
© 2001 Oxford University Press Nucleic Acids Research, 2001, Vol. 29, No. 15 e75

Quantitative quality control in microarray image
processing and data acquisition
Xujing Wang*, Soumitra Ghosh and Sun-Wei Guo

Max McGee National Research Center for Juvenile Diabetes, Medical College and Children’s Hospital of Wisconsin,
8701 Watertown Plank Road, Milwaukee, WI 53226, USA

Received April 18, 2001; Revised May 29, 2001; Accepted June 10, 2001

ABSTRACT

A new integrated image analysis package with quanti-
tative quality control schemes is described for cDNA
microarray technology. The package employs an itera-
tive algorithm that utilizes both intensity characteristics
and spatial information of the spots on a microarray
image for signal–background segmentation and
defines five quality scores for each spot to record irreg-
ularities in spot intensity, size and background noise
levels. A composite score qcom is defined based on
these individual scores to give an overall assessment
of spot quality. Using qcom we demonstrate that the
inherent variability in intensity ratio measurements is
closely correlated with spot quality, namely spots with
higher quality give less variable measurements and vice
versa. In addition, gauging data by qcom can improve data
reliability dramatically and efficiently. We further show
that the variability in ratio measurements drops expo-
nentially with increasing qcom and, for the majority of
spots at the high quality end, this improvement is mainly
due to an improvement in correlation between the two
dyes. Based on these studies, we discuss the potential
of quantitative quality control for microarray data and
the possibility of filtering and normalizing microarray
data using a quality metrics-dependent scheme.

INTRODUCTION

Microarray technology, which allows massive parallel
profiling of gene expression in a single hybridization experi-
ment, has recently emerged as a powerful molecular genetic
tool for biomedical research (1–4). In a microarray experiment
two samples of mRNA are labeled with different fluorophores
(usually Cy5 and Cy3) and co-hybridized onto a glass slide on
which up to tens of thousands of clones of cDNA ESTs or
oligos have been immobilized at arrayed positions. The repre-
sentation of individual transcripts in each sample is reflected in
the amount of hybridization to the corresponding clones on the
array, which can be measured by the individual dye intensities
at the clone positions. Ratios of gene abundance are then calcu-
lated and used to detect meaningful differential expression
between the two samples. While a growing body of literature is
focusing on statistical analysis of microarray data (5–7), there
seems to have been scant attention paid to acquiring quality

data. It is crucial for any high throughput technology to have
sufficient quality control for each operation in the study,
especially the data acquisition step. This is particularly true for
microarray studies, since the technology is still evolving and
many researchers are using home-made array chips. Noise and
irregularities of spot shape, size and position are common prob-
lems, especially in large-scale high density microarrays. There-
fore, users need to be able to acquire quality data, to control for
imperfections that happen during printing and hybridization.
Without a good scheme to produce reliable, high quality data, any
complex data mining tools one may use can lead to misleading
results. Indeed, as the adage goes, ‘garbage in, garbage out’.

In this paper we describe an image processing and data
acquisition package called Matarray. The package consists of
the following four major steps: spot detection, signal/back-
ground segmentation, signal intensity determination and
quality determination. It employs a simple algorithm that
utilizes both spatial and intensity information for spot detec-
tion and signal segmentation and the procedure can be iterated
to improve performance. Five quality scores are defined for
each spot on the array according to their size, signal-to-noise
ratio, background uniformity and saturation status. Based on
these individually defined scores, a composite score qcom is
defined for each spot to give an overall assessment of its
quality. We investigate the ratio distribution from replicate
data sets on the same slide, from duplicate slides and from the
same images processed with different image processing pack-
ages and correlate the results with qcom. Through these studies
we demonstrate that the inherent variability in the expression
data is in large part due to spot quality and removing spots with
low qcom can dramatically improve the reliability of data. We
further examine the dependence of data variability on spot
quality and show that an exponential relationship exists
between the variance in ratio measurements and qcom. Although
our results may depend on the specific experimental design,
instruments and techniques, the basic principle and method we
propose in this paper can be applied in general settings.

