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Introduction

The three Ras genes (K-Ras, H-Ras, and N-Ras) regulate diverse
cellular functions through multiple pathways and are also com-
monly mutated in human cancer to yield constitutively active small
GTPases. Activating Ras mutations are found in approximately
25% of human tumors, though these three small GTPases are not
mutated at equivalent frequencies in cancer. A total of 85% of Ras-
driven cancers have activating mutations in K-Ras, while N-Ras and
H-Ras are mutated in 12% and 3%, respectively, of these cancers
(http://cancer.sanger.ac.uk/cosmic). Ras mutations are most com-
mon in pancreatic ductal adenocarcinomas (95%), colorectal ade-
nocarcinomas (52%), and lung adenocarcinomas (31%). Intensive
analysis revealed that multiple effectors with Ras-binding domains
(or Ras association domains) were capable of interacting with the
Ras effector loop and mediating its biological effects'. Observa-
tions that activating Ras and Raf mutations are typically mutually
exclusive’™, and that only components of the Raf/MEK/ERK path-
way rescue growth in “Rasless” mouse embryo fibroblasts (MEFs),
suggest that the interaction of Ras with Raf, and the activation of
MEK1/2 and ERK1/2, may be most critical to Ras-driven cancers.

Kinase Suppressor of Ras 1 (KSR1) interacts with Raf, MEK,
and ERK*", mediates ERK activation and signaling in a dose-
dependent fashion (discussed in greater detail below), and is
essential for the transformation of MEFs by oncogenic Ras®".
These discoveries revealed a critical role played by this molecular
scaffold in transformation and tumorigenesis. However, KSR1~
~ mice are fertile and show inconsequential developmental
alterations'*'*. These observations suggest that KSR1 may play
a prominent role in cancers that are dependent upon Ras and
ERK signaling and that it might be exploited therapeutically with
minimal toxicity to the patient. Here we review the biochemistry
and biology of KSR1 and its paralog, KSR2, and discuss their
potential as therapeutic targets.

The role of KSR proteins in the Raf/MEK/ERK
cascade

A single ksr gene was identified as necessary for the rough-
eye phenotype of activated Ras in Drosophila”. Two ksr genes
(ksrl and ksr2) are expressed in Caenorhabditis elegans'®'" and
mammals®'>""", KSR1 and KSR2 proteins facilitate Raf phospho-
rylation of MEK, leading to increased ERK activation in response
to Ras activation or calcium influx®*'>132'=*_ KSR proteins have
properties expected of molecular scaffolds®'>. As expected of
true scaffolds, increasing KSR1 allows for increased ERK activa-
tion until KSR1 reaches an optimal level. Surprisingly, in MEFs
the level of KSR1 that maximizes ERK activation and signaling
is approximately 12 times the endogenous level of expression.
Further increasing KSR1 causes a decrease in ERK activation
because the cellular concentration of KSR1 exceeds the amount of
scaffold that can coordinate signaling with Raf, MEK, and ERK**.
This suggests that overexpression of KSR1 sequesters individual
components of the MAPK cascade such that they are unable to
interact, which reduces MAPK signaling. However, overexpress-
ing additional individual components of the MAPK pathway can
suppress the inhibitory effects of scaffold excess’. This observa-
tion likely explains why early studies in which ectopic KSR1 was
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overexpressed suggested that KSR1 inhibited Ras-driven
transformation”. Importantly, the level of KSR1 expression that
optimizes ERK activation is the same level that maximizes the
transforming activity of oncogenic Ras and the proliferative effects
of growth factors®.

