tinct RNAs. Data represent probe sets that gave an Increase call on A chips.
Signal intensity for a probe set represented on the scaled Baseline chip is plot-
ted as a function of the corresponding intensity of the probe set represented on
the scaled Partner chip.
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breadth of the distribution of these Decrease calls is similar to
the breadth documented with Increase calls for the comparisons
of biologically distinct RNAs (compare Fig. 4B and D with F
and H).

Creating look-up tables for filtering noise

Using the results obtained from the Same–Same distributions,
we devised a system for ranking individual transcripts with
respect to their likelihood of exhibiting reproducible difference
calls in replicate chip experiments. The process of creating this
system is illustrated by the two types of matrices produced
from the Same–Same comparison shown in Figure 4A. The
first type of matrix (Fig. 5A) assigned a score of 0–3 for each
grid coordinate (bin) in the entire x–z grid of Figure 4A. All
bins containing data were ranked from the most common (i.e.
containing the greatest fraction of false positive calls in the
Same–Same comparison) to the least common. Starting from
the most common bin and proceeding down the list, we
grouped the bins that in aggregate contained 50% of the total
difference calls. Each member of this group was assigned a
score of zero. Members of the next group of bins in the ranked
list that, together, contained an additional 33% of the total
Difference calls were each assigned a score of 1. Members of
the next group of bins that contained an additional 12% of the
calls were each given a score of 2, while the remaining bins in
the ranked list were each assigned a score of 3. By this defini-
tion, a score of 3 represents the bins that are the least likely to
contain false positive Difference calls (the entire set of bins
with scores of 3 contain, in aggregate, only 5% of the total
Difference calls in Same–Same comparisons).

This first type of matrix represents a global survey: it scores
bins irrespective of their position on the grid. The limitation is
that there is considerable overlap between false positives and
true positives at low Baseline chip intensity values (see Fig. 4A
and B; plus row marked 0–50 in Fig. 5A). However, we noted
that Partner chip intensity values of false positives were gener-
ally lower than those of true positives (compare Fig. 4A and
B). Thus, in the second type of matrix (Fig. 5B), the ranking of
bins was not grid-wide. Rather, it was limited to a considera-
tion of all bins only in a given row of x–z coordinates. For each
x value (representing a single range of Baseline chip intensi-
ties), we surveyed all the corresponding Partner chip intensities
(represented as coordinates along the z-axis). Starting from the
bin representing the lowest range of Partner chip intensity
values in the given row, we grouped as many bins as necessary
to accumulate 50% of the total difference calls in that row.
Each of these bins was given a score of 0. Bins with the next
33% of false positive difference calls in the given row formed
the next group and were each assigned a score of 1. Bins
containing the next 12% were given a score of 2. Members of
the last group of bins, containing the remaining 5% of differ-
ence calls in that row, were scored as 3.

The score from each bin, in each of the two matrices, was
then summed so that every bin on the grid received a combined
score of 0 to 6 (Fig. 5C). The same procedures, applied to the
other grids in Figure 4 containing Same–Same Increase calls
from the B chip as well as Same–Same Decrease calls from the
A and B chips, produced the results depicted in Figure 5D–F.

