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Conscious visual perception is proposed to arise from the selective
synchronization of functionally specialized but widely distributed
cortical areas. It has been suggested that different frequency bands
index distinct canonical computations. Here, we probed visual percep-
tion on a fine-grained temporal scale to study the oscillatory dynam-
ics supporting prefrontal-dependent sensory processing. We tested
whether a predictive context that was embedded in a rapid visual
stream modulated the perception of a subsequent near-threshold
target. The rapid streamwas presented either rhythmically at 10 Hz, to
entrain parietooccipital alpha oscillations, or arrhythmically. We
identified a 2- to 4-Hz delta signature that modulated posterior alpha
activity and behavior during predictive trials. Importantly, delta-
mediated top-down control diminished the behavioral effects of
bottom-up alpha entrainment. Simultaneous source-reconstructed
EEG and cross-frequency directionality analyses revealed that this
delta activity originated from prefrontal areas and modulated poste-
rior alpha power. Taken together, this study presents converging
behavioral and electrophysiological evidence for frontal delta-
mediated top-down control of posterior alpha activity, selectively
facilitating visual perception.

top-down control | directional cross-frequency coupling | prefrontal
cortex | alpha oscillations | phase–amplitude coupling

Visual perception is flexible, selective, and rapidly integrates
sensory evidence with endogenous high-level expectations and

predictions (1, 2). It has been suggested that rhythmic brain activity
constitutes a key mechanism to coordinate information flow in the
human cerebral cortex by transiently forming task-relevant large-
scale networks (1). However, it is currently unclear how contextual
information is dynamically integrated to support visual perception.
Numerous studies have shown that visual perception critically de-
pends on prestimulus alpha-band (8–12 Hz) activity (3–7). The
gating-by-inhibition hypothesis postulates that alpha serves as a
mechanism to route information to task-relevant cortical sites (8)
but might also be under top-down control (6, 7). However, it is
currently unclear which cortical regions and mechanisms mediate
the directed top-down control of alpha oscillations (2). It has been
suggested that slow-frequency activity in the delta range (<5 Hz)
might reflect a mechanism for endogenous attentional selection and
predictions (9, 10). In particular, endogenous low-frequency en-
trainment is thought to reflect a substrate of top-down processing
(11–14). Importantly, endogenous entrainment does not require
rhythmicity in the input stream but reflects an intrinsic mechanism
to enable predictions (15). Several studies have demonstrated that
visual perception cycles as a function of the alpha phase but only a
few reports have demonstrated that multiple rhythms modulate
behavior on a fine-grained temporal scale (5, 16–19).
At present, it is uncertain how different temporal scales interact

to integrate information and support high-level visual perception.
The concept of cross-frequency coupling (CFC), where the phase
of a low-frequency oscillation modulates the amplitude of a faster
oscillation, may constitute a key element for spatiotemporal or-
ganization in the human cortex (20) but has several methodolog-
ical limitations that must be considered (21–23).

Our goal was to disentangle the role of alpha oscillations in
contextual processing and anticipatory attention (24). We sought
to identify a mechanism that could mediate long-range top-down
control of posterior alpha activity (2, 25). We hypothesized that if
the underlying functional architecture is rhythmic in nature, then
multiple rhythms should modulate behavior and possibly arise
from distinct cortical areas (2, 26).
In a visual target detection task (Fig. 1A), we manipulated the

bottom-up sensory evidence by titrating the target luminance to
perceptual threshold as well as the degree of high-level top-down
predictions (27). Previously, it had been demonstrated that pa-
tients with prefrontal cortex (PFC) lesions were unable to use a
predictive visual sequence (clockwise left-, up-, rightward facing
triangles) in this task to guide behavior, suggesting a key role of the
PFC in using predictive information (27). Importantly, in the
current study the visual stream was presented either arrhythmically
or at 10 Hz to drive cortical alpha activity in a bottom-up manner,
but the visual stream did not contain temporal information about
the upcoming target. Crucially, we sampled the resulting behavior
over a time course of 850 ms to study the temporal evolution of
target detection performance. We predicted that the 10-Hz flicker
entrains cortical alpha activity and enhances perceptual fluctua-
tions in the alpha band. We expected that the predictive sequence
modulates this rhythmic sampling and we considered three possible
models (Fig. 1B): (model 1) a suppression of rhythmic sampling in
the alpha range; (model 2) an alpha-independent enhancement; or
(model 3) a rhythmic comodulation. If higher cognitive functions
operate in a rhythmic mode, then perceptual alpha cycles should be
modulated by a slower rhythm arising from distinct cortical areas,
thus favoring model 3. An interaction of prediction and rhythmicity
would indicate an active role of alpha oscillations for top-down
control.

