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The macroscopic friction of particulate materials often weakens
as the flow rate is increased, leading to potentially disastrous
intermittent phenomena including earthquakes and landslides.
We theoretically and numerically study this phenomenon in sim-
ple granular materials. We show that velocity weakening, corre-
sponding to a nonmonotonic behavior in the friction law, µ(I), is
present even if the dynamic and static microscopic friction coeffi-
cients are identical, but disappears for softer particles. We argue
that this instability is induced by endogenous acoustic noise,
which tends to make contacts slide, leading to faster flow and
increased noise. We show that soft spots, or excitable regions
in the materials, correspond to rolling contacts that are about to
slide, whose density is described by a nontrivial exponent θs. We
build a microscopic theory for the nonmonotonicity of µ(I), which
also predicts the scaling behavior of acoustic noise, the fraction
of sliding contacts χ, and the sliding velocity, in terms of θs. Sur-
prisingly, these quantities have no limit when particles become
infinitely hard, as confirmed numerically. Our analysis rationalizes
previously unexplained observations and makes experimentally
testable predictions.
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Acentral property of particulate materials is their macro-
scopic friction (1, 2). In velocity-strengthening materials,

friction grows with the deformation rate, and flow is stable. By
contrast, velocity-weakening materials are susceptible to insta-
bilities under loading, including stick–slip. This classification is
believed to distinguish faults that are prone or not to earth-
quakes (3), which ultimately corresponds to the shear of a gran-
ular material made of rocks and debris—the gouge—contained
within the narrow fault between two tectonic plates. The Rice–
Ruina rate-and-state model can describe both kinds of frictional
behavior (4). It is, however, a heuristic model, and building a
microscopic theory to justify a priori which materials weaken or
strengthen under flow remains a challenge. To make progress, it
is natural to consider well-controlled granular materials such as
glass beads or sand, which have received considerable attention
in recent decades. In these systems, an important result comes
from dimensional analysis: Assuming that grains are strictly hard
and that this limit is not singular, the macroscopic friction or
stress ratio µ≡σ/p, where σ is shear stress and p is pressure,
can be shown to depend on strain rate ε̇ and pressure only
via the dimensionless inertial number I ≡ ε̇D

√
ρ/p. Here D is

mean grain diameter, and ρ is grain density (5–7). The consti-
tutive relation µ(I ) has been extensively studied in the range
I ≥ 10−3 and is found to be a growing function of I , corre-
sponding to a velocity-strengthening material. However, several
recent experiments have reported nonmonotonic behavior of
µ(I ) for very small I (8–10), corresponding to velocity weaken-
ing. There is currently no microscopic theory rationalizing these
observations.

As depicted in Fig. 1A, the nonmonotonic behavior of µ(I )
must lead to hysteresis effects when µ is repeatedly cycled around
its quasi-static value. Such hysteresis is well known to char-
acterize the jamming transition of granular materials. Indeed,
the maximum angle of repose of a granular layer θstart [corre-
sponding to a macroscopic friction µstart = tan(θstart)] is larger
than the angle θstop where avalanches stop [corresponding to

µstop = tan(θstop)] (11). (Note that θstart is measured by increas-
ing the angle from a configuration that had stopped flowing
at θstop ; otherwise, it is not well defined and depends on sys-
tem preparation.) Several properties of this hysteresis should
be explained by a microscopic theory: (i) Externally applied
vibrations (8, 10, 12, 13) can eliminate hysteresis, if the vibra-
tion velocity passes a threshold amplitude (13). (ii) Hystere-
sis appears to become very small if inertial effects are negligi-
ble (14). (iii) There is no evidence of velocity weakening for
frictionless particles (15), as confirmed below. [This statement
does not contradict the observation that the macroscopic fric-
tion at which yielding occurs depends on preparation (16). How-
ever, true velocity weakening in steady state without friction
has only been observed for discontinuous, unphysical dissipation
mechanisms (17).]

In this letter, we build a microscopic theory that explains these
observations, and justify why, for hard enough frictional parti-
cles, µ(I ) is nonmonotonic at small inertial numbers. Our results,
which we test using the discrete element method, hold even if
the friction between two particles is assumed to be a simple
Coulomb law with identical static and dynamic friction coeffi-
cients. This demonstrates that hysteresis emerges as a collective
effect, even when absent at the contact level. Our approach is
based on two previous fundamental insights. First, acoustic emis-
sions generated by particle collisions during flow can fluidize
the granular material, reducing dissipation. This idea was pro-
posed by Melosh (18, 19) to explain why the macroscopic friction
µ can be reduced by a factor of order 10 from its static value
during earthquakes. However, the quantitative treatment of this
effect has been criticized (20), and the role of self-fluidization in
regular granular materials is unclear, although self-fluidization
was experimentally shown to affect the density of the flowing
material (21).