Figure 5C–F were treated as look-up tables (LUT). Figure 6
provides statistical evidence that these LUTs can be used to
differentiate signal from noise in individual comparisons. For
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Figure 4. (Previous page and above) Three-dimensional plots of Baseline chip and Partner chip intensities for a Same–Same comparison and for a comparison of
biologically distinct RNAs. Probe sets producing Increase or Decrease calls on A or B chips were surveyed. Baseline chip intensity is plotted on the x-axis. Inten-
sities have been subdivided into 22 groups that are delineated by the ranges of intensity values shown. Partner chip intensities (z-axis) are also based on actual
intensity values. However, these intensity values are not plotted directly. For ease of display, a sliding scale of Partner chip intensity groupings was employed and
expressed as integers (1–8). This scheme satisfies the need for higher resolution of Partner chip intensity values at low Baseline chip intensities (see Fig. 3). It also
accommodates the fact that, in general, Partner chip intensity values increase with respect to Baseline chip intensity values (i.e. the slope of the distribution of
Partner chip versus Baseline chip intensity values is not zero, see text). The y-axis plots the number of Increase or Decrease calls at each x–z coordinate as a fraction
of the total Increase or Decrease calls represented on the whole grid. [Simple VBA code was used to generate the summed distributions depicted. All A chip Same–
Same comparisons were loaded into a single Excel workbook (one comparison per worksheet). The same was done for B chip Same–Same comparisons. Each
comparison (i.e. each worksheet) contained a mix of all Increase and Decrease calls from that Same–Same comparison. The VBA program looped through each
gene (probe set) in each sheet in a workbook. At each probe set, the program would call a procedure to map the Partner intensity (Average Difference) to one of
the 0–53 categories described above. It would then call a procedure to determine where that category fell within the corresponding Baseline intensity grouping
(Baseline intensity is calculated by the code as the Average Difference for the given probe set minus the Average Difference Change). The program would store
this gene’s Partner–Baseline coordinates (bin location within the grid) within an array variable. At the end of the comparison (bottom of the worksheet), it would
sum where all the probe sets distributed across the grid, and output this information in tabular form (expressed as a fraction of total Difference calls in that com-
parison) in a separate workbook and worksheet. Once all the comparisons/worksheets had been distributed across the grid, the program calls a procedure to average
the fractional distribution within each individual bin in each individual comparison across the total number of comparisons. Note that for the B chip Same–Same
comparisons, two of the nine RNAs were excluded from the final tallies: RNA sample 6, because the overall number of Present calls on one of the chips in the
duplicate set was more than two standard deviations lower than the mean for all other B chips analyzed; and RNA sample 4, because one of the chips in the pair
had the lowest percent Present calls and a SFR nearly three standard deviations higher for the mean for all of the B chips. The same VBA code was used to generate
the plots of results obtained from comparisons of biologically distinct RNAs.]
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example, in Figure 6A, the LUT derived from the false Increase
calls from all nine Same–Same comparisons generated from 18 A
chips (Fig. 5C) is used to survey each of the nine Same–Same
comparisons. The data shown as stippled bars were compiled
using the following procedure: (i) the Baseline chip and
Partner chip intensity values for each probe set called
Increased in a given Same–Same A chip comparison were
noted and a score of 0–6 assigned by finding the location of
this set of values on the LUT; (ii) the fractional representation
of each of the seven possible scores (0–6) among all assigned
scores was determined for the given Same–Same comparison;
and (iii) the mean and standard deviation of the fractional
representation of each score was determined across all nine
Same–Same comparisons. The stippled bars in Figure 6A
demonstrate that the majority (62%) of the false positive calls
(noise) are represented by probe sets scored as 0 and 1. In
contrast, only 9% are, in aggregate, scored 4–6.

As further proof that the scores can be considered as meas-
urements of noise, we analyzed the Increase calls from
multiple A chip comparisons of biologically distinct RNAs
using steps (i)–(iii). The results are shown as filled bars in
Figure 6A. Here, the majority (52%) of probe sets called
Increased are scored 4–6, while a minority (24%) are scored 0–1.
The differences in distributions of scores between the Same–
Same comparisons and the comparisons of biologically distinct
RNAs are statistically significant (P <0.0001–0.02 for scores
4–6; P <10–5, P < 0.001 for scores 0 and 1).

Similar significant differences were noted when we
compared Increase calls on the B chip (Fig. 6C) and Decrease

calls on the A and B chips (Fig. 6B and D, respectively). Based
on these findings, we concluded that the LUT scores can be
used as indicators of noise: the higher the score, the less likely
that a given Difference call is a false positive.

LUTs identify noise systematically and do not simply point
to poor performing probe sets

The Mu11K chip set is based on the outdated UniGene Build 4.
Thus, it likely contains a small cohort of probe sets that, in
retrospect, will prove to be poorly designed. One explanation
for the efficacy of the LUT system is that it consistently iden-
tifies and filters this cohort of presumed unreliable probe sets.
Therefore, we attempted to identify whether specific faulty
probe sets were responsible for the noise in Same–Same
comparisons. If this were the case, one would expect that the
distribution of probe sets identified as false positives would be
skewed, with certain probe sets showing up at disproportion-
ately high frequency. On the other hand, if the false positives
are the result of systematic errors, such as those defined in
Figure 2, one would expect that there would be no consistency
in the individual probe sets giving false positive results from
comparison to comparison. Figure 7 establishes that the distri-
bution of probe sets giving rise to false positive results in either
A or B chip Same–Same comparisons is very similar to what
would be predicted based on chance alone.