Significance

Neural oscillations have been shown to support a range of cog-
nitive abilities. Here we demonstrate that delta activity (2–4 Hz) in
the prefrontal cortex tracked the current task context and mod-
ulated sensory processing in a top-down manner. We show that
frontal delta and parietooccipital alpha (8–12 Hz) oscillations are
functionally coupled and jointly guide visual perception to in-
tegrate sensory evidence with current task demands. We ob-
served strong moment-to-moment behavioral fluctuations, which
cycled at the rate of the endogenous prefrontal oscillatory brain
activity. Our findings suggest that neuronal oscillations provide
the functional basis for context-dependent visual perception.
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Results
Participants (n = 18) were asked to detect a near-threshold target
occurring after a stimulus train. The last three items of the stream
could either carry the predictive sequence (clockwise rotating
triangles) (27) or not (Fig. 1A). The stimulus train was presented
at either 10 Hz or arrhythmically. We probed 25 bins in steps of
34 ms after the offset of the last item of the flicker sequence to
study the temporal evolution of the hit rates.

Predictive Context Facilitates Behavioral Performance. Behavioral
performance across all sampled bins was assessed by means of two-
way repeated measures ANOVAs with the factors context (pre-
dictive/nonpredictive) and rhythmicity (rhythmic/arrhythmic). We
focused on hit rates and reaction times in line with previous reports
(5, 18) to obtain behavioral time courses. We found a significant
effect of context (F1,17 = 17.96, P = 0.0006, η2 = 0.4687), indicating
higher hit rates for predictive than nonpredictive trials (Fig. 1 C
and D). No effect for rhythmicity was observed (F1,17 = 0.09, P =
0.7674, η2 = 0.0003) and the interaction was not significant (F1,17 =
3.13, P = 0.0947, η2 = 0.0053). In addition, predictive context also
facilitated reaction times (Fig. S1).

Perceptual Alpha Cycles Are Modulated by Lower Frequencies During
Top-Down Processing. Spectral differences between conditions were
analyzed by transforming the data into frequency space (Fig. 1E
and Fig. S1A, for individual spectra). First, we compared the mean
power in the canonical alpha band (8–12 Hz) between conditions
by means of a two-way repeated measures (RM)-ANOVA (Fig.
1F). We found significantly lower values in the alpha range for the
predictive context (F1,17 = 6.67, P = 0.0193, η2 = 0.1218), while
neither rhythmicity nor the interaction had a significant influence
(rhythmicity: F1,17 = 0.95, P = 0.3439, η2 = 0.0176; interaction:
F1,17 = 0.64, P = 0.4333, η2 = 0.0086). These results indicate that
predictive contexts decreased perceptual cycles in the alpha range.
In contrast to previous studies (18), we did not find alpha-related
modulations of reaction times (Fig. S1B). Notably, the overall
highest power in the alpha range was observed for the 10-Hz flicker
condition without predictive context, in accordance with the hy-
pothesized outcome that sensory alpha entrainment should in-
crease perceptual alpha cycles (26, 28) (Fig. 1 B and E).
In a more data-driven approach, we compared the conditions by

means of a cluster-based permutation test to estimate the exact
spectral extent of the observed differences. We found that the
power decrease spanned the high alpha range from 10 to 15 Hz
(P = 0.0016, d = −0.9124), while a weaker effect was observed in
the 2- to 4-Hz delta range (P = 0.0576, d = −0.7301). Subsequently,
we aimed to investigate the temporal evolution of the observed
spectral differences. Thus, we filtered the individual hit rate time
courses in the 2- to 4-Hz and the 10- to 15-Hz ranges (Fig. 2A).
The filtered time courses indicated that the alpha amplitude varied
over time and was not constant (Fig. 2 A and B).
We then assessed (i) whether there is a systematic relationship

between the slow fluctuations in the delta range and variations in
the high alpha amplitude and (ii) whether this relationship is more
pronounced for predictive versus nonpredictive contexts. We first
analyzed the distribution of alpha amplitude relative to the delta
phase across all conditions (Fig. 2C). We binned the delta phase
into seven linearly spaced bins and found that the alpha amplitude
varied as a function of the delta phase (one-way RM-ANOVA:
F2.25, 38.21 = 8.21, P < 0.0001, η2 = 0.3256). To quantify conditional
differences, we calculated the cross-frequency correlation between
the delta phase and the instantaneous phase of the alpha envelope
(Fig. S2A). We found stronger correlations for predictive contexts
(Fig. 2D; F1,17 = 4.65, P = 0.0456, η2 = 0.0645), but no main effects
of rhythmicity and no interaction effect (rhythmicity: F1,17 = 1.28,
P = 0.2735, η2 = 0.0289; interaction: F1,17 = 0.01, P = 0.9311, η2 =
0.0001). A difference comodulogram indicates that this effect was
most pronounced in the delta and high alpha range (Fig. 2E and