Phosphorylation sites and determinants of protein—protein inter-
action have been mapped extensively on KSR1 and KSR2 and
have been shown to regulate KSR1 in part through subcellular
localization*'=’. Analysis of these phosphorylation sites and
interactions with effectors and modifiers suggest dynamic regu-
lation of KSRI1 and its scaffold function. Interaction with the
E3 ligase IMP promotes the redistribution of KSR1 to Triton-
resistant punctate structures that sequester KSR1 and impair ERK
activation®*", Phosphorylation of KSR1 on Ser297 and Ser392
(Ser310 and Ser469 in KSR2) by the kinase C-TAK1 (MARK3)
creates a 14-3-3 binding site that anchors KSR1 within this sub-
cellular compartment (Figure [a)'*/%2:283840-2" Rag activation
catalyzes IMP autopolyubiquitylation and proteasomal destruction
(Figure 1b)*. Stimuli that promote IMP degradation also promote
the dephosphorylation of KSR1 at Ser392 by PP2A, which elimi-
nates 14-3-3 binding (Figure 1b)***. Calcineurin dephosphor-
ylates 14-3-3 binding sites on KSR2”. These events promote the
redistribution of KSR1 to the plasma membrane, facilitating the
activation of MEK by Raf (Figure 1c). MEK is bound to KSR1
in the absence of Ras activation®. Though identified as a loss-of-
function mutation on KSR1 in C. elegans'>'**, the mutation of
KSR1 at Cys809 to tyrosine (C809Y) enhances the activation of
ERK in mammalian cells"’. These observations suggest that KSR
proteins may sequester MEK in an inactivated state and present
MEK for phosphorylation by Raf”'**. In this model, MEK does not
need to be in complex with KSR1 to phosphorylate and activate
ERK. However, KSR1 encodes a DEF domain*, which is essen-
tial to KSR1-mediated ERK interaction and critical for compe-
tent signal transduction'***. KSR1 (but not KSR2) also encodes a
caveolin-binding domain*’, which is required for binding to caveo-
lin-1, localization to the plasma membrane, and ERK activation
(Figure lc and 1d)*"**. Another level of KSR regulation exists in
its degradation. Recently, it has been shown that KSR1 is polyu-
biquitinated by praja2, which promotes KSR1 degradation, caus-
ing a decrease in ERK signaling®. Reconciling these observations
implies that KSR1 coordinates a dynamic mechanism that provides
spatial and temporal control of signaling through the Raf/MEK/
ERK kinase cascade.

Regulation of MEK and ERK by KSR and Raf
heterodimers

The dimerization of Raf proteins is an essential step in wild-type
Raf activation. KSR and Raf proteins share homology within the
region required for Raf dimerization, and KSR has been shown
to form heterodimers with Raf, particularly B-Raf****". Based on
modeling, KSR dimerization with Raf induces a conformational
change in KSR that induces the exposure of the MEK activation
loop and facilitates its phosphorylation®. However, the dimeriza-
tion of KSR and Raf orients the Raf protein such that the cata-
Iytic site of Raf is not in close proximity to its phosphorylation
target site on MEK. Therefore, MEK phosphorylation must be
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Figure 1. KSR1 dynamically regulates the Raf/MEK/ERK kinase cascade. (a) KSR1 is constitutively bound to MEK1/2 and IMP. C-TAK1
phosphorylates (yellow circle) KSR1 at Ser392, allowing for 14-3-3 binding and cytoplasmic localization of KSR1. (b) Upon Ras activation
and GTP binding, IMP dissociates from KSR1, binds Ras, autoubiquitylates, and is degraded. PP2A dephosphorylates KSR1 at Ser392,
destroying the 14-3-3 binding site anchoring KSR1. (¢) KSR1 and MEK1/2 translocate to the plasma membrane, where KSR1 interacts with
Raf and MEK1/2 is phosphorylated and activated. (d) MEK1/2 dissociates from KSR1 and ERK1/2 is phosphorylated and associates with
KSR1, facilitating signaling. Cav-1, caveolin-1; C-TAK1, Cdc25C-associated kinase 1; ERK, extracellular signal-regulated protein kinase; GTP,
guanosine triphosphate; IMP, impedes mitogenic signal propagation; KSR1, Kinase Suppressor of Ras 1; MEK, mitogen-activated protein/
extracellular signal-regulated protein kinase kinase; PP2A, protein phosphatase 2.

completed by another Raf protein®**. KSR2 also forms homodim-
ers through a side-to-side interface that is specifically dependent
upon Arg718%. Mutations at this site suppress Ras signaling, sug-
gesting that the dimerization of KSR proteins is required to promote
Ras signaling®. This observation is consistent with results showing
that mutations inhibiting the KSR-Raf heterodimerization decrease
Raf activity™. Additionally, there is potential for KSR1 to directly
activate ERK or BRAF and CRAF if Y552 is phosphorylated, as
the KSR1Y%?P mutant demonstrated this ability’'. The functional
role of KSR homodimers is still incompletely understood, but
the ability of IMP to inhibit MEK activation by Raf has been
suggested to result from IMP-mediated disruption of KSRI1
homodimers and B-Raf/c-Raf heterodimers’”.

