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Abstract

Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures 

(e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting 

performance from these approaches is, however, impeded by standard network switches since they 

can saturate network bandwidth during transfer from storage to processing nodes for even 

moderate-sized studies. To that end, a cloud-based “medical image processing-as-a-service” offers 

promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing 

distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which 

is a NoSQL database built atop Hadoop’s distributed file system. Despite this promise, HBase’s 

load distribution strategy of region split and merge is detrimental to the hierarchical organization 

of imaging data (e.g., project, subject, session, scan, slice).

This paper makes two contributions to address these concerns by describing key cloud engineering 

principles and technology enhancements we made to the Apache Hadoop ecosystem for medical 

imaging applications. First, we propose a row-key design for HBase, which is a necessary step that 

is driven by the hierarchical organization of imaging data. Second, we propose a novel data 

allocation policy within HBase to strongly enforce collocation of hierarchically related imaging 

data. The proposed enhancements accelerate data processing by minimizing network usage and 

localizing processing to machines where the data already exist. Moreover, our approach is 

amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible 

with standard command line/scriptable image processing software. Experimental results for an 

illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time 

improvement in conversion of classic DICOM to NiFTI file formats when compared with the 

default HBase region split policy, and nearly a six-fold improvement over a commonly available 

network file system (NFS) approach even for relatively small file sets. Moreover, file access 

latency is lower than network attached storage.
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I. Introduction

Traditional grid computing approaches separate data storage from computation. To analyze 

data, each dataset must be copied from a storage archive, submitted to an execution node, 

processed, synthesized to a result, and results returned to a storage archive. This is the 
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workflow traditionally adopted in processing medical imaging datasets. However, when 

imaging datasets become massive, the bottleneck associated with copying and ensuring 

consistency overwhelms the benefits of increasing the number of computational nodes. For 

example, consider the activity of converting Digital Imaging and Communications in 

Medicine (DICOM) files to NiFTI (a research file format); if converting a 50 MB volume 

takes 15 seconds, an ideal Gigabit network (≈ 100MB/s) saturates with slightly less than 30 

simultaneous processes.

These challenges are further amplified considering the current trends where vast magnetic 

resonance imaging (MRI) and computed tomography (CT) databases are accumulating in 

radiology archives (at the rate of nearly 100 million examinations per year in the U.S.). 

However, we lack the image processing, statistical, and informatics tools for large-scale 

analysis and integration with other clinical information (e.g., genetics and medical histories). 

An efficient mechanism for query, retrieval, and analysis of all patient data (including 

imaging) would enable clinicians, statisticians, image scientists, and engineers to better 

design, optimize, and translate systems for personalized care into practice. Thus, a cloud-

based service to address these needs holds promise.

It may however appear tempting to reuse existing cloud-based solutions for social networks 

and e-commerce, which provide a solution to this problem that is both simple and relatively 

inexpensive. These solutions combine the storage and execution nodes such that each task 

can be done with minimal copying of data. For example, the Apache Hadoop ecosystem [1], 

which provides Big Data processing capabilities, has been extensively used in these 

contexts.

Two reasons preclude such a naïve reuse. First, although such big data architectures have 

been applied in online commerce, social media, video streaming, high-energy physics, and 

proprietary corporate applications, these technologies have not been widely integrated with 

medical imaging data formats (e.g., DICOM) for medical image processing. Second, several 

approaches have followed the path of general machine learning literature and seek to 

implement algorithms specifically designed to take advantage of big data architecture [6], 

[11], [32], exploit the MapReduce framework to sift through datasets [25], or use distributed 

file systems [30], [36]. While such approaches have been effective for genetics studies [9], 

[36], they have not yet proven effective within current medical image computing workflows.

The fundamental reason for this shortcoming is that substantial resources have been invested 

in creating existing algorithms, software tools and pipelines, and hence there is a substantive 

(often prohibitive) cost associated with algorithm re-implementation and re-design 

specifically for big data medical imaging. Consequently, there is a need for new approaches 

that will not require algorithm re-design while still are able to exploit the potential of elastic, 

cloud-based frameworks, such as Apache Hadoop, that have shown promise in other 

application domains. However, as we show empirically, the default policies in the Apache 

Hadoop ecosystem are not effective in supporting big data medical imaging problems.

To address these problems, we present design principles and empirical validation for a new 

data model for use with cloud-based distributed storage and computation systems that 
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provides practical access to distributed imaging archives, integrates with existing data 

workflows, and effectively functions with commodity hardware. Our approach makes 

specific improvements to the Apache Hadoop ecosystem, notably HBase, which is a NoSQL 

database built atop Hadoop’s distributed file system. Specifically, we make the following 

contributions:

• A row-key design for Apache HBase: A hierarchical key structure is proposed 

as a necessary step to accommodate nested layers of priority for data-collocation.

• New RegionSplit policy: A computationally efficient approach is proposed to 

optimally manage data collocation in the context of the hierarchical key 

structure.

• Experimental results: The proposed innovations are evaluated in the context of 

a routine image analysis task (file format conversion) in a private research cloud 

comprising a typical Gigabit network with 12 nodes.

The performance of this new system is evaluated on small (7 GB) to moderate-sized (530 

GB) test cases to characterize the overhead associated with this model and demonstrate 

tangible gains on widely available network and computational hardware. We believe that the 

proposed improvements to the Apache Hadoop ecosystem will greatly reduce the technical 

barriers to performing high-throughput image processing necessary to integrate imaging data 

into actionable metrics for personalized medicine. The novelty of the approach lies in our 

integrated solution for a novel application. The row-key design and linearizing most heavily 

used fields have been used in other contexts [21], [28], [31]. Yet, realizing new opportunities 

to apply existing techniques to a different realm (medical image processing), with its 

specific ontologies and patterns of data size/access, is essential to driving innovations. Our 

effort is a mix of research and experimental work to demonstrate applicability to medical 

imaging, which, to date, has not used a data-collocation computational model, and instead 

typically relies on monolithic data warehouses.

The rest of the paper is organized as follows: Section II describes our contributions; Section 

III describes our evaluation approach and presents experimental results; Section IV 

compares our work with related work; and finally Section V presents concluding remarks 

alluding to ongoing and future work, and discusses the broader applicability of our 

approach.

II. Enhancements to the Apache Eco-system

The task of processing medical images at scale requires a distributed image processing 

architecture that is aware of the underlying hierarchical imaging data and its meta-data. Our 

system is based upon the Hadoop framework, which was originally designed for file-system 

management and distributed processing [10], [14]. We combine Hadoop with Apache 

HBase, a NoSQL database which implements Google’s BigTable [8], [14]. The specific 

contribution of our work is a novel data storage mechanism that uses the hierarchical 

structure of imaging studies to collocate data with physical machines.
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Before delving into our solution, we provide an overview of the problem domain we are 

working in, technologies we have used and the challenges faced.

A. DICOM and NiFTI Overview and Key Challenges

DICOM (Digital Imaging and Communications in Medicine) is the international standard for 

medical images and related information (ISO 12052). It defines the formats for medical 

images that can be exchanged with the data and quality necessary for clinical use (http://

dicom.nema.org/). It has a hybrid structure that contains regular data (patient/clinical 

information), multimedia data (images, video). Data inside a DICOM file is formed as a 

group of attributes [27].