To quantify this role, we will use a second, recent insight: Ele-
mentary excitations are a key feature of amorphous solids; in
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Fig. 1. (A) Sketch illustrating that nonmonotonic macroscopic friction leads
to hysteresis. In a stress ramp from µ= 0, flow will begin at µstart , while,
in a stress decrease from large I, flow will stop at µstop and a finite I.
(B and C) Numerical results for µ(I, ∆)− µ(I0, ∆) confirm the existence of a
nonmonotonic curve. In B, N = 103.3 and ∆ is varied, while, in C, ∆≈ 10−4

and N is varied. I0 = 2× 10−5 is the smallest simulated I. (D) The qualitative
behavior of µ(I, ∆) is reproduced by a phenomenological model (Eq. 2).

particular, their density affects a material’s stability and its sus-
ceptibility to plastic flow (22–24). These excitations correspond
to soft spots—equivalent to dislocations in metals—where local
rearrangements can be triggered if the stress is increased, or if
mechanical noise is present. For hard frictionless particles, exci-
tations correspond to contacts carrying a small force, which are
thus susceptible to opening (22, 25, 26). Here we will argue
that, for frictional granular materials, another kind of excita-
tion appears, associated with contacts that are very close to slid-
ing. Denoting by δf the distance to sliding of a contact, we
find that the distribution of excitations follows P(δf )∼ δf θs with
θs ≈−1/3. From this knowledge, we can compute the effect
of mechanical noise on the structure, which in turn affects
the noise itself. Ultimately, this leads to an experimentally
testable microscopic theory of velocity weakening and mechan-
ical noise. In addition, several nontrivial exponents are pre-
dicted that characterize noise and other microscopic quanti-
ties, which we find to be in good agreement with our numerical
results.

Numerical Evidence for Nonmonotonic Flow Curves
The macroscopic friction µ(I ) has been studied extensively for
inertial numbers I ≥ 10−3 (5–7, 27). In the range 0.1≥ I ≥ 10−3,
it follows

µ(I ) ≈ µc + c1I
αµ . [1]

This velocity-strengthening behavior is caused by an increase in
the dissipation induced by collisions as I increases (28). There is,
however, no microscopic theory for the value of αµ, except for
frictionless particles (22). For frictional particles, one observes
αµ ≈ 0.85 (29), often approximated as αµ = 1.

Here we seek to numerically study if µ(I ) becomes nonmono-
tonic in the quasi-static regime I ≤ 10−3. However, if velocity
weakening is indeed present, then homogeneous flow is unstable,
and shear bands or chaotic behavior are expected. Experimental
reports of velocity weakening use a setup with stress gradients
(8–10), which has been argued to stabilize flow but makes quan-
titative analysis challenging. Here, instead, we use the fact that
shear bands have a minimal thickness (typically of order 10 grain

diameters wide), and that flow can be stabilized by considering
small systems. Then, if µ has an instability, the nonmonotonicity
will be most pronounced for small N , and will decay as larger
systems are considered.

In practice, our numerical results are created with the stan-
dard Discrete Element Method. We work in spatial dimension
d = 2 (our theoretical conclusions do not depend on d). The fric-
tional disks follow static Coulomb friction: At each contact, the
transverse component fT and normal component fN must sat-
isfy |fT | ≤µp fN , where we take the Coulomb friction coefficient
to be µp = 0.3. This coefficient is the same for static and dynamic
motion. Systems are simply sheared by horizontal motion of walls
at the top and bottom domain edges, on a periodic domain. The
confining pressure is controlled by fixed vertical forces exerted
upon the walls. Particles have linear elastic–dashpot interactions,
modeling a finite restitution coefficient e < 1 and a particle stiff-
ness k . ∆ = p/k , which characterizes the typical contact deflec-
tion relative to the grain diameter, is varied from ∆≈ 10−2 to
∆≈ 10−5.

Our results for µ(I ) are shown in Fig. 1 B and C. A cru-
cial finding is that nonmonotonicity is indeed observed, but
disappears if particles are too deformed (large ∆). For ∆ ≈
10−4, 10−3, we find that the minimum occurs at I∗≈ 10−3, the
same inertial number below which intermittency and large fluc-
tuations were previously observed in simulations (6). We mea-
sure the amplitude of nonmonotonicity as ∆µhyst ≡µ(I0)−µ(I∗)
where I0 = 2× 10−5 is the smallest inertial number we probe. As
expected, ∆µhyst increases as smaller systems are considered, but
I∗ does not vary significantly, as shown in Fig. 1C and Friction and
System-Size Dependence of Hysteresis Magnitude.