The LUT system is designed to stratify all probe sets called
Increased or Decreased in a given comparison. However, in
addition to using certain arbitrary fold-change requirements,
many investigators discard all changes where both Partner and

Figure 5. Generation of LUTs for defining noise. (A–C) Steps used in the production of the LUT that represents A chip probe sets called Increased in all Same–
Same comparisons. The scores assigned to each bin in (A) and (B) were summed to produce the LUT in (C). (D–F) Other LUTs, analogous to the one shown in
(C), for Increase and Decrease calls from all Same–Same comparisons of A and B chips.
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Baseline probe sets are called ‘Absent’ by GeneChip software.
Such probe sets almost always receive low LUT scores.
However, they constitute on average only 10% of the false
positive Increase or Decrease calls in Same–Same compari-
sons (data not shown) and thus represent only a minor portion
of the ∼90% noise reduction achieved by imposing a threshold
LUT score of ≥4 (Fig. 6).

Our LUT-based noise filtration is based in part on several
microarray datasets that had high false positive rates (up to
22%; see Table 1). Despite the broad range of SFRs among
these Same–Same comparisons, there was little variability in
the LUT score distributions (Fig. 6). In other words, a LUT
threshold score ≥4 eliminates ∼90% of noise from Same–Same
comparisons with high SFRs (relatively greater noise), and
∼90% of noise from datasets with relatively lower SFRs.

Further evidence of the value of the LUT-based scoring
system for filtering noise

To be generally useful, the LUT scoring system should be able
to predict the reliability of results from individual probe sets in
individual comparisons, independent of the laboratory where
the studies are performed or the tissue surveyed. Therefore, we
collected every duplicated Mu11K comparison to which we
had access. This database of 70 chip-to-chip comparisons was
compiled from five separate series of experiments, conducted
by four investigators, in two different countries, with targets
prepared and hybridized by six different technicians at seven
different times over a period of 14 months (Table 2). The

RNAs studied were prepared from four different mouse
organs, as well as from a purified gastric epithelial cell lineage
and from a mixture of epithelial cells depleted of that lineage.
Experiments were duplicated either by (i) preparing two sepa-
rate targets from the same original RNA (‘analytic duplicates’)
or (ii) performing experiments on tissues from two groups of
identically treated animals resulting in two RNA pools and two
sets of targets (‘biological duplicates’).

To determine how accurately LUT scores predict whether a
given Increase or Decrease call will be duplicated, we consid-
ered each of the 22 773 Difference calls made in the 70 chip-
to-chip comparisons (Table 2). Each Difference call for each
probe set was scored using the relevant LUT. We then asked
which of the Difference calls in each of the scoring categories
were replicated in the duplicate comparison. Replication was
defined as a probe set that was called different, in the same
direction (Increase or Decrease), in both experiments, irrespec-
tive of the two LUT scores. Figure 8 demonstrates that on
average, only 16 ± 4% of probe sets with LUT scores of 0 give
rise to reproducible differences in duplicate comparisons.
Reproducibility rises progressively with increasing LUT score.
A score of 6 predicts replication in 71 ± 5% of the cases. The
percentage replication of genes with LUT scores of ≥3 is
significantly higher than the overall percentage of probe sets
that show duplicated differences (Fig. 8). In contrast, probe
sets receiving LUT scores of 0 and 1 have significantly worse
predictive value than the overall chance of duplication (Fig. 8).
The predictive value of the LUT system is remarkably

Figure 6. Evidence that LUTs can be used to differentiate signal from noise in individual chip comparisons. (A) The mean fractional representations (± SE) of
LUT scores for probe sets called Increased in nine individual A chip Same–Same comparisons are plotted as stippled bars. The mean fractional representation
(± SE) of LUT scores for probe sets called Increased in multiple duplicate A chip comparisons of biologically distinct RNAs are shown as solid bars. An asterisk
indicates that the differences between the Same–Same comparisons and the comparisons of biologically distinct RNAs are statistically significant for that score
(P <0.05 as defined by unpaired Student’s t-test; 1-tailed for scores of 0 and 1 and 4–6; 2-tailed for scores of 2 and 3). (B–D) Plots analogous to those shown in
(A), computed with each of the other LUTs.
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consistent from comparison to comparison. In 69 of the 70
chip-to-chip comparisons, Difference calls with LUT scores
>3 were more predictive of replication than those with scores
of <3 (data not shown).