When a patient gets a Computed Tomography (CT) or Magnetic resonance imaging (MRI) 

scan, for example a patient’s brain image, a group of 2-dimensional DICOM images are 

generated slice by slice. A non-exhaustive set of medical imaging DICOM attributes for the 

slices include: project, subject, session and scan, where a project is a particular study, a 

subject is a participant within the study, a session is a single imaging event for the subject, 

and a scan is a single result from the event.

In order to study the entire brain, all 2-dimensional DICOM images should be collected 

together. Even though medical imaging data is stored as DICOM images, a substantial 

amount of medical image analysis software are NiFTI-aware (e.g. FSL (http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/), AFNI (https://afni.nimh.nih.gov/afni/), SPM (http://

www.fil.ion.ucl.ac.uk/spm/) and Freesurfer (http://freesurfer.net/)). NiFTI is a medical image 

data format, which is termed as a “short-term measure to facilitate inter-operation of 

functional MRI data analysis software package,” developed and founded by the NiFTI Data 

Format Working Group (http://nifti.nimh.nih.gov/).

Converting a large group of slices of DICOM images belonging to one patient into a small 

number of NiFTI format images (many-to-many relationship) is a significant step in any 

medical imaging study. Any processing of DICOM datasets will need to determine which 

CT/MRI scan that slice belongs to and using the Session attribute which records when the 

CT/MRI scan volume is carried out. However, finding a Session needs to first know the 

attribute Subject that it belongs to. Finally, the Project attribute collects all subjects 

together. Thus, for medical imaging applications involving DICOM, the following attributes 

are necessary: <monospace>project → subject → session → scan → slice</monospace>.

B. Apache HBase Overview and Key Challenges

HBase [26] uses the Hadoop Distributed File System (HDFS) to provide distributed and 

replicated access to data. We chose HBase since it can group data logically and physically 

based on row-key value. However, HDFS can only provide logical order. HBase also 

provides a flexible translation layer (region-split policy) for dealing with data collocalization 

statically or dynamically.

The key concepts from the HBase architecture are summarized in Table I. Briefly, HBase 

maintains tables, which have a row key that is commonly used as an index, and where data 
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columns are stored with the row key. All data in HBase is “type free,” which are essentially 

in the format of a Byte Array. The table is sorted and stored based on the row key.

HBase tables are divided into “regions” for distributed storage such that each region contains 

a continuous set of row keys from the overall table. The data in a region is physically 

collocated with an HDFS data node to provide data locality, which is performed by an 

operation called major compaction. When the region size grows above a pre-set physical size 

threshold, a “RegionSplitPolicy” takes effect and divides the region into smaller pieces. The 

newly created regions are automatically moved to different nodes for load balancing of the 

entire cluster. The row key and RegionSplitPolicy are integral to the performance and data 

retrieval of HBase and Hadoop.

Although HBase/HDFS is widely used in practice, multiple challenges manifest in the 

context of medical imaging applications. First, there is no standard for the default row key 

design. Intuitively, the data should be placed as sparse as possible and distributed evenly 

across various points of the regions in the table. Such a strategy can avoid data congestion in 

a single region, which otherwise could give rise to read/write hot-spots and lower the speed 

of data updates. Because row keys are sorted in HBase, using randomly generated keys when 

input as data to HBase would help leverage the data distribution in the table. As shown later, 

however, such an approach incurs performance penalties for medical imaging applications.

Second, since the original DICOM file name is a unique identifier called Global Unique 

identifier [17], if the task of interest is storing slice-wise DICOM data within HBase, then a 

naïve approach would be to use the DICOM GUID. Since the GUID is a hash of the data, it 

will not collocate data together and thus will saturate the network at the time of retrieving all 

DICOM images of a scan volume. Further, the standard RegionSplitPolicy will randomly 

assign files with hashed DICOM GUID file names as row keys to regions based on the key 

and a convenient split point based on region size, which may not be efficient as we show 

later.

C. Modified Row Key Design

To address the challenges outlined above, we propose a modified row key design for HBase 

based on the row key design requirements, which calls for preserving the structure of 

DICOM comprising the project, subject, session and scan. To maintain this structure, we 

propose using <monospace>< ProjectID > _ < SubjectID > _ < SessionID > _ < ScanID ></

monospace> as the identifier with other optional characteristics, such as the “slice” 

appended to this identifier. This is how our collection of images are named in a hierarchical 

manner. For example, a row key looks like 

<monospace>Proj1_Subj2_Session3_Scan4_Slice5_example.dcm</monospace>, where 

“.dcm” is the filename extension for DICOM. Since HBase organizes data linearly based on 

row key, this new strategy will maintain data within a project that is split with a minimal, or 

just one more than the minimal number of splits across regions as possible, when used in 

conjunction with the default RegionSplitPolicy supported by HBase.
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D. Modified RegionSplitPolicy for Medical Imaging

The default HBase policy that we evaluate and compare against is the 

<monospace>IncreasingToUpperBoundRegion-SplitPolicy</monospace> [2]. 

IncreasingToUpperBoundRegionSplitPolicy is based on a trigger point that dynamically 

updates itself from a specified minimum to a maximum (e.g., from 512 MB to 10 GB based 

on the total number of regions in a RegionServer). When a region split is triggered, the 

RegionServer first finds the largest files in the largest stores. The policy finds the first row 

key of the largest data block in each storefile. This key is called the “midkey” of a region 

and is decided based on region mid size. Thus, this split point can separate an existing 

associated imaging dataset into two regions without considering which row keys values lie 

in the split region. The newly created two regions will move through the whole cluster for 

storage balancing.

HBase also provides <monospace>KeyPrefixSplitKeyPolicy</monospace> (which inherits 

from IncreasingToUpperBoundRegionSplitPolicy) as one of the default split policy which is 

designed for grouping rows sharing a fixed pre-set length of keys [2]. However, it cannot 

dynamically group the subjects based on the order of project, subject, session etc based on 

highest available level (project,subject, session, scan) as we do in our modified approach. 

Moreover, it may cause a region to fail to split when all rows’ key have identical length of 

prefix (especially when prefix length is very short). This will make a region too large and 

impact the data balancing of the cluster. If the prefix length is very long, the effect of 

KeyPrefixSplitKeyPolicy would have no difference with 

IncreasingToUpperBoundRegionSplitPolicy. So we chose 

IncreasingToUpperBoundRegionSplitPolicy as the baseline comparison of HBase default 

split strategy.

To overcome these issues, we propose a novel RegionSplit-Policy, which has knowledge of 

the modified row key structure (see Section II-C) thereby maximizing data co-localization. It 

is critical to do it this way because typically users will select a cohort (set of subjects, 

sessions) for processing. The data under the same subjects or sessions are always processed 

together, not individually, e.g., in DICOM conversion the unit of processing is scan volumes. 

Thus, it is important to maximally collocate relevant image data under the same level for 

further group retrieval and processing/analysis, while reducing the data movement in 

MapReduce operations pertaining to the DICOM to NiFTI conversion, which is discussed in 

Section III-D1.

Our new RegionSplitPolicy also inherits from Increasing-ToUpperBoundRegionSplitPolicy 

but does the split differently. First it considers all row keys in a region. If multiple projects 

exist in the region, it splits the projects into separate regions. If the region is homogeneously 

a single project, it finds the highest available level (subject, session, scan) in the region on 

which it can split and balance the data between the new regions. Figure 1 compares the 

operation of the standard RegionSplitPolicy with our custom policy.