MATERIALS AND METHODS

Microarray slides used in this paper to demonstrate Matarray
and quality metrics-based ratio analysis were of the following
three designs fabricated in our center.

MAC010. 1600 spots on each slide with a single cDNA clone
(β-actin) being used for printing. mRNAs were extracted from
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skeletal muscle and the sample was split into two, one labeled
with Cy5 and one with Cy3. The two labeled samples were
then mixed and co-hybridized to the same array. In this design
all spots should give the same Cy5 and Cy3 intensity values
and ratio measurements.

MAC030. Two replicates of 1536 spots on each slide, corre-
sponding to 1536 different human clones. mRNAs were
extracted from a melanoma cell line (UACC-903) and the
same split sample co-hybridization was carried out as
described in the above design. In this design the ratio of Cy5 to
Cy3 dye intensities should be the same across all spots while
the individual dye intensities for each spot can be anywhere
within the dynamic range of the scanner.

MAC040. 9216 spots on each slide, corresponding to 9216
different human clones. mRNAs were extracted from a human
myeloid cell line ML1 and line UACC-903, labeled with Cy5
and Cy3, respectively, and co-hybridized to the slides. This
design is in contrast to the last two, where the same sample
target was used in co-hybridization.

All slides were printed using a GMS 417 Arrayer from
Genetic MicroSystems (Woburn, MA, now acquired by
Affymetrix, Santa Clara, CA). The preparation of cDNA
clones and mRNA samples and labeling and hybridization
were carried out using the same protocol as previously
described (8). After hybridization, the slides were scanned
with a ScanArray 5000 (GSI Lumonics, Billerica, MA) and
image files were obtained.

Matarray image processing and data acquisition
procedure

Matarray was developed in Matlab (MathWorks, available at
http://www.mathworks.com/) and exploits a simple algorithm
that combines both intensity and spatial information to carry
out spot detection and signal segmentation. It starts with over-
laying grids on the image with user-provided anchor points and
dimensions. These grids act as a first attempt to locate the
centers of spots. The image is then segmented into spot patches
according to the grids and the patch boundaries are formed by
the mid-point lines between the spot and its nearest neigh-
boring spots (Fig. 1A). The patches define a neighborhood
region for each spot, in which the segmentation of signal from
noise will be performed and local background and signal
values will be calculated. A circle is drawn around each grid
node (the putative spot center) with a user-defined radius large
enough to enclose all possible signal pixels. To improve the
positions of the grids, all pixels outside the circle and inside the
patch are putatively categorized as local background of the
spot and the mean and standard deviation (SD) of the intensity
values are calculated. Pixels inside the circle that have an
intensity value larger than its local background mean + 2 SD
are considered as putative signal pixels and this information is
used to calculate the new spot center. After new centers have
been identified, the circular mask and patch is redefined for
each spot and the local background is re-calculated. This iter-
ative procedure to improve spot detection can be carried out
repeatedly until it gives a satisfactory result and we have found
that the performance improves quickly with each iteration;
usually only two iterations are needed. The final signal pixels
will be defined as those that are inside the circular mask and

have intensity values larger than the local background mean
+ 2 SD, and the signal intensity values of each spot will be
defined as the mean of signal pixels minus that of the local
background. Figure 1B shows a typical cross-sectional pixel
intensity distribution inside a circular mask and demonstrates
the algorithm for data acquisition.

This signal segmentation method utilized both spatial (the spot
is inside the circular mask) and intensity (signal should be higher
than background noise) information. An integrated algorithm like
ours is more accurate than a method purely based on physical
location, such as a fixed cell method, and more robust against
noise than an edge detection method, which only considers the
intensity information. It is a better balance between sensitivity and
specificity than either of the methods used alone. Microarray
researchers have realized the potential of integrating the two
approaches in better classifying signal pixels and in giving more
robust and accurate measurement. Many efforts have been made
in this direction, notably the Mann–Whitney method (9) and the
trimmed measurement method (10). Compared with these
methods our method is conceptually simple and intuitive.
Moreover, the unique extra iterative procedure we designed can
improve spot detection further.