Fold-change is used almost universally to stratify microarray
results. Therefore, we employed the same methods described
above to analyze the efficacy of using fold-change to predict
reproducibility in the 70 chip-to-chip comparison database
(Table 3). The analysis demonstrated that probe sets with
higher fold-change have a greater chance of being replicated.
For example, a single tailed, paired Student’s t-test reveals that
≥2-fold change has higher predictive value than imposing no
fold-change threshold at all (P <0.009). Imposing a 10-fold
change increases the odds of replication to 61 ± 5%, although

on average only 8 ± 2% of probe sets in the dataset were
changed by ≥10-fold.

Table 3 shows the effectiveness of fold-change relative to
LUT score. Interestingly, a LUT score of 6 confers greater
predictive value even than the biologically stringent require-
ment of 10-fold change (P <0.004).

The utility of the LUT system was examined further by
applying it to data collected and previously published by labo-
ratories unconnected to our own. We found only two published
studies that provided the minimal criteria for applying the LUT
system: i.e. replicate comparisons with the global scaling
factor stated, Baseline and Partner chip intensities and
Increase/Decrease calls for each probe set. In the first of these
studies, Nadler et al. (14) used six sets of Mu11K chips to
profile gene expression in adipose tissue harvested from obese
versus lean mice belonging to three different genetic back-
grounds. Forty-five ± 1% of called differences between lean
and obese in one group were duplicated in at least one other

Figure 7. The distribution of individual probe sets giving false positive
Increase or Decrease calls is nearly random across all Same–Same compari-
sons. The number of different Same–Same comparisons in which each, indi-
vidual probe set appeared as a false positive was tabulated. The fractional
distribution of probe set recurrence frequency was then plotted for the A chip
Same–Same comparisons (left panel, stippled bars), and for the B chip Same–
Sames (right panel, stippled bars). The distribution of probe set recurrence that
would be expected from chance alone is plotted as solid bars.

Table 2. Characteristics of database used to test LUT scoring efficacy

‘SE’, Göteborg, Sweden; ‘StL’, St Louis, MO, USA. Different technicians are denoted by letters. Numbers are used to represent the different time periods when
experiments were performed. The total number of A and B chips used was nearly identical (n = 48 and 43, respectively).

Time period Investigator RNA prep/hyb.
technician

Location Mouse tissue Type of
duplication

Number of
comparisons

Number of
chips

Number of
difference calls

1 L.V.H. A,B,C SE Small intestine Analytic 6 10 2379

1,2 J.C.M. A,B,C,D,E SE, StL Cells Biological 10 20 7131

3,4 A.J.S D,E,F StL Stomach Analytic 17 20 5115

5,6 I.M.U. D,E,F StL Bladder Biological 17 17 4632

7 L.V.H. A,F StL Liver, small intestine Analytic 20 24 3516

Totals 4 6 2 5 2 70 91 22773

Figure 8. LUTs can be used to predict the reproducibility of individual probe
set Difference calls. LUTs were applied to datasets obtained from 70 chip-to-
chip comparisons of biologically distinct RNA preparations. All probe sets
called Increased or Decreased in individual A or B chip comparisons were con-
sidered. The LUT score is plotted as a function of the percentage (mean ±
SEM) of probe sets that had Difference calls confirmed in duplicate compari-
sons. Asterisks indicate a statistically significant difference (P <0.05, by paired
Student’s t-test) in the percentage duplication for that LUT score, relative to
the overall rate of duplication.
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group (Fig. 9). Our analysis indicated that in these three
comparisons of lean versus obese mice, LUT scores of ≥3
predict better than chance whether a given probe set called
Changed in one comparison will also be called Changed in one
of the two other comparisons (P <0.04–0.05). LUTs of <2
identify probe sets that are less likely than chance alone to
manifest reproducible changes (P <0.005 for probe sets with
LUT scores of 1 compared to overall percentage duplication,
P <0.004 for LUT scores of 0). Similar results were obtained
by analyzing a study by Webb et al. (15). In this case, duplicate
comparisons of gene expression were performed in pancreatic
β cells incubated in high versus low glucose. A close relative
of the Mu11K chip set (Mu6500 GeneChips) was employed
for this work. Figure 9 shows that the pattern of LUT predicta-
bility is very similar to that seen in the study of Nadler et al.
(14) and in the comparisons plotted in Figure 8.