The challenge for our optimized RegionSplitPolicy is to find a split point based on all row 

keys of a Region. HBase provides a client API to retrieve data called scan (here, we refer to 

it as simple_scan). A user can customize the scan to define the range of row keys with which 
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the column family and identifiers need to be retrieved. Users can also set customized filters 

to refine the query scan. A region has internal attributes that record the values of the start 

row key and end row key of the region. Since there are no attributes of records for any other 

row keys in a region except start/end row key, we need to use external ways to retrieve all 

row keys of a region.

In order to get all keys in a region, two existing approaches can be used in traditional HBase: 

(1) According to start/end key of region, a user specifies a column to scan. The scan is first 

executed on the entire table, finds the right RegionServer that hosts the region using 

Zookeeper quorum, and retrieves the row key; (2) Use HBase default RowKey filter to 

customize the scan. However, both approaches are slower compared to our approach 

described below.

As shown in Figure 1, we are capable of locating the largest storefiles. In this way, we can 

apply a more advanced HBase scan API (called “Region Internal scan”), which we have 

found to be 163 times faster than simple_scan on average in our tests to find all hierarchy 

row keys involved in the region. The Internal scan can directly operate on storefiles located 

on HDFS without starting a scan from the entire table. This gives us all the row keys of a 

split region. Next, the split point is selected according to the following conditions: (1) it 

ensures that the maximum related data is collocated in a hierarchy, and (2) once we have 

identified the level of structure which will be the potential point to split, we traverse the 

candidates and return the point that can most evenly balance the size of the two new regions 

in order to avoid the overhead of too many small regions emerging. Thus, if there are many 

projects of a region, we should split rows by <monospace>< ProjectID ></monospace>; if 

all row keys start with same project, and there is not only one subject, we should split rows 

by <monospace>< ProjectID > _ < SubjectID</monospace>, so on so forth.

The observed average run time range to determine one split point using our custom split 

policy is 28.22–58 ms, and 1.43–1.64 ms for the default HBase split policy with similar 

CPU usage (19.39% vs. 19.81%), which means the proposed split policy does not involve 

any substantial overhead when compared with the default one. The increased time in our 

policy is due to the need to retrieve and analysis all row keys of a region. Despite this one-

time initial cost, as we show in our experimental results, the performance improvements are 

substantial.

E. Putting the Pieces Together

Figure 2 presents the overall structure of our modified Apache Hadoop ecosystem focusing 

particularly on the HBase modifications. HBase resides upon HDFS. Zookeeper monitors 

the health status of RegionServer. When users create a HBase table, they need to pinpoint 

the RegionSplitPolicy to HMaster, and the pre-set split policy is automatically triggered 

once when a Table region needs to be split. Our custom split policy is made the default split 

policy. The input DICOM is de-identified (for privacy preservation purposes) and is 

normalized to the hierarchy structure by a local row key generator before storing into HBase.

Bao et al. Page 7

Proc IEEE Int Conf Cloud Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



F. Generality of the proposed approach

Our proposed approach has broader applicability than just DICOM2NiFTI. In recent work 

[4], we proposed a framework to evaluate the suitability of our approach for a larger set of 

medical imaging problems. Beyond that, multimedia processing always involves “large” 

data set compared with medical imaging data. For instance, video transcoding has been 

applied on Hadoop, each video is about 200 MB, and experiment data sizes are from 1 – 50 

GB [20], [29]. Based on video record time and content, we can easily create a hierarchy 

category to name the video, and conduct group processing by omitting the reduce phase.

Gene data have many different styles with diverse attributes. Genes with similar expression 

patterns must be collocated for group analysis since genes that behave similarly might have 

a coordinated transcriptional response, possibly inferring a common function or regulatory 

elements [5]. Thus, genes data group/hierarchy storage, retrieval and analysis is applicable 

by our framework.

Another scenario where our work is applicable includes Satellite data/image processing on 

data about earth surface, weather, climate, geographic areas, vegetation, and natural 

phenomenon [16], which can be studied according to day-based, multiple-day-based, or 

seasonal-based [15]. As a result, time-oriented hierarchical structure can help group the data 

from the satellite for further processing. similarly, Internet of things collect data from 

various facilities like sensors. According to the sensors’ supervision area, a component 

hierarchy-based data collection can be implemented. For instance, high-speed train fault and 

repair prediction is applied before a train runs [34]. Analyzing mass historical data from a 

group of Electric Multiple Unit (EMU) of a train’s components has potential to be 

implemented in our framework.

III. Evaluational Methodology and Experimental Results

This section presents results of evaluating our Apache Hadoop/HBase modifications and 

comparing them with default strategies.

A. Testing Scenarios

To investigate the performance of our HBase modifications, we evaluated the standard 

DICOM to NiFTI file format conversion using three test scenarios using HBase and Hadoop, 

and one with Network Attached Storage (NAS) as follows.

1. Scenario: “Naïve HBase” – The project data was anonymized such that the 

original GUIDs were lost prior to this project and could not be recovered 

associated with data retrieval. True DICOM GUIDs are globally unique and 

contain both source (root stem) and random components. The MD5 tag mimics 

the random components from a single source vendor. Using MD5 hash key value 

meets the HBase original preferred key design for reducing hot-spot for table 

read/write. The DICOM files are distributed to all HBase regions, and we use an 

additional table to record the hierarchy structure of a scan dataset. We test using 

a random key, and MD5 hash of the data, as the key in HBase. With this 
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comparison, we test the native capabilities of Hadoop and HBase without any of 

our proposed optimizations.

2. Scenario: “Custom Key/Default Split HBase” – This scenario evaluates the 

custom key grouping and ordering of the DICOM file logically and physically in 

HBase by our custom key value prefix introduced in Section II-C. When a HBase 

region exceeds a predefined size, we use the default split policy to split a region 

into two child regions without considering the key values of the split region. In 

this case, the files belonging to the same project, subject, session, scan are 

distributed into two different regions. The two regions may move to different 

cluster nodes, and the replication of both regions may also be placed on random 

Hadoop datanodes. When retrieving all files of a cohort (i.e., a set of scan 

volumes) for further processing, the MapReduce job dispatches computations to 

nodes that contain the datasets of interest. When no single node contains all 

requested data for a single job (either due to a large request or local storage 

scarcity), the minimal necessary data will be retrieved over network. So we test 

our proposed row key with the default RegionSplitPolicy.

3. Scenario: “Custom Key/Custom Split HBase” – Our custom 

RegionSplitPolicy has the capabilities to maximally collocate relevant data in the 

same group, with the order of project, subject, session and scans. We test our 

complete design with our proposed row key and custom RegionSplitPolicy and 

compare it with Custom Key/Default Split HBase to see how data retrieval 

matters in MapReduce. Theoretically, this approach involves less data collection 

and movement via the network than the other two HBase methods and makes 

processing faster.

4. Scenario: “Sun Grid Engine NAS” – Traditional grid computing approaches 

separate data storage from computation. As a comparative method, we use a 

traditional Sun grid engine (SGE) to distribute portable bash script (PBS) jobs to 

computational nodes accessing data from a Network Attached Storage (NAS) 

device.