Fig. S2B). These findings clearly point toward a rhythmic comodu-
lation of perceptual alpha cycles consistent with model 3 (Fig. 1B).
However, some aspects of the data also support model 1 (alpha
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Fig. 1. Behavioral task, hypotheses, and behavioral performance. (A) Schematic
task design. Every trial consisted of 14 rapidly flashed triangles (rhythmically at
10 Hz or arrhythmically). After a variable onset delay (34–850 ms in 34-ms steps), a
downward facing triangle was presented at perceptual threshold. Participants
had to indicate whether they perceived the target. (B) Schematic task outcome.
We predicted that visual detection performance would vary as a function of the
alpha phase over time (arrhythmic nonpredictive) and that this effect could be
enhanced through 10-Hz visual stimulation (rhythmic nonpredictive). For the top-
down condition (arrhythmic predictive), we hypothesized three potential out-
comes: (i) participants suppress perceptual alpha cycles (model 1), or (ii) they
perform better, but still exhibit alpha cycles (alpha independent modulation;
model 2), or (iii) top-down processing operates in a rhythmic mode, resulting in a
comodulation by a second, slower rhythm (model 3). An interaction of rhythmicity
and prediction would indicate a causal role of alpha oscillations for top-down
control. (C) Grand-mean hit rate time courses for rhythmic (green) and arrhythmic
(orange) predictive trials. The gray dashed line at 70% indicates the intended
behavioral performance. (D) Grand-mean hit rates for nonpredictive trials. Same
conventions as in C. (E) Hit rate power spectra for all four conditions. Note the
strongest peak around 10 Hz is elicited by the nonpredictive rhythmic condition.
(F) Average hit rate power in the canonical 8- to 12-Hz alpha range highlights a
main effect of predictive context, with overall lower values in the alpha range.
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suppression, Fig. 1 E and F), but we found no behavioral evidence
supporting model 2.

Cortical Sources of Alpha and Delta Signatures. To quantify the EEG
correlates of the behavioral effects, we used time–frequency analysis
and first focused on phase-dependent metrics. Since we only ob-
served a main effect of predictive context in the behavioral metrics,
we pooled rhythmic and arrhythmic trials to assess the intertrial
phase coherence between predictive and nonpredictive contexts
(Fig. 3A and Fig. S3; Insets depicts all four conditions). A cluster-
based permutation test revealed a large cluster spanning several
channels and time–frequency pairs (Fig. 3A; P < 0.001). The sig-
nificant cluster started to emerge around the onset of the predictive
sequence and was present during the entire target period, with two
spectral peaks at 3–4 Hz and around 8–14 Hz. The delta effect
emerged from prefrontal areas centered around the right middle
frontal gyrus, while the alpha source was found in ventromedial
occipital areas, overlapping with regions that responded most
strongly to the flicker stimulus (Fig. 3 B and C and Fig. S3 B–D).
This phase effect was not accompanied by differences in the event-
related potentials or spectral power (Fig. S4 A and B). Taken to-
gether, the electrophysiological findings do not support model 1
(alpha suppression), but support the idea that multiple, possibly
interacting rhythms are present during top-down processing.

Prefrontal-Dependent Modulation of Parietooccipital Alpha Activity.
Therefore, we assessed how the frontal delta signature and the
posterior alpha effect might be functionally related. First, we de-
fined a seed region in the right middle frontal gyrus and calculated

whole brain interareal phase-locking values between the frontal
delta phase and the instantaneous phase of the alpha envelope
separately for the predictive and the nonpredictive conditions (29).
We found the strongest conditional difference over medial parie-
tooccipital areas (Fig. 4A). Posterior alpha amplitudes were higher
during the trough of the frontal delta (Fig. 4B). Next, we quantified
the directionality of this effect, i.e., whether frontal delta leads or
lags the posterior alpha envelope [phase slope index (PSI)] (30).
We found an increased PSI for directional delta–alpha correlations
for predictive (Fig. 4C and Fig. S5; t17 = 2.18, P = 0.0438, d =
0.7260), but not for nonpredictive trials (t17 = −0.10, P = 0.9236,
d = −0.0324). This finding indicates that the frontal delta phase
only predicted the posterior alpha amplitude during top-down
processing using predictive information. Visual inspection of sin-
gle trials indicated alpha envelope peaks coincide more regularly
with delta troughs for predictive contexts but not for the non-
predictive condition (Fig. 4 D and E). This pattern mimicked the
delta–alpha interaction as observed in behavioral time courses and
strongly supports the idea that cognitive processing operates in a
rhythmic mode in accordance with model 3 (Fig. 1B).