Figure 1. Spot detection and signal acquisition. (A) The image is segmented
into spot patches, grids are overlaid to locate spot centers and circular masks
are defined to separate the signal region from the background region. (B) Signal
acquisition algorithm.
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We have tested our program on a set of high density slides
from MAC040. This design has 9216 spots on each slide, with
the spot-to-spot distance being ∼18 pixels (180 µm) and spot
size being ∼12–14 pixels (120–140 µm) in diameter. We found
by visual inspection that on average the program is able to
locate centers accurately for >99.5% of spots. For those spots
for which the program failed to satisfactorily define their
centers, the majority (>90%) of them are in problematical
regions where even visual determination of spot centers is
difficult. Problems include, for example, a very high noise
level, close proximity to neighboring spots and extremely
irregular spot shapes. Because of the nature of the problematical
regions, we believe that data from these areas are much less
reliable than from others. Therefore, it is more important to
record the problems when querying the quality of data than to
try to laboriously and often unsuccessfully align the grids in
these regions. We will address this issue in more detail in the
following section, when we will define a few parameters to
assess the quality of data acquired from each spot.

RESULTS

Spot quality determination

The reliability of the data is affected by multiple factors,
ranging from problems in array fabrication and hybridization
to image processing. We investigated the following five most
common problems encountered in image processing and
defined a quality score for each: spot size irregularity, signal-
to-noise ratio, local background level and variation and inten-
sity saturation. These five scores were then combined into a
composite quality score to reflect the overall quality of the spot
being assessed.

Size of the spot. Spots with smaller than usual size combined
with high intensity should be penalized, since they are more
likely due to isolated noise than dye incorporation due to
hybridization; spots with an excessively large diameter, on the
other hand, may indicate contaminants in close proximity and/
or that the spot is likely to be too close to its neighbors. Either
can imply that the printing and/or hybridization conditions are
not optimized. We define a quality score for each spot to record
size irregularity as

1

where A is the area of the spot, measured by the number of
signal pixels, A0 is the average spot area and �x� is the absolute
value of x. Notice that the normalization condition is automati-
cally satisfied by the above definition.

Signal-to-noise ratio. The signal-to-noise ratio quantifies how
well one can resolve a true signal from the noise of the system.
Typically the background noise is used for the computation. It
is clear that when the signal-to-noise ratio is low, the intrinsic
variation in the data is high and confidence in the accuracy of
the data is low. Therefore, we define a second quality score for
each dye channel of each spot as

qsig–noise = 1 – [bkgl/(sig + bkgl)] = sig/(sig + bkgl) 2

where sig is the mean intensity level of the spot and bkgl is its
mean local background.

Local background variability. A third quality score is defined
for each dye to reflect the variation in local background noise,
since it is an indicator of contaminants in the area and to some
extent directly affects the accuracy of the data extracted from
signal pixels (our algorithm uses background + 2 SD as the
signal threshold),

qbkgl = f1/CVbkg 3

where CVbkg is the coefficient of variation of the local back-
ground and f1 is a normalization constant that satisfies
max(qbkg1) = 1.

Excessively high local background. Problematical regions on a
microarray slide often have higher than average background
noise and for that reason we define a second quality score for
the local background in each dye channel as

qbkg2 = f2{1 – [bkgl/(bkgl + bkg0)]} 4

where bkg0 is the global average of background noise and f2 is
a normalization constant that satisfies max(qbkg2) = 1.

Saturation in photo intensity detection. Saturation happens
when spot pixel intensity values exceed the detection range of
the photomultiplier tube or the electron detector. It usually
occurs in spots of highly expressed genes or spots that contain
contamination, since it typically results in a strong intensity
value. The saturation issue poses a different problem compared
with the other issues discussed earlier. When irregularities in
spot size or shape happen or when noise is high and variable
one expects the inherent variability in data measurements to be
high and indeed this is true, as we will show in the following
section. On the other hand, when saturation happens, there is
no prior reason for the variability in measurements to be high.
Instead, the measurement distribution is shifted from that when
there is no saturation, especially when the instrument settings
have not been adjusted to give a ratio of 1 for mRNAs of the
same abundance in the two samples (as the quantum yield of
the two dyes are different), and both false positives and false
negatives are likely. In view of this, instead of constructing a
continuous function qsat, we define a threshold of tolerance of
the deviation shift. For spots with a number of saturated pixels
above this threshold, we simply discard them. To determine a
sensible threshold value, we used synthetic spots of Gaussian
shape to assess the effect of saturated pixels on mean or total
pixel intensity. The simulation indicates that when the number
of saturated pixels is small, error is small. For example, when
there is <5% saturated pixels, the error in mean intensity value
is <3%; at 10% saturation, the error is still <8%. However,
when the number of saturated pixels is >10%, the error
increases rapidly. A typical spot on a microarray image has
∼150–250 signal pixels and 10% correspond to ∼20 pixels. We
have decided to use 10% as a cut-off value and define a quality
score qsat for each dye to be