B. Hardware

Twelve physical machines were used consisting of 108 cores of AMD Operon 4184 

processors, 40 cores of Intel Xeon E5-2630 processors and 8 cores of Intel Xeon W3550 

processors running Ubuntu 14.04.1 LTS (64 bit). At least 2 GB RAM was available per core. 

In total, 190 GB of storage was allocated to HDFS and a Gigabit network connected all of 

machines. The type for the local disks was Seagate ST32000542AS. Each machine was used 

as a Hadoop Datanode and HBase RegionServer for data locality. All machines were also 

configured using the Sun Grid Engine (Ubuntu Package: gridengine-* with a common 

master node). NAS was provided via CIFS using a Drobo 5N storage device 

(www.droboworks.com) with a 12 TB RAID6 array.
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C. Data and Processing

To evaluate the test scenarios, 991,000 DICOM files from clinical CT scanners 

corresponding to 41 subjects and 812 scan volumes were retrieved in de-identified form 

under IRB approval from a study on traumatic brain injury. The processing system for each 

scan retrieves the data from storage (see test scenarios in Section III-A), applies a command 

line program and converts the DICOM files to NiFTI using dcm2nii (www.nitrc.org/projects/

dcm2nii/). We performed tests with subsets of data with different datasets to assess the 

scalability of each proposed system and relative overhead (either fixed or scalable) versus 

processing load. To further test the system’s scalability and upper limit on throughput (i.e., 

number of datasets processed per minute), we incrementally increased the size of datasets 2, 

4, … 10 times of the original 812 scan volumes. Thus, the average processing speed of one 

dataset from 812 to 8120 datasets scenario are same, and the impact of the fixed overhead 

will decrease as the number of datasets increase. Table II presents the dataset total file size 

for different number of datasets. Each dataset denotes the number of scans with average 126 

DICOMs per scan.

D. Apache Hadoop/HBase Experimental Setup for DICOM2NiFTI

The Hadoop/HBase cluster is configured by Hadoop (2.7.1), HBase (1.1.2) and Zookeeper 

(3.4.6). HDFS uses default 3 replicas with rack awareness. In our experimental setup, the 

Sun grid engine does the balancing and makes sure that the jobs ran as soon as space was 

available within the specified node list when processing is executed on a traditional grid 

[13]. For Hadoop scenarios, MapReduce is a programming model and an associated 

implementation for processing large datasets in the Hadoop ecosystem [10]. YARN is used 

for resource (CPU/Memory) allocation and MapReduce job scheduling [33]. We use the 

default YARN capacity FIFO (First in First Out) scheduler, which aims at maximizing the 

throughput of cluster with capacity guarantees when the cluster is being shared with multi 

tenants.

The software tools to generate row keys from DICOM data were implemented in open 

source. The custom region split policy was implemented as a Hadoop extension class. All 

software is made available in open source at NITRC project Hadoop for data collocation 

(http://www.nitrc.org/projects/hadoop_2016/). Manual inspection of region stores was used 

to verify data collocation under multiple configurations of Hadoop Datanodes to ensure that 

the desired data collocation and region splits were occurring.

1) MapReduce Implementation of DICOM2NiFTI using HBase—The MapReduce 

model should complete two main tasks: data retrieval from HBase and data processing 

(DICOM to NIFTI conversion). The Map phase always tries to ensure that the computation 

tasks are dispatched where data resides, and those tasks are vividly called data-local maps. A 

compromise scenario is when data is not on the local node where the running map task is 

located, but at least the data are on the same rack, and those maps are rack-local maps. In the 

Reduce phase, the output, <monospace>< key, value ></monospace> pairs from Map phase 

are to be shuffled/sorted and sent to random cluster nodes.
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If data retrieval is done in the Map phase while processing in the Reduce phase, then the 

computation and data can be on different nodes. A potential way to execute the processing is 

remote access (i.e. SSH) where data originally locates and applies processing. SSH 

limitations may occur, however, and block further connection, and as a result the processing 

cannot be fully completed. If both data retrieval and processing occurs in the Reduce phase, 

namely, each reduce task collects all row keys related with one scan volume, then downloads 

and collect DICOM files from HBase according to the keys, and finally executes the 

conversion in Reduce phase. In this strategy, network congestion will occur when the node 

that holds the Reduce task may not have all needed DICOM files. Since those DICOM files 

are aggregated in the same Region/node owing to our proposed custom split policy, so 

Reduce task has to retrieve all datasets through the network and will lead to congestion.

Thus, these approaches break our primary goal for data collocation with Hadoop and HBase 

with minimum data movement. As a result, our proposed Hadoop enhancements with data 

collocation in the context of the hierarchical key structure, data retrieval and processing 

occur in the Map phase and the Reduce phase is a no-op for our application.

In a traditional “word count” example, the input of MapReduce is a HDFS folder. The input 

folder is split into several pieces based on the files in the selected folder. Then each piece 

starts a map task with <monospace>< key, value ></monospace> pair, the input Map Key is 

file names and input Map value is file content. However, this approach is not practical in 

HBase. The HBase region has a corresponding folder on HDFS, and all data stores/hfiles in 

this region are placed in the region. When the region collocates to a Hadoop datanode to 

achieve data locality, all data store/hfiles are compacted to a giant file, which means that a 

traditional MapReduce like wordcount strategy cannot split an input HBase folder for further 

processing.

Figure 3 shows the modified work-flow. HBase provides a default API for running HBase-

oriented MapReduce. The input of the MapReduce is a HBase-scan, which represents an 

interval of consecutive table row key values of a selected column. The HBase-scan is split 

based on relevant regions, and the input <monospace>< key, value ></monospace> pairs are 

values about row keys of a region and the content of the specified column. In short, if the 

input HBase-scan occurs across n regions, then only n map tasks are generated. The 

challenge for traditional HBase-oriented MapReduce for DICOM is there are usually more 

than one datasets of DICOM files under the same scan in a region. So we refined the above 

approach to specify the input of MapReduce to be a selected cohort of scan volumes, and the 

number of Map tasks is based on the number of scans.

DICOM with the same row-key prefix sticks together in order. Querying all DICOM images 

of a scan volume does not need to iterate over all input key values. Instead, we just need to 

define a search range (first/last row-key record of the selected cohort scan). Thus, we use an 

additional table to store the range of each scan volumes and do a one-time update once new 

images are uploaded to HBase. The Map Phase first retrieves the data from HBase and stores 

DICOM files to local node. Once done, it converts the DICOM files to NiFTI using dcm2nii 

as presented in Figure 3. For fair comparisons between Hadoop methods and approach on 

NAS, additional steps such as uploading the NiFTI result to HBase are not launched.
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We did not include writing back to the original storage which is done typically in HBase to 

keep regions balanced and consistent across all cluster for each individual experiment. We 

did this because when writing back the result to HBase, the size of the region may change 

and may trigger a split, which takes time to localize a newly created region, particularly if it 

needs to be distributed to a different machine.

2) Guidelines used for Scaling Hadoop/HBase Cluster—Scalability is one of the 

most important properties for Cloud usage. We test and scale our clusters for studying 

intrinsic scalability performance. The following summarizes how we scaled the Hadoop/

HBase cluster step by step.