By contrast, for frictionless particles, velocity weakening is
essentially absent, or at least much weaker than for frictional par-
ticles, as shown in Figs. S1 and S2.

The existence of a minimum at any finite I∗ implies a dra-
matic behavior as the shear stress is increased from the solid
phase, as illustrated in Fig. 1A; in particular, flow is predicted
to start at a finite inertial number I ≈ 2× 10−3. Essential ques-
tions include what microscopic mechanism leads to a minimum
of µ(I ) at I∗, and why does this instability disappear when ∆
increases?

Mechanism for Instability in Granular Media
We argue that these questions are naturally explained if one con-
siders the role of the acoustic noise endogenously generated in
flow, as measured, for example, in ref. 21. In dense flows of hard
particles, a network of contacts is formed that constrains motion:
Particles cannot overlap and cannot slide if the considered con-
tact satisfies the Coulomb criterion. For infinitely hard particles,
the dynamics only occurs along floppy modes for which these
constraints are satisfied (30). For any finite ∆, there will exist
small-amplitude motion orthogonal to the floppy modes, which
corresponds to vibrations of the contact network. The forma-
tion of new contacts through collisions pumps energy into these
vibrations, which eventually decays due to grain viscoelasticity.
Henceforth, we call this vibrational energy per particle “mechan-
ical noise” and denote it Enoise . If this noise is not negligible
with respect to the characteristic potential energy in the con-
tact, Ep ∝ ∆2, it will affect the contact network and “lubri-
cate” it (21, 31). In turn, this lubrication will facilitate parti-
cle motion, leading to faster flow, stronger collisions, and larger
noise. Our contention is that this positive feedback is respon-
sible for instability in the flow curve and its associated hys-
teresis. This view naturally explains (i) why increasing particle
deformability diminishes hysteresis, since it increases the poten-
tial energy which makes contacts less sensitive to noise; (ii) why
immersing the grains in a viscous fluid reduces hysteresis, since
it damps vibrations faster; and (iii) why externally applied vibra-
tions can eliminate hysteresis, since, if the external noise is much
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Fig. 2. (A) The density of sliding contacts, χ, depends both on I and ∆.
(B) This dependence can be collapsed by plotting χ vs I/∆1/4. The dotted
line shows Eq. 5. If finite size effects are taken into account (χc > 0), theory
predicts the dash-dotted line (Finite-Size Effects in χ). Here N = 103.

larger than the endogenous noise, the positive feedback becomes
negligible.

We now argue more specifically that the dominant lubricating
effect of mechanical noise is to intermittently remove rolling con-
straints, thus increasing the fraction of sliding contacts χ. In pre-
vious work, such an increase was indeed observed in response to
a transient forcing (32). It is important to note that, with respect
to noise, rolling constraints and no-overlap constraints are qual-
itatively different. Noise can lead to fluctuations in the distance
between two particles in contact, but will never allow them to
eventually penetrate each other. By contrast, vibration leading
to intermittent stick–slip motion at a contact yields net relative
motion between particles. This is illustrated by an object sitting
on an inclined plane, which will eventually slide down if the plane
is vibrated sufficiently. In our approach, this distinction explains
why frictionless particles do not appear to present noticeable
hysteresis, as shown in Friction and System-Size Dependence of
Hysteresis Magnitude (15). (For very soft and elastic particles,
other mechanisms than the removal of constraints described here
could lead to a finite amount of hysteresis.)‡

If χ is indeed controlled by mechanical noise, then it should
be a function of both I and ∆. This prediction is confirmed
in Fig. 2, which shows that χ is a function of I /∆1/4. Intrigu-
ingly, this result implies that the hard sphere limit ∆→ 0 is
singular, at least for some microscopic properties. In Micro-
scopic Description of Mechanical Noise, we will build a quanti-
tative theory of mechanical noise and explain this scaling prop-
erty. First, we argue why this behavior of χ can indeed generate
hysteresis.