5

This score is defined under the assumption that we use the
mean or total pixel intensity value. Note that the median value
of pixel intensity is less sensitive to variations in the two tails
if the intensity distribution is unimodal and would be less
affected by the saturation problem. In fact, theoretically, if the
number of saturated pixels is <50%, the median pixel intensity

qsize exp
A A0–
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is not affected, and we will use 50% as the cut-off value. Since
mean intensity is less affected by variations in the pixel inten-
sity distribution, which is determined by the amount of cDNA
deposited on each pixel in the spot and is not always unimodal,
we will use the mean for our analysis unless otherwise speci-
fied and use equation 5 for qsat.

For the last four quality scores defined for both dye channels
a geometric mean will be taken as the corresponding overall
quality score for that factor, namely

6

Composite quality score qcom. To give an overall assessment of
the spot quality one may design a function to reflect the magni-
tude of each type of problem, by giving each individual quality
score an appropriate weight. For simplicity as well as for the
fact that the true weights are unknown, we have for now
defined the composite quality score as

qcom = (qsize × qsig–noise × qbkg1 × qbkg2)¼ × qsat 7a
or

7b

qsat is treated differently from the other four quality scores
because of its dichotomous nature.

Data reliability and spot quality

The above quality scores are constructed to gauge the quality
and reliability of the data we acquired from each spot on a
microarray image. Therefore, by using the quality score we can
assign a measure of confidence to the data. In this section we
will investigate the relationship between data reliability and
the spot quality scores through the following approaches.

Variation in ratio measurement versus quality scores.
According to the experimental design of MAC010 and
MAC030 the ratio of Cy5 to Cy3 dye intensities should be
uniform across the whole slide, although for slides from
MAC030 the intensity values from different spots can be of
any value. These slides served as good model systems to inves-
tigate data variability versus quality scores. Figure 2 shows

scatter plots between (log-transformed) intensity ratios and
spot quality scores qsize, qsig–noise, qbkg1 and qbkg2 for a typical
MAC030 slide. Evidently, although there are differences in the
detailed characteristics of the relationship between ratio and
individual quality scores, the general trend is the same, i.e. the
ratios derived from spots of high quality scores fall into a much
tighter distribution as compared with spots of low quality
scores. This suggests that the variability in ratios is due prima-
rily to the variability in spot quality. We did not show a corre-
lation with qsat because of its dichotomous format and because,
as discussed above, we expected saturation to cause deviations
of measurement distributions from the true one rather than to
contribute significantly to data variability.

Figure 3 shows the variation in intensity ratio values as a
function of the composite quality score for the same slide as
used in Figure 2. Clearly qcom correlates remarkably well with
the variability in ratio measurements. Ratios from spots with
high qcom are much less variable than spots with low qcom. The
results suggest that qcom can be used as a good measure of vari-
ability in ratio measurements.