• For scaling down, RegionServer should first be gracefully stopped [2], and 

relationship of data collocation between Datanode and RegionServer are no 

longer exists. Then major compaction on the affected data from stopped 

RegionServer must be applied to collocate to the rest of the cluster [2]. When all 

data-locality is achieved again, decommissioning the Datanode and re-balancing 

of the cluster is performed. If decommission order is reversed, redundant 

replications are to be stored into HDFS which exponentially decreases the 

available size of the Hadoop cluster.

• For scaling up, a new Hadoop Datanode must be commissioned first and then a 

new HBase RegionServer is added, followed by a major compaction to achieve 

data locality. If there is no Datanode, adding a new RegionServer can collocate to 

nothing, which makes reverse commissioning order no sense.

E. Results of Data Transfer Latency

The latency represents the data access latency for one dataset of slice images that belong to 

one project_subject_session_scan. First, we evaluated the latency in retrieving imaging data 

in each of the four scenarios. Table III shows average latency for all datasets. For naïve 

Hadoop, we retrieved data to a random node since the data were not collocated. For custom 

key/standard split, we retrieved the data to the machine which contained the first element in 

the scan. For custom key/custom split, we retrieved the data to the machine where the data 

were located entirely. For Grid Engine NAS, we retrieved the data from the NAS to a local 

machine serially (i.e., with one core in use).

The naïve Hadoop strategy performed markedly worse than the other methods because it 

needs to open and close connections with multiple other machines in order to download the 

data, and the initialization and setup of each ZooKeeper connection involves overhead. 

Using the NAS with a single connection is relatively effective since the data are coming 

from one fixed location and there is low overhead in opening and closing connections. In 

comparing the default split policy to our proposed policy, we see an improvement in average 

performance. Any increase comes from the cases where scans are split between machines 

and thus data needs to be retrieved from other locations on the network which degrades 

latency.
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F. Data Processing Throughput for DICOM to NiFTI Conversion

Each of the four scenarios executed a DICOM to NiFTI conversion as described in Section 

III-C. Figure 4A presents an analysis of throughput. The Grid Engine NAS performed the 

worst (fewest datasets per minute, longest run times) across all dataset sizes. In all scenarios, 

the NAS device saturated at 20 MB/s (approximately 18 datasets per minute) throughput 

despite the gigabit network access. This was likely due to numerous small files that are 

generated with “classic” DICOM scanning as direct read/write to the NAS device 

demonstrated substantively higher performance.

The naïve HBase approach scaled better than the NAS approach with a throughput ranging 

from 31 MB/s (with 104 datasets) to 58 MB/s (with 718–812 datasets). The performance 

leveled off at 52 datasets/minute for a factor of almost threefold improvement over NAS. 

The custom key/default policy HBase approach performed even better with a throughput of 

34 MB/s (with 104 datasets) to 94 MB/s (with 718–812 datasets). The custom key/custom 

policy HBase approach further increased throughput performance from 37 MB/s (with 104 

datasets) to 114 MB/s (with 812 datasets).

The naïve method’s performance increases flatly because of uncertainty in the placement of 

data loading. It performs better than processing on the NAS device because not all data 

needs to be retrieved from the other node; some of the files are placed on same node with 

Map computation in most cases. On the other hand, the custom key custom policy HBase 

involves lesser data movement with better performance rather than the custom key/default 

policy HBase, both of whose processing are executed within most data-local map and a few 

rack-local map according to YARN allocation.

The root cause in reducing the processing time with the new policy is attributed to the 

following. Our approach (i.e., Custom key/Custom split HBase) groups the data based on the 

image’s hierarchical structure. When processing the data (i.e., DICOM to NiFTI 

conversion), a single task needs to load a subset of images that under the same structure (all 

image slices under the same project_subject_session_scan). Owing to the Hadoop 

MapReduce computation paradigm’s data locality feature, the job task can easily be 

dispatched to where the data is and hence the data retrieval is predominantly local so that it 

reduces the time for the computation to reach the data compared with SGE, which transfers 

data over the network.

1) Overhead Considerations with the Hadoop Framework—We define the 

overhead time as the difference between the actual wall clock time and the theoretical 

minimum time. The theoretical minimum time assumes all CPU slots are used except the 

last round of parallel jobs, and the average processing time of one dataset is empirically 

calculated by processing all pre-stored datasets on one machine without any data retrieval 

latency.

The computing grid had 156 cores available. Therefore, up to 156 jobs could run 

simultaneously in any of the test scenarios. With the three Hadoop scenarios, we have logs 

of both the time spent within each job on the compute node (including time to establish data 

connection, retrieve the data, and clean up the connection) and the actual wall clock time. 
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For each of the Hadoop scenarios, we computed the average actual time spent executing the 

processing (including data retrieval), which ranged from 22 s to 35 s. For each of the data 

submission tasks, we can identify the minimum number of jobs that would need to run in 

serial by dividing the number of scan volumes by the number of cores. The fastest time that 

the Hadoop scheduler could run the jobs is the length of the serial queue times the job 

length, but in all cases the actual wall time exceeded this value.

The ratio of overhead time to total time is shown in Figure 4B. Fitting a linear analysis to 

each of the three scenarios shows that the SGE strategy had 95% overhead penalty due to 

data transfer latency. The naïve HBase strategy had a marginal penalty of 85% per additional 

dataset. The custom key/default split policy reduced the overhead penalty to 75% per 

additional dataset. Finally, the custom key/custom split policy resulted in 70% per additional 

dataset.

2) Upper Bound and Asymptotic Limits on Achievable Throughput—Figure 4A 

illustrates the processing on SGE, which saturates the Gigabit network. The HBase approach 

does not incur as much network congestion because most map tasks are data-local or rack-

local. Thus, we were not able to observe any perceived network-imposed limitations even 

until 812 datasets. The upper limit on the throughput stems from other overheads in the 

framework, which we address in the paper. This is further verified in Section III-G. These 

overheads are either fixed or scale according to cluster size. Consequently, to reduce the 

impact of fixed overhead, we tested our system for more number of datasets.

To understand the asymptotic limits on the performance of our approach, consider Figure 5A 

which presents the result of processing scans per minute with more datasets according to 

Table II. We also provide the theoretical minimum time performance in Figure 5B. The data 

processing overhead is affected by the data retrieval and the fixed overhead stemming from 

MapReduce job initialization and zookeeper connection. The theoretical ideal solution 

fluctuates within the first 812 datasets due to differences in scan volumes. It then shows a 

flat performance because the datasets from 1,624 to 8,120 are duplicated from the first 812 

datasets. We can see both Hadoop’s throughput gradually increased although the theoretical 

time oscillated at which point both Hadoop scenarios present a similar flat performance. 

These result trends empirically reveal the reduction of the impact of the fixed overhead.

Since the network is not a factor, we conclude that to obtain even higher throughput, we will 

need to scale the hardware by adding more cores since the number of cores is the limiting 

factor.

It is worth mentioning that to reduce the effort of reimplementing locally installed binary 

executables command-line problem our society mainly use (the program usually follows 

with system environment path), the proposed approach would temporally store the image 

byte array from HBase to a local place of the computation machine which arises overhead. 