Utility of the LUTs for predicting biologically verifiable
changes

Microarray users commonly select a subset of genes identified
as changed in microarray datasets and independently verify the
results by real-time quantitative RT–PCR (qRT–PCR), or
other methods. To date, we have performed follow-up qRT–
PCR studies of 77 genes with LUT scores of 5 or 6. Changes in
expression were verified in 94%.

Three published reports also provided us with minimal
criteria for retrospective LUT scoring and with the results of

independent verification of GeneChip data. The study by
Webb et al. (15) is described above. Lee et al. (16) used the
Mu6500 chip set to analyze changes in gene expression in the
aging mouse brain. Soukas et al. (17) employed the same chips
to examine the effects of leptin treatment on gene expression in
white adipose tissue. We grouped the data from these three
studies into two categories: (i) GeneChip Difference calls
verified as ≥2-fold by follow-up qRT–PCR or northern blot;
(ii) Difference calls not found to be changed on subsequent
assay, or found to be ≤2-fold. Table 4 shows that the average
LUT score of verified genes in each of the three studies was:
4.9 ± 0.4, 4.0 ± 1.2 and 4.8 ± 0.8. On the other hand, genes that
exhibited no change, or minimal change on follow-up
assay had significantly lower (P <0.007) LUT scores,
averaging 2.6 ± 1.1 and 1.1 ± 0.1 [Soukas et al. (17) reported
no non-validated genes]. The difference between validated and
non-validated changes would not necessarily have been
evident based on the fold-change reported by GeneChip soft-
ware. Table 4 provides examples: the verified gene L16894
(1.9-fold change, but with LUT score of 4.75); the non-
validated gene W83038 (13-fold change in one comparison but
with a corresponding LUT score of 2.5); and the non-validated
gene X64837 (3.1- and 5-fold changes but with LUTs of 1.5
and 1.5). In addition, the average fold-change of non-verified
genes in the Webb et al. study (15) was 6.4 ± 3.8, which is even
higher than the average fold-change of genes with independently
validated changes (5.3 ± 2.2).

Table 3. Analysis of fold-change versus LUT scores for predicting replication

‘% Replicated’, percentage (± SEM) of probe sets at or above the indicated
fold-change threshold that are changed in the same direction in replicate com-
parisons (calculated using the approach outlined for LUT scores in Figs 8 and
9). ‘% Total duplicated genes’, percentage (mean) (± SEM) of total probe sets
with duplicated Increased or Decreased calls in a given comparison that have
the indicated fold-change or higher. ‘None’, overall percentage of probe sets
changed in one comparison that were also changed in the duplicate compari-
son, regardless of fold-change; ‘LUT’, the LUT score in the column forecasts
replication better than fold-change in the row; ‘FC’, the indicated fold-change
has a statistically significant higher percent replication than the LUT score in
the column; ‘NS’, no significant difference between LUT and fold-change
(P >0.05).