Consistency of results from replicates and duplicates is corre-
lated with qcom. We had multiple slides from each design and
slides from MAC030 had two replicate sets of spots on each.
We used these slides to investigate the consistency of results
from duplicates/replicates and to see whether more consistent
results can be achieved by removing bad spots as judged by
their low qcom. Figure 4A plots the ratio of ratio measurements
from two duplicate MAC040 slides against the geometric
mean of qcom between them. It is clear that for spots of high
quality in both duplicates the measurements are very
consistent, whilst when spot quality is low in one or both dupli-
cates, the measurements can differ enormously. To quantify
this observation further, we calculated Pearson correlation
coefficients between log-transformed ratio measurements from
the two duplicates using different cut-off values of qcom, and
give the results in Figure 4B. Obviously, discarding poor
quality spots greatly improves data consistency between the
two duplicates. For example, the correlation between the two

qi qi Cy5, qi Cy3,×=

qcom
qsize q sig noise– qbkg1 qbkg2×××( )

1
4⁄

if saturated pixels 10%<

0 if saturated pixels 10%≥,�
�
�

=

Figure 2. The correlation between variability in intensity ratio measurements
and individual quality scores.

Figure 3. The variability in intensity ratio measurements is correlated with qcom.



PAGE 5 OF 8 Nucleic Acids Research, 2001, Vol. 29, No. 15 e75

whole sets of duplicates was very low (<0.1), with almost no
difference from two random sets of 9216 data points; however,
if we discard spots with qcom < 0.3, the correlation coefficient
quickly increases to 0.88, and if we only retain spots with qcom
> 0.5 it increases further to 0.94. Similar results have been
found for data from replicates on the same slide.

Consistency of results from different image processing
programs. We compared Matarray with two commercially
available packages, ImaGene (BioDiscovery, Los Angeles,
CA) and Array Vision (Imaging Research, Ontario, Canada).
We found that in general the three packages give fairly
consistent results. For example, Figure 5A gives a scatter plot
of ratio measurements using ImaGene versus that using
Matarray for a slide from MAC030. Clearly, for a majority of
the spots the correlation between the two packages is very
good. There are some spots that yield inconsistent results and
we envisage that these outliers are mostly spots of poor quality.

This is indeed true, as one can see from Figure 5B, where the
10% of spots with the lowest qcom have been removed.

Different image processing algorithms should give the same
result for an image of good quality. However, when there is
significant noise or irregularities in the image, the results can
be rather different. To illustrate and quantify this assertion
further, we calculated Pearson correlation coefficients between
the log-transformed ratio measurements obtained using the
three packages, applying different cut-off values for qcom. The
results for a MAC030 chip are given in Figure 6. This figure
shows that the correlation between different packages can be
quite low if we include all spots on the slide. However, when
we remove poor quality spots, the correlation dramatically
improves. We found that for spots with a quality score >0.85,
the correlation coefficients are usually >0.9 among the three
packages for all slides tested from the three designs.

Dependence of data variability on qcom. We have investigated
the characteristics of ratio measurements distribution versus
qcom in more detail. To do so we used slides from MAC040, for
its high density (9216 clones on each) and more realistic

Figure 4. Consistency of results between two duplicate MAC040 slides and
dependence on spot quality. (A) The ratio of the intensity ratio measurements
from slide 1 versus that from slide 2 is plotted against the geometric mean of
qcom over two duplicates. (B) The Pearson correlation coefficient between the
two duplicates is plotted against cut-off values of qcom.

Figure 5. Intensity ratio measurements obtained using Imagene compared with
those obtained using Matarray for the cases when (A) all spots were included
and (B) 10% of spots with the lowest qcom were discarded.
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experimental design (samples from two different origins were
used in each hybridization). We found that distribution of the
log-transformed ratio measurements is essentially bell-shaped
at all quality levels, with the spread of distribution dependent
on qcom. We further quantified this relationship by calculating
the variance of the distribution and correlating it with the
quality score. For each set of 9216 spots we sort the data
according to qcom and divide them into 18 bins each with 500
spots (discarding the lowest 216 spots, which always have qcom
< 0.01). Mean qcom and variance σ2 of the log(ratio) distribu-
tion were calculated for each bin and the results for a typical
slide are given in Figure 7A. The relationship between the
variance σ2 and qcom seems to resemble an exponential decay.
This was confirmed in an empirical fitting to the log-trans-
formed variance log(σ2 – σ2

0), where σ2
0 is the asymptope of

σ2 at qtotal→1, as shown in Figure 7B. The straight line is the
least- square linear fit to the data. It is clear that dependence of
log(σ2 – σ2

0) on qcom is linear. For the data shown in Figure 7B,
the coefficient of determination r2 of the linear regression is
98% and P < 0.0001. For all slides (seven) tested in general
(six of seven) the r2 values were >90%, indicating that the
linear model fits the data very well and that indeed the variance
in ratio measurement drops off exponentially as qcom increases.
One slide where there is no significant correlation between
variation and spot quality score does not fit this linear model.
Under visual inspection this slide seems to have an excessively
high background with several visible stains of regular
geometrical shape. These characteristics suggest that non-
random factors are affecting the quality of this slide and special
care other than the processes we described should be taken.