For SGE scenario, since it uses NFS to attach the remoted NAS, the data retrieval is “like” to 

access local storage, so it does not need to temporally storage strategy as proposed Hadoop/

HBase does. This paper aims to discuss and present empirical experiments result to proof the 

feasibility the framework.
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G. Evaluating the Scalability of the Framework

We wanted to understand how does the scale of the cluster impact performance. Thus, we 

experimented by linearly decreasing the size of the cluster and observe if the performance 

decreased in similar manner. In our experiments, each machine acted as a Hadoop Datanode 

and HBase RegionServer for data locality as introduced in Section III-B. The order of 

decommisioning of Datanode and RegionServer is important when scaling the size of the 

cluster. Both the custom key with default and with custom split policy are compared on 

scaled cluster (5–10 Hadoop/HBase nodes). Decreasing the size of the cluster can linearly 

increase the total time with processing 5,684 datasets, which is presented in the trends of 

Figure 6A.

As mentioned before, DICOM to NiFTI conversion is the processing task we used in this 

research. One single task would use a dataset that has all the slices of images under the same 

dataset of project_subject_session_scan. The empirical results show that about 5% dataset of 

the scans would be split. Meanwhile, rack-local map cannot be ignored. We can conclude 

that the similar performance is due to the small proportion of split dataset in custom key/

custom split strategy. If the dataset for a job is session-based rather than scan-based, the split 

ratio of dataset should be more distinctive, because custom key/custom split strategy groups 

images under same hierarchical structure better than default Hadoop/HBase strategy.

Based on the previous discussion, we can conclude that the Hadoop scenario performance is 

not limited by the network bandwidth but by the total available CPU cores and memory. 

While for SGE scenario, when scaling the cluster size would meet the meet deployed 

network bandwidth limitation. Thus, scaling up the size of the cluster can increase high 

performance computing capability for medical imaging processing in an affordable local/

cloud-based commodity grid.

IV. Related Work

Recent trends indicate a substantial interest in adopting the MapReduce paradigm – and 

thereby the Apache Hadoop ecosystem – for medical image data processing. Several 

medical image processing studies have encountered one or more of the trio of computation, 

storage and network bandwidth bottlenecks, and have developed optimizations to overcome 

these encountered problems. This section compares our work with prior efforts in medical 

imaging and beyond.

A. Related Work involving Medical Imaging Applications

A recent study [25] illustrates how transitioning the medical image processing computations 

to the MapReduce paradigm and the Apache Hadoop framework pays rich dividends over 

traditional processing approaches, which often are sequential in nature. Our work differs 

from this prior work in that not only is our use case different – we focus on mapping 

DICOM images to NiFTI formats – but more importantly we demonstrate new optimization 

strategies for the Apache Hadoop ecosystem instead of simply leveraging the default 

strategies provided by Apache Hadoop, which is the case with most prior efforts. In fact the 

authors in this related work point out the need to identify opportunities for optimizations, 
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which is precisely the intent of our presented research. Similarly, [19] demonstrates how the 

Apache Hadoop ecosystem can be used in medical imaging but do not report on any 

optimizations.

The work reported in [27] is synergistic to our work in that it focuses on the row- versus 

column-oriented storage issues for DICOM images. The authors highlight the pros and cons 

of row- versus column-oriented storage policies, and indicate how the complex structure of 

the DICOM images requires a hybrid mechanism for storage. Specifically, their approach 

stores frequently used attributes of a DICOM file into row-based layer/store, and optional/

private attributes into a column-based store so that it will reduce null values. The motivation 

stems from the fact that if all DICOM attributes are stored into a row-based store, then a 

search or joining operation will unnecessarily involve numerous null values thereby 

adversely impacting efficiency.

The SYSEO project [7] also describes a hybrid row-column data store for DICOM images 

using similar criteria as in [27] to decide between row- versus column-based storage. Their 

work was motivated by the need to find alternatives to existing but prohibitively expensive 

solutions for medical image storage. Moreover, image annotation and query retrieval were 

additional dimensions that needed improvements in performance.

Our work do not treat DICOM file attributes as much depth as in [27], i.e., we need not to 

know the details of the attributes stored in a DICOM file when we store it to HBase; rather 

we simply store the entire DICOM file to HBase. For our DICOM to NiFTI processing, the 

processing operation can directly fetch the related attributes from DICOM files and convert 

them into NiFTI files. For other forms of medical imaging applications and data processing, 

such as image annotations, we may need to incorporate these hybrid storage mechanisms 

along with our optimizations, which forms our future work.

B. Related Work in other Application Domains

Several prior research efforts have proposed different performance optimizations to different 

elements of the Apache Hadoop ecosystem for domains beyond just medical image 

processing. The MHBase project [23] describes a distributed real-time query processing 

mechanism for meteorological data with the intent to provide safe storage and efficiency.

Recent work in Internet of Things (IOT) [24] proposes an optimization based on high update 

throughput and query efficient index framework including pre-splitting the HBase region for 

reducing the cost of data movement. Likewise, [22] addresses the problem of the HBase 

multidimensional data queries (upto four-dimension) in IOT with better response time. A 

recent work [35] demonstrates an optimized key-value pair schema for speeding up locating 

data and increase cache hit rate for biological transcriptomic data. The performance is 

compared with relational models in MySQL cluster and MongoDB. The authors in [18] 

present an optimized HBase table schema focusing on merging information to fit in 

combination with customer cluster and constructing an index factor scheme to improve the 

calculation of strategy analysis formulas.
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In summary, the above-referenced prior efforts tend to focus on optimizing the table schema, 

row key design for data fast access, update and query. For our work, we not only provide an 

innovative row key hierarchical design, but also optimize the default RegionSplitPolicy 

which goes deep into the HBase architecture. Our goal is to maximally collocate relevant 

data on same node for further and faster group processing. Moreover, most prior works do 

not consider the cloud-based service aspect that we do.

V. Conclusions

Billions of magnetic resonance imaging (MRI) and computed tomography (CT) images on 

millions of individuals are currently stored in radiology archives [3]. These imaging data 

files are estimated to constitute one-third of the global storage demand [12], but are 

effectively trapped on storage media. The medical image computing community has heavily 

invested in algorithms, software, and expertise in technologies that assume that imaging 

volumes can be accessed in their entirety as needed (and without substantial penalty). 

Despite the promise of big data, traditional MapReduce and distributed machine learning 

frameworks (e.g., Apache Spark) are not often considered appropriate for “traditional”/

“simple” parallelization.

In this paper we demonstrate that Apache Hadoop MapReduce can be used in place of a 

PBS cluster (e.g., Sun Grid Engine) and can be offered as a cloud-based service. Moreover, 

with our approach, even a naïve application of HBase results in improved performance over 

NAS using the same computation and network infrastructure.

We present a row key architecture that mirrors the commonly applied Project/Subject/

Session/Scan hierarchy in medical imaging. This row key architecture improves throughput 

by 60% and reduces latency by 577% over the naïve approach. The custom split policy 

strongly enforces data collocation to further increase throughput by 21% and reduce latency 

by 29%. With these innovations, Apache Hadoop and HBase can readily be deployed as a 

service using commodity networks to address the needs of high throughput medical image 

computing.

Our experiments promote a general framework for medical imaging processing (e.g., 

structured data retrieval, access to locally installed binary executables/system resources, 

structured data storage) without comingling idiosyncratic issues related to image processing 

(e.g., parameter settings for local tissue models, smoothing kernels for denoising, options for 

image registration). DICOM2NiFTI is a routine first step in processing and often a 

bottleneck for quality control on large datasets. Hence, the application demonstrates the 

system’s correctness and scalability across a complex organization of files.