Phenotypic effects of KSR1/2 genetic inactivation

Genetic studies in model organisms demonstrate that KSR proteins
promote Ras signaling'*~'". Heterozygous loss of ksr in Drosophila
suppresses Ras®'?V signaling and prevents the rough-eye phenotype
caused by constitutive Ras signaling>*. Similarly, loss-of-function
mutations in ksr/ suppressed the multiple vulva phenotype of acti-
vated Ras in C. elegans”. KSR1 plays a similar role in mammals.
Apart from minor deficits, ksr/7 knockout mice are fertile and

developmentally normal. Ksr/”~ mice have hair follicle defects
similar to the phenotype of egfr’~ mice, supporting the sugges-
tion that these proteins function within the same pathway'>'*>.
As a result of reduced ERK signaling, ksr/”~ mice have a mar-
ginally impaired immunological response®'****. The most pro-
found and translationally significant phenotype of ksrl~- mice is
resistance to Ras-dependent tumor formation. Skin tumor induc-
tion by v-Ha-Ras is lost in ksr/” mice', and mammary tumor
burden is markedly reduced by KSR1 disruption in mice expressing
transgenic polyomavirus Middle T-Antigen'’. These observa-
tions demonstrate that KSR modulates Ras signaling in vivo, but
it is largely dispensable for normal cell survival. The requirement
for KSR1 in Ras-driven tumor formation, but not normal devel-
opment, reveals KSR1 as a potential target for therapeutic
intervention.

In contrast to the mild phenotype of ksr/~~ mice, ksr2”~ mice have
reduced fertility and become spontaneously obese’’. Pathways
regulating adaptive thermogenesis, metabolic rate, and leptin-
sensitive food consumption are implicated in KSR2-dependent
energy balance™". Consistent with observations in the knockout
mice, humans with ksr2 mutations show severe early onset
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obesity®. Ksr2 variants in humans that impair Ras signaling
or inhibit KSR2 interaction with AMPK also disrupt glucose
metabolism and fatty acid oxidation®. Interestingly, KSR2 is
almost exclusively expressed in the brain and pituitary'***. Brain-
specific disruption of KSR2 is sufficient to cause obesity and
glucose intolerance in mice, though it does not perfectly
recapitulate the phenotype of ksr2”~ mice'. These observations
show that KSR2 function in the brain plays a potent role in the
regulation of energy balance.

Structural properties of KSR proteins

KSR1 and KSR2 proteins are highly conserved in invertebrates
and mammals””. KSR proteins are structurally related to Raf
proteins in five conserved areas, CA1-CAS5". CAl is located
on the N-terminus end. It contains 40 amino acids that con-
tribute to B-Raf binding by KSR1 and encode coiled-coil and
sterile-o--motif (SAM) structures that promote KSR1 membrane
association'****! CA2 is a proline-rich region without known
function. A region in KSR2 between CA2 and CA3 is required for
KSR interaction with AMPK, and mutations in this region inhibit
this interaction'”*'*, CA3 is a cysteine-rich region containing an
atypical C1 motif homologous to the cysteine-rich CR1 region
in Raf that also contributes to KSR1 membrane localization’*.
CA3 mediates the membrane localization of KSR by recruiting
phospholipids but does not react to phorbol esters or ceramide
or interact directly with Ras®. CA4 is a serine/threonine-rich
region that mediates interactions with ERK through an FXFP
motif*>. This interaction is not constitutive but requires Ras
activation’**#%¢1% The CAS domain in KSR proteins encodes
a kinase (or pseudokinase) domain highly homologous to Raf
family CR3 kinase domains'>'". Mammalian KSR proteins
contain multiple alterations in amino acids typically required for
catalytic activity including arginine in place of the lysine that
coordinates the gamma phosphate of ATP>°!. Substantial effort
has been exerted to clarify if KSR can or does phosphorylate
cellular substrates and, if so, whether or not this activity contrib-
utes to the downstream effects of KSR*'**#7**. KSR substrates
and the biological relevance of any residual phosphotransferase
activity have yet to be validated.

The CAS region contributes to KSR interaction with MEK in
both quiescent and growth factor-activated cells’' . Amino acid
substitutions within the CAS region that diminish interaction with
MEK also reduce ERK signaling'>~'"*. However, these altera-
tions are within or near the ATP-binding domain and may dis-
rupt ATP binding, potentially affecting interaction with MEK
secondarily. The CAS domain also interacts with Raf, but the
mechanism is incompletely understood®. Thus, there may be
unidentified dynamic interactions between the CAl and CAS
domains of KSR proteins and B-Raf that regulate Raf kinase
activation, MEK phosphorylation, and signal transduction through
the kinase cascade.