Note that log(ratio) = log(Cy5) – log(Cy3) and its variance
var[log(ratio)] is related to the variance of individual dyes by

var[log(ratio)] = var[log(Cy5)] + var[log(Cy3)]
– 2 covar[log(Cy5), log(Cy3)] 8

In Figure 8A we give the plot of variances var[log(ratio)],
var[log(Cy5)] and var[log(Cy3)] and covariance
covar[log(Cy5), log(Cy3)] as functions of qcom for the slide
shown in Figure 7. From this figure one can see that for the
first few data points with qcom < 0.4 the improvement in
ratio measurement is mainly due to an improvement in the

measurement of individual dyes. However, for spots with qcom
> 0.4, the variances in the individual dye intensities do not
change much with increasing qcom and the drop in
var[log(ratio)] seems to be mainly due to an increase in
covar[log(Cy5), log(Cy3)]. These data points correspond to the
top 7000 spots (76%) in quality. Remember that the behavior
of the correlation coefficient between the two dyes
covar[log(Cy5), log(Cy3)]/ is largely
determined by the behavior of covar[log(Cy5), log(Cy3)] when
both var[log(Cy5)] and var[log(Cy3)] are constants. Therefore,
for the majority of spots that are not in the extreme low quality
region the improvement in correlation between the two dyes is
more significant than the improvement in variability of the indi-
vidual dye intensities as spot quality improves and the exponential
decay of var[log(ratio)] with increasing qcom is largely due to the
contribution from the improvement in correlation between the two
dyes. We have calculated the Pearson correlation coefficient
between the two dyes, transformed it by log(1 – correlation
coefficient) and give the plot in Figure 8B. Clearly, except for the
first data point, the transformed correlation coefficient essen-
tially depends linearly on qcom, indicating that the correlation

Figure 6. Consistency of results between different microarray image process-
ing packages also depend on spot quality score.

Figure 7. Variance σ2 of the log-transformed ratio depends on qcom. (A) σ2

decreases with increasing qcom. (B) Log-transformed σ2 depends linearly on qcom.

var[log(Cy5)] var[log(Cy3)]×
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between the two individual intensities does indeed improve expo-
nentially with increasing qcom.

DISCUSSION

Microarray technology is still in its infancy, and making good
chips and getting consistent results are an art. Many factors
affect the quality of the final image data: quality of clone
preparation, printing, quality of RNA, and hybridization, to
name a few. Each and every step in obtaining the final image
data can affect the final quality of the image data, causing vari-
ations in intensity readings and, in turn, the ratios. Using a
composite quality score qcom we have demonstrated in this
paper that the variability in intensity ratios used extensively by
all microarray investigators is due in large part to the quality of
image spots and that qcom acts as a good measure of data vari-
ability and can be utilized to gauge and remove inferior spots
in order to improve data reliability. In addition, we have found
that the variability in intensity ratios decreases exponentially
with increasing qcom, further indicating that the variability can
indeed be substantially reduced by choosing quality spots.

Given the imperfections that are routinely encountered in
making cDNA chips, the aforementioned results immediately
suggest the necessity of quality evaluation of each and every
spot in a microarray slide. Without this quantitative quality
check, any sophisticated data analytical method will not yield
the intended results.