The system was implemented on a small, private data center, which includes the Sun Grid 

Engine. As the number of machines increases, NFS becomes nonviable with a single host, 

and distributed storage (e.g., GPFS) is commonly used on large clusters with 10+ Gbps 

networks. The proposed data and computation co-location solution is an alternative and 

could scale to well-more CPU-cores than beyond a GPFS solution on the same underlying 

network.
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Finally, as implied by the trends in Figure-4, the benefits of distributing computation with 

storage increase with larger datasets. Exploration of the asymptotic performance limits is of 

great interest, but beyond the scope of this paper that illustrates meaningful gains on 

problems of widely applicable scale. The optimization of characterization of these 

approaches on heterogeneous grid is an area of great possibility. In particular, the Apache 

Hadoop YARN scheduler could be further optimized to exploit intrinsic relationships in 

medical imaging data.

The work presented in this paper is available in open source at www.nitrc.org/projects/

hadoop_2016

Acknowledgments

This work was funded in part by NSF CAREER IIS 1452485 and US Ignite CNS 1531079. This work was 
conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt 
University, Nashville, TN. This project was supported in part by the National Center for Research Resources, Grant 
UL1 RR024975-01, and is now at the National Center for Advancing Translational Sciences, Grant 2 UL1 
TR000445-06. Any opinions, findings, and conclusions or recommendations expressed in this material are those of 
the author(s) and do not necessarily reflect the views of NSF.

References

1. Apache Hadoop Project Team. The Apache Hadoop Ecosystem. http://hadoop.apache.org/

2. Apache HBase Team. Apache hbase reference guide. Apache; Apr. 2016 version 2.0.0 edition

3. AT&T. Technical Report AB-2246-01. AT&T; Jul. 2012 Medical imaging in the cloud. 

4. Bao S, Weitendorf FD, Plassard AJ, Yuankai H, Gokhale A, Bennett LA. Theoretical and empirical 
comparison of big data image processing with apache hadoop and sun grid engine. SPIE Medical 
Imaging. 2017 accepted. 

5. Barrett T, Edgar R. [19] gene expression omnibus: Microarray data storage, submission, retrieval, 
and analysis. Methods in enzymology. 2006; 411:352–369. [PubMed: 16939800] 

6. Bednarz, T., Wang, D., Arzhaeva, Y., Lagerstrom, R., Vallotton, P., Burdett, N., Khassapov, A., Szul, 
P., Chen, S., Sun, C., et al. Signal and Image Analysis for Biomedical and Life Sciences. Springer; 
2015. Cloud Based Toolbox for Image Analysis, Processing and Reconstruction Tasks; p. 191-205.

7. Chabane Y, d’Orazio L, Gruenwald L, Mohamad B, Rey C. Medical Data Management in the 
SYSEO Project. ACM SIGMOD Record. 2013; 42(3):48–53.

8. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber 
RE. Bigtable: A Distributed Storage System for Structured Data. ACM Transactions on Computer 
Systems (TOCS). 2008; 26(2):4.

9. Chen, S., Bednarz, T., Szul, P., Wang, D., Arzhaeva, Y., Burdett, N., Khassapov, A., Zic, J., Nepal, 
S., Gurevey, T., et al. Service-Oriented Computing–ICSOC 2013 Workshops. Springer; 2013. 
Galaxy+ Hadoop: Toward a Collaborative and Scalable Image Processing Toolbox in Cloud; p. 
339-351.

10. Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters. Communications 
of the ACM. 2008; 51(1):107–113.

11. Freeman J, Vladimirov N, Kawashima T, Mu Y, Sofroniew NJ, Bennett DV, Rosen J, Yang CT, 
Looger LL, Ahrens MB. Mapping Brain Activity at Scale with Cluster Computing. Nature 
methods. 2014; 11(9):941–950. [PubMed: 25068736] 

12. Frost and Sullivan. US Data Storage Management Markets for Healthcare. Nov.2004 

13. Gentzsch, W. Cluster Computing and the Grid, 2001 Proceedings First IEEE/ACM International 
Symposium on. IEEE; 2001. Sun grid engine: Towards creating a compute power grid; p. 35-36.

14. Ghemawat, S., Gobioff, H., Leung, ST. ACM SIGOPS operating systems review. Vol. 37. ACM; 
2003. The Google File System; p. 29-43.

Bao et al. Page 18

Proc IEEE Int Conf Cloud Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://hadoop.apache.org/


15. Golpayegani, N., Halem, M. Cloud Computing, 2009 CLOUD’09 IEEE International Conference 
on. IEEE; 2009. Cloud computing for satellite data processing on high end compute clusters; p. 
88-92.

16. Gorgan, D., Bacu, V., Stefanut, T., Rodila, D., Mihon, D. Intelligent Data Acquisition and 
Advanced Computing Systems: Technology and Applications, 2009 IDAACS 2009 IEEE 
International Workshop on. IEEE; 2009. Grid based satellite image processing platform for earth 
observation application development; p. 247-252.

17. Hernández, V., et al. Challenges and Opportunities of Healthgrids: Proceedings of Healthgrid 2006. 
Vol. 120. IOS Press; 2006. Bridging clinical information systems and grid middleware: a medical 
data manager; p. 14

18. Hong, S., Cho, M., Shin, S., Seon, C., Song, S., et al. 2016 8th International Conference on 
Knowledge and Smart Technology (KST). IEEE; 2016. Optimizing hbase table scheme for 
marketing strategy suggestion; p. 313-316.

19. Jai-Andaloussi, S., Elabdouli, A., Chaffai, A., Madrane, N., Sekkaki, A. 20th International 
Conference on Telecommunications (ICT), 2013. IEEE; 2013. Medical Content-based Image 
Retrieval by using the Hadoop Framework; p. 1-5.

20. Kim M, Cui Y, Han S, Lee H. Towards efficient design and implementation of a hadoop-based 
distributed video transcoding system in cloud computing environment. International Journal of 
Multimedia and Ubiquitous Engineering. 2013; 8(2):213–224.

21. Lee, K., Ganti, RK., Srivatsa, M., Liu, L. Proceedings of the 22nd ACM SIGSPATIAL 
International Conference on Advances in Geographic Information Systems. ACM; 2014. Efficient 
spatial query processing for big data; p. 469-472.

22. Li, Q., Lu, Y., Gong, X., Zhang, J. P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 
2014 Ninth International Conference on. IEEE; 2014. Optimizational method of hbase multi-
dimensional data query based on hilbert space-filling curve; p. 469-474.

23. Ma T, Xu X, Tang M, Jin Y, Shen W. MHBase: A Distributed Real-Time Query Scheme for 
Meteorological Data Based on HBase. Future Internet. 2016; 8(1):6.

24. Ma, Y., Rao, J., Hu, W., Meng, X., Han, X., Zhang, Y., Chai, Y., Liu, C. Proceedings of the 21st 
ACM international conference on Information and knowledge management. ACM; 2012. An 
efficient index for massive iot data in cloud environment; p. 2129-2133.