Fold-change
threshold

% Replicated % Total
duplicated
genes

LUT score

0 1 2 3 4 5 6

None 31 ± 6 100 FC FC NS LUT LUT LUT LUT

2-fold 36 ± 6 67 ± 2 FC FC FC NS LUT LUT LUT

3-fold 42 ± 5 34 ± 4 FC FC FC NS NS LUT LUT

4-fold 48 ± 4 22 ± 4 FC FC FC NS NS NS LUT

5-fold 53 ± 4 17 ± 3 FC FC FC NS NS NS LUT

6-fold 56 ± 5 13 ± 3 FC FC FC FC NS NS LUT

7-fold 57 ± 5 11 ± 3 FC FC FC FC NS NS LUT

8-fold 57 ± 5 10 ± 3 FC FC FC FC NS NS LUT

9-fold 60 ± 5 9 ± 2 FC FC FC FC FC NS LUT

10-fold 61 ± 5 8 ± 2 FC FC FC FC FC NS LUT

Figure 9. LUTs predict reproducibility when applied to previously published
replicate GeneChip comparisons. Publicly available datasets from a triplicate
comparison by Nadler et al. (14) (solid bars, expressed ± SE) and a duplicate
comparison by Webb et al. (15) (stippled bars) are plotted as in Figure 8, with
the following exceptions. First, the duplicate comparison depicted was
performed with Mu6500, rather than the closely related Mu11K GeneChips.
To account for the different microarrays, Mu6500 probe sets were scored using
the standard LUTs for the Mu11K A chip, then for the B chip. The mean of the
two was taken as the final LUT score. Secondly, although the triplicate
comparison used the Mu11K GeneChip, data were not available about which
chip in each comparison had the higher global intensity. Therefore, LUT scores
were calculated in both directions: i.e. one as if one chip had the low scaling
factor and then as if the other chip had the lower scaling factor. The mean of
the two values was then taken. Finally, asterisks designate significant differ-
ences (by paired Student’s t-test) only for the experiment performed in triplicate.
‘Overall’ = overall percentage (regardless of LUT score) of probe sets with
Increased or Decreased calls in one experiment that were replicated.
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DISCUSSION

We have developed one approach for filtering noise generated
when a popular commercial high density, oligonucleotide-based
microarray is used to compare two distinct RNA populations.
The approach is based on the following strategy. Duplicate
cRNAs were prepared from a single sample of gut RNA, and
independently hybridized to a pair of microarrays, each
containing probe sets representing >6000 mouse genes.
Transcripts called Increased or Decreased in a comparison of
the paired chips were considered false positives, and defined
as noise. A database, developed from multiple such compari-
sons, allowed us to define the distribution of false positives
on paired chips. This distribution was expressed in the
form of a scoring system that was incorporated into LUTs (see
http://gordonlab.wustl.edu/mills/ to download LUTs and for
software that automates LUT scoring). [GenQuery Engine is
a software package we designed to facilitate annotation of
genes lists obtained from GeneChip comparisons (http://
gordonlab.wustl.edu/mills/). The package culls information
from internal Affymetrix databases as well as from GenBank,
SwissProt, TIGR and Unigene. The scoring component of
GenQuery Engine applies the appropriate LUT described in
this report to each probe set in individual GeneChip compari-
sons. This component has the same underlying architecture as
the software used to generate Figure 4.] Using a database of 70
chip-to-chip comparisons of biologically distinct RNAs, we
have shown that the LUT-based scoring system can accurately
forecast the likelihood that a given transcript will be called
Increased or Decreased in replicate comparisons. We further
show that this empirically derived, algorithmic approach to
defining noise allows assessment of the overall quality of chip-
to-chip comparisons and can help stratify chip results
according to the likelihood of being verified by independent
assay.

To date, imposing fold-change thresholds has been the most
common method to filter false positives and to stratify micro-
array results. Although this approach is intuitively appealing,
we could not find published reports where its utility has been
systematically assessed. In the current study, we use our data-
base of 70 chip-to-chip comparisons to show that probe sets
showing higher fold-changes are indeed more likely to be
replicated. Nonetheless, we believe that the LUT approach
presents a significant improvement over arbitrary fold-change
thresholds. Fold-change is a ratio and, at low intensity values,
is particularly denominator-dependent (18): certain probe sets
can yield high fold-changes because the denominator is at the
lower limits of detectable signal. Furthermore, because fold-
change does not take into account the absolute intensities of
numerator and denominator, it is particularly vulnerable to arti-
facts produced by global scaling of chip datasets. Finally, and
perhaps most importantly, fold-change is a manifestation of a
biological response. Imposing an arbitrary cut-off for fold-
change to mask noise runs the risk of arbitrarily masking
biologically significant information.