Our study has also shown that the consistency between
duplicate/replicate data sets depends closely on spot quality.
Data from high quality spots are highly consistent across repli-
cates/duplicates whilst that from poor quality spots can be
totally irrelevant. This result is both important and intuitive
and we think it may help to explain a phenomenon of micro-
array technology that has troubled many scientists. Many
reports have shown that the correlation between replicates on
the same slide or between duplicate slides is not ideal (11). To
overcome this problem, some choose to add different clones
rather than replicates if there is extra space on a slide (12);
others suggest that adequate numbers of replicates and dupli-
cates should be made to reduce false positives (11,13). We
have shown that poor correlations between replicates and
duplicates are mostly caused by spots of poor quality and,
therefore, it is crucial to be able to tell them apart from spots of
good quality before one makes use of replicate and duplicate
data and performs complex analyses. Without an objective and
quantitative scheme to do so, comparing replicates/duplicates
could lead to spurious results.

The definition of spot quality scores is a complex issue;
designing parameters that capture the major problems in a
microarray image and constructing a composite score that deli-
cately balances the consequences of each individual problem
requires a lot of work. It should also be pointed out that there
are factors causing variability that cannot be captured by the
use of composite quality scores. For example, if an arrayer uses
multiple pins that give rise to non-uniform dots, additional
variations in intensity ratios can be introduced. Here we do not
propose that we have solved the quality control problem,
rather, we think it is an issue that needs to be worked out
among array users. For example, one may want to use the
minimum of all individual quality scores as an overall assess-
ment, namely defining qcom = min({qi}). We have looked into
this case and found that the results are similar to using equation
7. Another possibility is to define qcom = Π qi

n
i, where ni are

weights of the individual quality scores. Users may want to
choose the values each time according to the magnitude of
each problem on the image or each laboratory may come up
with its own set of optimized {ni}. One might also find that one
needs to use a set of individual parameters corresponding to the
common quality problems in microarrays and set a threshold
for each, rather than defining a composite quality score. We
hope that our work will serve to start an active discussion on
this matter. A proper standardized quantitative quality control
procedure for microarrays independent of instruments or
software packages being used will not only generate reliable
data for complex data mining tools, but also truly make the
automation of microarray image analysis and data sharing
from different laboratories feasible and practical.

Quantitative study of the relationship between data vari-
ability and spot quality is also significant because it may reveal
to us the intrinsic principles governing the variability in
microarray data and may be used to help identify the cause(s) of
the imperfection. Furthermore, the results suggest the possibility

Figure 8. Dependence of var[log(ratio)] on qcom. (A) Variances of ratio and
individual intensities and covariance between the two dyes plotted against qcom.
(B) The transformed correlation coefficient between the two dyes plotted as a
function of qcom. The solid line shows the least-square linear fit to the data.
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of a quality metric-dependent filtering and normalization
procedure. It is known that there is more variation in measure-
ment when spot intensities are low and the canonical approach
many array researchers take is to set threshold values for each
dye and only use spots above the threshold for further analyses
(14,15). Usually the means and SD of the log-transformed
ratios of the retained spots were calculated, those further than a
certain number of (for example 3) SD away from the mean are
identified and the transcripts deposited at these spots are
considered to have exhibited differential expression in the two
samples (14,16). Intensity level thresholding is equivalent to
filtering using the signal-to-noise ratio (qsig–noise) when the
background noise is uniform. We have found that qcom
correlates with the variation in measurement much better than
intensity values. As one can see from Figures 2–4, the variability
in ratio measurements not only depends on the signal-to-noise
ratio but also depends on spot size and local and global variations
in background noise. This result suggests that qcom can be a
better gauge for data filtering and one may take either of the
following two approaches to utilize it. (i) Set a threshold value
for qcom. Only spots above this value will be kept and they will
be treated with the same statistics as outliers. (ii) Adopt a
quality metrics-dependent gauging process. Figure 9 illustrates
such a possible new filtering and normalization scheme. In
Figure 9 a scatter plot of log(ratio) is given against qcom; solid
lines are means of log(ratio) ± 3σ, where σ is the SD calculated
using the best fitting line in Figure 7B. Spots outside these two
lines can be considered to have significant differential expression
between the two samples. Obviously this scheme has the
potential for more sensitive detection at the high quality end
and for generating far fewer false positives in the low quality
region.

AVAILABILITY

The Matarray package is available free of charge. Interested
users may contact the corresponding author.
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