25. Markonis D, Schaer R, Eggel I, Müller H, Depeursinge A. Using MapReduce for Large-scale 
Medical Image Analysis. arXiv preprint arXiv: 1510.06937. 2015

26. McDonald C. An in-depth look at the hbase architecture. 2015

27. Mohamad, B., d’Orazio, L., Gruenwald, L. Proceedings of the 1st International Workshop on 
Cloud Intelligence. ACM; 2012. Towards a Hybrid Row-column Database for a Cloud-based 
Medical Data Management System; p. 2

28. Nishimura, S., Das, S., Agrawal, D., Abbadi, AEl. 2011 IEEE 12th International Conference on 
Mobile Data Management. Vol. 1. IEEE; 2011. Md-hbase: A scalable multi-dimensional data 
infrastructure for location aware services; p. 7-16.

29. Schmidt, R., Rella, M. International Conference on Asian Digital Libraries. Springer; 2011. An 
approach for processing large and nonuniform media objects on mapreduce-based clusters; p. 
172-181.

30. Soares, TS., Dantas, MA., De Macedo, DD., Bauer, MA. Enabling Technologies: Infrastructure for 
Collaborative Enterprises (WETICE), 2013 IEEE 22nd International Workshop on. IEEE; 2013. A 
Data Management in a Private Cloud Storage Environment Utilizing High Performance 
Distributed File Systems; p. 158-163.

31. Sun, J., Jin, Q. 2010 3rd international conference on advanced computer theory and engineering 
(ICACTE). Vol. 1. IEEE; 2010. Scalable rdf store based on hbase and mapreduce; p. V1-633.

32. Tripathy B, Mittal D. Hadoop based Uncertain Possibilistic Kernelized C-means Algorithms for 
Image Segmentation and a Comparative Analysis. Applied Soft Computing. 2016

33. Vavilapalli, VK., Murthy, AC., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T., Lowe, 
J., Shah, H., Seth, S., et al. Proceedings of the 4th annual Symposium on Cloud Computing. ACM; 
2013. Apache hadoop yarn: Yet another resource negotiator; p. 5

Bao et al. Page 19

Proc IEEE Int Conf Cloud Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Wang, B., Li, F., Hei, X., Ma, W., Yu, L. 2015 11th International Conference on Computational 
Intelligence and Security (CIS). IEEE; 2015. Research on storage and retrieval method of mass 
data for high-speed train; p. 474-477.

35. Wang S, Pandis I, Wu C, He S, Johnson D, Emam I, Guitton F, Guo Y. High dimensional biological 
data retrieval optimization with nosql technology. BMC genomics. 2014; 15(8):1. [PubMed: 
24382143] 

36. Yang CT, Shih WC, Chen LT, Kuo CT, Jiang FC, Leu FY. Accessing Medical Image File with Co-
allocation HDFS in Cloud. Future Generation Computer Systems. 2015; 43:61–73.

Bao et al. Page 20

Proc IEEE Int Conf Cloud Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Comparison of the default RegionSplitPolicy (IncreasingToUpperBoundRegionSplitPolicy) 

and our custom RegionSplitPolicy. The standard policy splits the data within a region 

equally based on the data in the region. The custom policy considers the projects, subjects, 

sessions and scans in the region and makes a split to maximize data co-locality.
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Fig. 2. 
Overall Structure of Hadoop/HBase/Zookeeper Cluster with the Proposed Custom Row Key 

and Region Split Policy
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Fig. 3. 
Custom HBase oriented MapReduce basing on input selected groups of scan volumes

Bao et al. Page 23

Proc IEEE Int Conf Cloud Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Throughput analysis for each of the test scenarios (104 – 812 datasets). (A) presents the 

number of datasets processed per minute by each of the scenarios as a function of the 

number of datasets selected for processing. (B) shows the fraction of time spent on overhead 

relative to the number of datasets.
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Fig. 5. 
Throughput analysis for all test scenarios (104 – 8,120 datasets). (A) presents the number of 

datasets processed per minute by each of the scenarios as a function of the number of 

datasets selected for processing. (B) shows the relationship of throughput according to actual 

wall time and theoretical minimum ideal solution time.
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Fig. 6. 
Throughput analysis for Hadoop scenarios (5,684 datasets) with different size of cluster (6 – 

10 nodes, each node have 12 cores). (A) presents the comparison between two Hadoop 

scenarios with custom key. (B) shows the relationship between two Hadoop scenarios and 

theoretical ideal solution.
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TABLE I

HBase architecture key concepts summary

Concept Comment

Table/HTable A collection of related data with a column-based format within HBase.

Region HBase Tables are divided horizontally by row key range into “Regions.” A region contains all rows in the table between 
the region’s start key and end key.

Store Data storage unit of HBase region.

HFile/Storefiles The unit of Store, which is collocated with a Hadoop datanode and stored on HDFS.

memStore When write data is uploaded to a HTable, it is initially saved in a cache as memStore. Once the cache size exceeds a pre-
defined threshold, the memStore is flushed to HDFS and saved as HFile.

HMaster HBase cluster master to monitor a RegionServer’s behavior for load balancing.Table operator. e.g., create,delete and 
update a table.

Regionserver Serves read/write I/O of all regions in a cluster node. When Regionservers collocate with Hadoop datanode, it can achieve 
data locality. Subsequently, most reads are served by the RegionServer from the local disk and memory cache, and short 
circuit reads are enabled.

Rowkey A unique identifier of a row record in table.

Column family Columns in Apache HBase are grouped into column families.

Column identifier The member in column family, also called as column qualifier. Multiple column identifiers can be used within one column 
family.
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TABLE II

DICOM datasets size info

Datasets Total Scan size (GB)

104 7.16

186 10.93

294 19.05

407 27.55

497 34.12

606 41

718 47.14

812 53.01

1624 106.02

Datasets Total Scan size (GB)

2436 159.03

3248 212.04

4060 265.05

4872 318.06

5684 371.07

6496 424.08

7308 477.09

8120 530.1
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TABLE III

Latency results in seconds for each of the four test scenarios.

Approach Grid Engine NAS Naive HBase Custom key/Standard split HBase Custom key/Custom split HBase

Latency(s) 4.76 19.02 3.29 2.56

Proc IEEE Int Conf Cloud Eng. Author manuscript; available in PMC 2017 September 05.


	Abstract
	I. Introduction
	II. Enhancements to the Apache Eco-system
	A. DICOM and NiFTI Overview and Key Challenges
	B. Apache HBase Overview and Key Challenges
	C. Modified Row Key Design
	D. Modified RegionSplitPolicy for Medical Imaging
	E. Putting the Pieces Together
	F. Generality of the proposed approach

	III. Evaluational Methodology and Experimental Results
	A. Testing Scenarios
	B. Hardware
	C. Data and Processing
	D. Apache Hadoop/HBase Experimental Setup for DICOM2NiFTI
	1) MapReduce Implementation of DICOM2NiFTI using HBase
	2) Guidelines used for Scaling Hadoop/HBase Cluster

	E. Results of Data Transfer Latency
	F. Data Processing Throughput for DICOM to NiFTI Conversion
	1) Overhead Considerations with the Hadoop Framework
	2) Upper Bound and Asymptotic Limits on Achievable Throughput

	G. Evaluating the Scalability of the Framework

	IV. Related Work
	A. Related Work involving Medical Imaging Applications
	B. Related Work in other Application Domains

	V. Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	TABLE I
	TABLE II
	TABLE III