Potential applications of the LUT system

The LUT system has proven useful for the two general types of
chip experiments performed in our laboratory. The first type of
experiment involves replicate comparisons of biologically
distinct RNAs. Probe sets found to be changed are stratified

Table 4. High LUT scores correlate with independent verification of chip
results

Three previously published datasets were scored using the LUT system. Gen-
Bank accession numbers for selected genes are shown. Because the Mu6500
GeneChip set was used in all three studies, A and B chip LUT scores were
computed as described in the legend to Figure 9. Results are grouped into
genes verified as having ≥2-fold change in a subsequent qRT–PCR or north-
ern blot assay, and genes with <2-fold changes. ‘ND’, not reported in the
study. ‘MI’ and ‘MD’ denote probe sets called by GeneChip software as Mod-
erate Increase or Moderate Decrease, respectively. The LUT system only
scores probe sets with Increase or Decrease calls.

FC 1 FC 2 Average FC LUT 1 LUT 2 Average
LUT

≥2-fold change

Webb et al. (15)

L19311 3.8 2.8 3.3 5.5 5.5 5.5

W62742 6.9 9.2 8.1 4.8 5 4.9

W53731 3.1 MI 3.1 MI 4.5 4.5

AA036265 3.3 4.8 4.1 4.0 4.75 4.4

M31690 –6.5 –7.6 –7.1 5.0 MD 5.0

Average 5.3 ± 2.2 4.9 ± 0.4

Lee et al. (16)

M88354 5.7 ND 5.7 2.5 ND 2.5

M17440 4.1 ND 4.1 5.5 ND 5.5

K01347 2.3 ND 2.3 3.3 ND 3.3

L16894 1.9 ND 1.9 4.8 ND 4.8

Average 3.5 ± 1.5 4.0 ± 1.2

Soukas et al. (17)

M82831 ∼31.5 ND ∼31.5 6 ND 6.0

X56824 ∼9.8 ND ∼9.8 5 ND 5.0

M33960 8.2 ND 8.2 6 ND 6.0

L39123 ∼5.4 ND ∼5.4 4.5 ND 4.5

U18812 3.2 ND 3.2 4 ND 4.0

L34611 –7.7 ND –7.7 4.5 ND 4.5

X72862 –7.7 ND –7.7 5 ND 5.0

U13705 –6.1 ND –6.1 5.5 ND 5.5

AA145371 –4.5 ND –4.5 4 ND 4.0

D29016 –3.1 ND –3.1 3.5 ND 3.5

Average 8.7 ± 7.9 4.8 ± 0.8

<2-fold change

Webb et al. (15)

J03733 5.2 2.1 3.7 MI MI N/A

X64837 5 3.1 4.1 1.5 1.5 1.5

W83038 9.7 13 11.4 4.8 2.5 3.6

Average 6.4 ± 3.8 2.6 ± 1.1

Lee et al. (16)

X52886 1.8 ND 1.8 1 ND 1

AA089333 1.7 ND 1.7 1.25 ND 1.3

Average 1.8 ± 0.0 1.1 ± 0.1
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based on their LUT scores, which are then used as criteria for
selecting genes for independent validation. As reported above,
changes in expression of 77 genes with LUT scores of ≥5 were
independently validated by real-time qRT–PCR in 94% of
cases. In contrast, 31% of genes with LUT scores <2 failed
qRT–PCR validation, even though a change in expression had
been documented in duplicate GeneChip comparisons. Retro-
spective analysis of published duplicate GeneChip compari-
sons by Webb et al. (15) (Table 4) further demonstrate that
LUT-based stratification can be useful, after replicate compar-
isons, as a criterion for selecting genes for further study.

In the second type of experiment commonly performed in
our laboratory, replicates are not done. The prototype is a
multi-point timecourse study. Here LUT scores can be used as
a cost-cutting surrogate for replication. In fact, the LUT system
should be useful as an initial stringency ‘rheostat’ in any type
of multi-comparison experiment where various clustering
algorithms (19,20) might later be applied to detect underlying
patterns of gene expression. Finally, the experimental
approach to defining noise described in this report, and its
empiric definition in the form of LUTs, should be applicable to
other high-density oligonucleotide arrays representing genes
from other species.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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