Consider the following Gedankenexperiment: The stress is
increased in a granular solid. According to Eq. 1, flow will start
when µ reaches µc . Now, consider the same protocol, but with
vibrations imposed on the sample. Because of this noise, some
contacts that were close to the Coulomb cone, as pictured in
Fig. 3A, will intermittently slide, leading to an overall increase
of the fraction of sliding contacts, χ. Being less constrained, the
material will be less stable and start flowing earlier, for some
µ̃c < µc . We write µ̃c =µcg(χ), where g is a decreasing function
and g(0) = 1. The same reduction of macroscopic static fric-
tion must apply when noise is endogenously generated in flow.
This effect can be included in Eq. 1, which now becomes (taking
αµ = 1 for simplicity)

‡For highly deformable particles, flow occurs via a succession of saddle-node bifurca-
tions in the energy landscape, called shear transformations. Mechanical noise can then
speed up flow by allowing jumps over barriers of potential energy, before these are
destroyed by shear. This mechanism can cause hysteresis for very weak damping e ≈ 1;
see ref. 33 for a recent discussion. In our framework, such effects can be accounted for
by replacing χ by the relative mechanical energyR in Eq. 2. However, for realistic resti-
tution coefficient and particle hardness, this effect appears negligible, since it should
exist in frictionless systems in which velocity weakening is essentially absent.

µ(I ) ≈ µ̃c + c1I = µc + µc(g(χ)− 1) + c1I . [2]

In this equation, the last term is the usual velocity-strengthening
effect due to the increased dissipation induced by collisions. The
second-to-last term instead is velocity weakening. To illustrate
this point, we consider a linear model g(χ) = 1 − bχ. Qualita-
tive results do not depend on the parameter b; here we choose
b = 0.3. Other parameters entering Eq. 2 are fixed by previous
observations to c1 ≈ 1.4, µc ≈ 0.2 (Fig. S3). Using fits to χ from
Fig. 2 (shown in Fig. S3B), Eq. 2 predicts the curves shown in Fig.
1D. We see that the qualitative features of µ(I ) are captured:
µ has a minimum, whose depth, but not its location, depends
strongly on ∆.

Microscopic Description of Mechanical Noise
Our approach to compute the mechanical noise and its effect on
χ is illustrated in Fig. 3B. We proceed in three steps. First, we
express the mechanical noise in terms of two kinetic properties:
the dimensionless velocity fluctuations L = Vr/(ε̇D) (where Vr

is the typical relative velocity between neighboring particles, D
is the particle size, and ε̇ is the strain rate) and εv , the character-
istic strain at which particles collide and change direction. Sec-
ond, we use a previous argument based on energy balance relat-
ing χ to the normalized typical sliding velocity LT . Finally, we
compute the density of sliding contacts χ induced by mechanical
noise. This requires knowing the density of rolling contacts at a
small distance δf to sliding. From these three coupled equations,
quantities of interest are derived.

Along the way, we make two approximations. First, we assume
that the characteristic velocity L with which particles collide
is identical to the characteristic sliding velocity LT . Assuming
that there is only a single velocity scale in flow is essentially
a mean-field approximation, known to be correct for friction-
less particles (22) but not exact for frictional ones (28). Second,
we assume that the vibrational noise is damped at a rate 1/τ
independently from the distance to jamming, which allows us
to estimate the scaling of Enoise directly in terms of the energy
dissipated in collisions. The utility of these approximations is
supported by the good comparison between predictions and
numerics.

Computing Mechanical Noise from Kinetics. Enoise characterizes
the density of vibrational energy of the contact network. The
power injected in vibrational modes is supplied by collisions at a
rateDcoll . It can be estimated as the product of the kinetic energy
of a particle ∼L2ε̇2mD2 times the collisional rate ∼ε̇/εv , lead-
ing to Dcoll ∼ L2ε̇3mD2/εv (22, 28). Introducing a time scale
τ at which this vibrational energy is dissipated into heat, we get
the estimate Enoise = τDcoll . We make the simplifying assump-
tion that τ does not depend on I , characterizing the distance to
jamming. Then dimensional analysis implies that τ = C0m/ηN ,
where ηN is the damping coefficient of the particle interaction.
In our approximation, C0 is a constant, which we expect to be

A B

Fig. 3. (A) Sketch of Coulomb cone. Mechanical noise of magnitude R
induces force fluctuations of a size δf(R). Contacts within this distance
of the edge of the Coulomb cone may be induced to slide by noise.
(B) Schematic of logical relationships in theory between stress ratio µ, den-
sity of sliding contacts χ, dimensionless mechanical noise amplitude,R, and
dimensionless velocity scale, L. Numbers denote relevant equations.
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Fig. 4. Probability density function (pdf) of distance to the edge of the
Coulomb cone, rescaled by p, at I indicated in B, for ∆≈ 10−5. (A) Raw

data, and (B) data rescaled with (I/∆1/4)
0.8

. The dashed line shows a slope
of −1/3.

rather large.§ Normalizing Enoise by the typical potential energy
in a contact Ep = 1/2k∆2D2, we define their ratio

R ≡ Enoise

Ep
∝
Dcoll

∆2

τ

kD2
. [3]

Neglecting prefactors, we obtain the scaling behavior

R ∼ Q
L2I 3

∆1/2εv
∼ QL2

(
I

∆1/4

)2

, [4]

where Q ≡
√

mk/η2
N is the bare quality factor of the grains. We

used the definition I ≡ ε̇D
√
ρ/p as well as the previous result

εv ∝ I observed experimentally (34) and numerically (22, 28) and
justified theoretically in refs. 22, 28.