Correlated Delta–Alpha Signatures Mediate Top-Down Control. We
assessed the behavioral relevance of the observed delta and alpha
signatures. Previous studies demonstrated that visual detection
performance is enhanced in states of low alpha power and at the
trough of the alpha oscillation (3, 4, 8). We calculated the hit rate
separately for predictive and nonpredictive contexts as a function
of the instantaneous frontal delta phase and the instantaneous
posterior alpha phase at target onset (13) and compared the phase
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resolved hit rates by means of cluster-based permutation test. We
found that hit rates were higher during the trough of the alpha and
the peak of the frontal delta for the predictive over the non-
predictive condition (P = 0.0030, d = 1.0005; Fig. 5). This provides
evidence that the PFC-mediated decrease of the posterior alpha
power (Fig. 4) has direct behavioral relevance.

Discussion
The current study presents converging behavioral and electrophysi-
ological evidence for delta-mediated top-down control of posterior
alpha activity in visual perception. The behaviorally relevant delta
rhythm originated from prefrontal cortical areas during predictive
context-dependent top-down processing and was directly visible in
spectrally resolved behavioral time courses. Notably, bottom-up
sensory entrainment enhanced perceptual alpha sampling only when
no predictive context was present (Fig. 1 E and F). These findings
indicate that delta-mediated top-down control governs posterior
alpha activity independent of exogenous interference (Fig. 2D). We
did not observe an interaction of prediction and rhythmic stimula-
tion, which implies a functional separation of top-down and bottom-
up systems supporting visual perception.
Our results are in accordance with previous lesion studies, which

indicated that high-level visual perception is PFC dependent (27,
31), as well as reports suggesting that long-range endogenous delta
activity may constitute a neural correlate of directed top-down
control (15). For example, Johnson et al. (31) reported that pre-
frontal damage diminished long-range top-down control that was
associated with oscillatory activity in the delta–theta range (2–7 Hz).
Our findings support the idea that the rich spatiotemporal

structure of neuronal activity reflects a functional architecture
where distinct frequency bands dynamically support different as-
pects of visual processing (1, 2).

The Rhythmic Nature of Cognition. It has been argued that low-
frequency neuronal oscillations might reflect a cortical mechanism
for sensory selection, attentional allocation, and evidence updating
during decision making (9, 11, 13, 14, 32). If the underlying func-
tional brain architecture is inherently rhythmic, then we should be
able to observe rhythmic patterns in behavior. This has been re-
cently demonstrated for visual perception (4, 5) as well as for high-
level attention (16–18). Furthermore, neuronal oscillations have
been suggested to facilitate sensory predictions and temporal ex-
pectations (15, 33). For example, anticipatory alpha modulations
were observed during top-down processing (24), but it remained
unclear how top-down control is mediated (2). Inspection of single
trials indicated that the endogenous delta signature was not strictly
sinusoidal, but it exhibited low-frequency characteristics (3–4 cycles
per second), which modulated the instantaneous posterior alpha
power as well as the perceptual cycles. The overall best perfor-
mance was achieved when the target was presented during the peak
of the frontal delta, which in turn down-regulated the posterior
alpha amplitude facilitating visual perception (4).
Notably, this low-frequency response was not confounded by

rhythmic sensory delta entrainment and reflects an endogenous
cue-guided response (15, 34). Previous studies in the auditory
domain had localized the origin of the low-frequency activity to
sensory areas and not frontal regions (13, 14, 35) but were
confounded by the presentation rate, which likely evoked ac-
tivity (14, 35, 36). Given that exogenous stimulation induces a
strong phase alignment (Fig. S3 B and C), we speculate that
this could have masked frontal contributions (36, 37). Our
findings are also in line with the proposal that the absolute
voltage gradient might be a better predictor of instantaneous
cortical excitability than power or phase information of band-
limited signals (38). We speculate that the observed delta sig-
natures might reflect slow cortical potentials, which could be
functionally similar to up and down states. These observations
highlight the need for single trial analyses to better understand
the dynamic time course of human cognition (39). We sampled
behavioral performance over 850 ms, which does not allow
assessing fluctuations below 2 Hz; hence, we speculate that
exact frequency might be influenced by the experimental tim-
ing (17, 18).