KSR proteins as targets for therapy

Given the importance of KSR1 in modulating signaling through
the Raf/MEK/ERK kinase cascade in tumor cells and observations
that ksr/7~ mice develop with only inconsequential phenotypic
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differences, targeting KSR1 or KSR1-dependent signaling path-
ways in Ras-driven cancers may selectively target cancer cells
with reduced toxicity to patients. Supporting this strategy,
RNAIi approaches depleting cancer cells of KSR1 in vitro and
in vivo caused a decrease in tumor growth. Continuous infusion
of phosphorothioate antisense oligonucleotides targeting KSR1
mRNA also caused regression of established tumors and inhibited
metastases without overt toxicity in Ras-driven PANC-1 pancreatic
and A549 non-small-cell lung cancer xenografts®.

Mutations in KSR that suppress signaling by activated Ras are
often adjacent to the ATP-binding pocket'*~"". Furthermore, KSR1
binds ATP, and mutations that prevent that binding impair ERK
activation®’. These observations suggest that manipulation of the
ATP-binding cleft in KSR1 may be therapeutically effective. The
recently discovered small molecule APS-2-79 binds and stabi-
lizes KSR kinase domains in an inactive conformation observed
when the KSR2 kinase domain is bound to MEK1 and ATP*,
interferes with KSR:Raf heterodimerization, and inhibits onco-
genic Ras signaling”. The effect of APS-2-79 was also lost when
KSR was mutated within the active site (A690F) such that KSR
can promote MEK phosphorylation even in the absence of ATP
binding. APS-2-79 modestly decreased cell viability in two Ras-
mutated cancer cell lines (HCT116 and A549) and did not affect
Raf-mutated cancer cells (A375 and SK-MEL-293) but did dem-
onstrate substantial synergy in Ras-mutated cancer cells with
MEK inhibitors, suggesting the potential to target both kinase
and scaffolding components of the Ras signaling pathway in
Ras-dependent cancers™.

The observation that KSR1 expression was required for tumor-
dependent ERK signaling, but not normal development,
suggested the possibility that effectors of KSRI-dependent
signaling pathways in tumor cells might reveal additional
putative targets for cancer therapy that preferentially support
tumor cell growth and viability. A gene expression high-through-
put screen termed Functional Signature Ontology (FUSION) was
developed to detect effectors of KSR1-dependent signaling in
Ras-driven tumors and identify small molecules that can target
those effectors”. Recent results from FUSION detected hits
that mediate KSR1-dependent signals and promote the viability
of human colon tumor cells but have no similar role on non-
transformed human colon epithelial cells®*”". These observations
suggest the existence of multiple effectors that may be used to
support the survival in tumor cells in a manner distinct from
their role in normal tissue. Careful validation of these potential
targets may yield additional therapeutic strategies.

Conclusions

KSR proteins are established as scaffolds for the Raf/MEK/
ERK kinase cascade, though a detailed understanding of KSR-
dependent temporal and spatial control of ERK signaling is still
lacking. The physiology regulated by KSR1 and KSR2 is also
incompletely understood, though disruption of KSR2 in mice and
its mutation in humans show that it plays an important role in
mammalian energy balance. Given the minimal pheno-
type of ksrl~”~ mice, the normal function of KSRI1 is unclear.
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However, KSR1 is demonstrably physiologically important
as ksrl”~ ksr27~ mice do not survive beyond 21 days of age
(Costanzo-Garvey and Lewis, unpublished results), while the sin-
gle gene knockouts survive into adulthood. KSR1 and KSR2 are
primarily expressed in brain, though KSR1 is expressed at lower
levels throughout the body. Thus, the most profound function of
KSR proteins is likely found in the central nervous system. The
obesity phenotype caused by brain-specific knockout of KSR2
demonstrates its potent role in cell non-autonomous regula-
tion of energy balance. However, the role of KSR2 as a scaffold
and its regulation of ERK signaling in support of brain-regu-
lated development and maintenance of metabolism are unknown.
Relevant in vitro cell models that express both KSR1 and KSR2
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will be crucial to further our understanding of the cell biology
controlled by these molecular scaffolds.
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