The Functional Interaction of Different Time Scales in the Human Brain.
Brain activity is inherently rhythmic and spans several temporal
scales. The concept of CFC has been proposed as one solution for
information integration across several spatiotemporal scales (20).
Recently, it has been argued that several methodological limitations
and nonsinusoidal signal characteristics might give rise to spurious
CFC (21–23), in particular, when the CFCmetric is derived from only
one signal (e.g., the behavioral time course in Fig. 2) or accompanied
by spectral power differences (23). Here, we observed power de-
creases that were associated with stronger correlations, which is less
of a concern than simultaneous power and cross-frequency correla-
tion increments (21–23). We argue that cross-frequency correlations
of a single time series provides valuable information about the non-
linear characteristics of the underlying signal, which might otherwise
not be captured (21). Using this approach enabled us to disentangle
the role of delta and alpha signatures in visual perception. We
identified the same spectral signatures in behavior and in a frontal–
parietal–occipital network. While the observed effects are correlative
in nature, we believe that the use of nonlinear cross-frequency cor-
relation analyses provides a tool to capture complex neural dynamics
underlying goal-directed behavior (21).

Confounds and Limitations. Frequency analyses assume statio-
narity, which is often violated by neuronal time courses (Fig. 4
D and E). Hence, time–frequency representations rely on short
windows where stationary signals can be assumed. Visual in-
spection of Fig. 4 D and E indicated that a 500 ms was a
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effect in the alpha-band emerged from ventromedial parietoocciptal areas.
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reasonable window to capture the short-lasted delta effect with
three to four cycles. Behavior was probed at ≈30 Hz. Thus, we
could only resolve rhythmic fluctuations of up to 15 Hz and the
observed signal modulation at >10 Hz could in theory also con-
stitute a broad-band shift (19) or be the result of sharp transients in
the discretely sampled signal (40). Notably, we observed a similar
peak in the intertrial coherence (ITC) spectra, which suggests a
circumscribed effect in the high alpha range and previous reports
have indicated that delta-to-beta coupling might underlie temporal
prediction accuracy (41). However, these limitations equally apply
to all four experimental conditions. Taken together, the presented
evidence is correlative in nature and the limited spatial resolution
of noninvasive EEG hampers strong neuroanatomical inferences.
However, we used beamforming techniques to reconstruct source
level activity and observed a clear delineation of frontal and pos-
terior clusters. Notably, the frontal delta signature was lateralized
to the right in accord with clinical observations of a right hemi-
spheric lateralization for attention (hemispatial neglect syndrome)
(42). Invasive imaging techniques with better spatiotemporal res-
olution that have access to frontal areas, such as electro-
corticography, might allow a better spatial characterization of the
observed delta signatures (37). In the future, lesion (31) or brain
stimulation (28) approaches would help to establish a causal re-
lationship between slow oscillations and top-down control.

Conclusions
In summary, our results demonstrate that temporally coordinated
delta and alpha activity subserves conscious visual perception and
top-down processing. In particular, we demonstrated that top-
down processing is associated with delta-mediated long-range
control of posterior alpha oscillations facilitating visual percep-
tion. Our results show that the functional cortical architecture is
profoundly rhythmic, but not necessarily sinusoidal (21). The
findings support the concept of multiplexing of different cortical
functions across several temporal scales to enable efficient
multisite communication in the brain (1). Disturbances in

large-scale network communication and low-frequency phase
concentration have previously been implicated in several
neuropsychiatric disorders, such as schizophrenia (43). In the
future, a better understanding of large-scale network impairments
might offer the possibility to individually tailor therapeutic inter-
ventions by means of frequency-specific noninvasive brain stimu-
lation (28).
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Materials and Methods
Participants. Twenty healthy volunteers (7 female, 13 male, mean age: 20.40 ±
2.28 y, mean ± SD) were recruited from the University of California, Berkeley
and were financially compensated for their participation. All participants gave
written informed consent according to the local ethics committee (Berkeley
Committee for Protection of Human Subjects Protocol No. 2010–02-783) and
the Declaration of Helsinki. They all had normal or corrected-to-normal vision.

Stimuli, Procedure, and Data Analysis. Detailed information can be found in SI
Materials and Methods.
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