Constraint from Energy Balance. For realistic microscopic fric-
tion coefficient, it is found, in dense flows, that most of the
dissipation is induced by sliding at frictional contacts (28) (the
collisional dissipation Dcoll is subdominant, but is the only one
contributing to the mechanical noise). On average, the power
dissipated in steady flow must balance the power injected by
the shear stress; by a straightforward estimation of the sliding
dissipation rate in terms of the typical sliding velocity (28), this
implies that

LT ∝ 1/χ, [5]

where LT is the characteristic dimensionless sliding velocity of
sliding contacts.¶ In what follows, we assume LT ∼ L, which is
an approximation (28, 35).

Noise-Induced Sliding. For harmonic grains, the mechanical
noise corresponds to a characteristic force scale

δf̃ = pDd−1R1/2. [6]

Here, δf̃ characterizes the fluctuations of forces at contacts. Such
fluctuations will induce contacts near the edge of the Coulomb
cone, shown in red in Fig. 3, to slide intermittently. Thus, it is of
crucial importance to determine the effect of noise on the den-
sity of contacts at small distances x̃ = fN − |fT |/µp from the

§In a network of interacting particles with linear dashpot interactions, the rate 1/τω
at which the vibrational energy in a mode of frequency ω decays follows τω ∼ 1/ω2.
Thus, the energy in low-frequency modes takes a much longer time to decay. It is well
known that both amorphous solids (22) and contact networks in flow (30) display an
abundance of low-frequency modes. Their frequency scale can be ∼10 times smaller
than the characteristic frequency of a single contact, suggesting the order of magnitude
C0 ∼102.

¶The power injected is Ωσε̇, where Ω is the system volume. At each sliding contact,
the power dissipated is fT uT , where fT is the transverse force and uT ∼LT Dε̇ is the
transverse velocity. Equating the total power dissipated, ∼NχfT uT , to Ωσε̇, we find
ND3µpε̇∼NχµpfNLT ε̇D, or LTχ ∼ µ/µp. For small I, µ tends to a constant, so that
LTχ ∼ 1.

Coulomb cone. Fig. 4 shows the distribution P(x ) of the dimen-
sionless quantity x = x̃/pDd−1. As I decreases, P(x ) develops a
divergence P(x )∼ x θs where θs ≈−1/3. At any time, we expect
that about half of the contacts within a dimensionless distance
δf = δf̃ /pDd−1 of the Coulomb cone will be induced to slide,
implying

χ− χc ≈
1

2

∫ δf

0

dxP(x ), [7]

where χc corresponds to the density of sliding contacts in the
system when flow stops and noise is absent. As shown in Fig. S4,
our numerics support that χc → 0 in the thermodynamic limit,
but is finite for finite N . In what follows, we therefore consider
χc = 0, but our theory can readily be extended to the case χc > 0
to capture some finite size effects; see Finite-Size Effects in χ.
Inserting the scaling behavior P(x ) ∼ x θs in Eq. 7 leads to

χ ∝
1

2
R

1+θs
2 . [8]

Results. Combining Eqs. 4, 5, and 8 and keeping only the depen-
dence on I and ∆ leads to

χ ∼ (I /∆1/4)
α
, [9]

LT ∼ (I /∆1/4)
−α
, [10]

R ∼ (I /∆1/4)
γ
, [11]

δf ∼ (I /∆1/4)
β
, [12]

where α= 1 + θs/2 + θs ≈ 2/5, γ= 2/2 + θs ≈ 1.2 and β=
1/2 + θs ≈ 0.6. (The Q dependence is readily obtained in Eqs. 9–
12 by replacing ∆ by ∆/Q2.) In Eq. 12, the characteristic dimen-
sionless fluctuation of forces is obtained from Eq. 6, and follows
δf ∼R1/2. These fluctuations are expected to smooth the distri-
bution of the distance to the Coulomb cone P(x ) for x� δf ; δf
can thus be extracted numerically by locating where the power
law P(x )∼ x θs breaks down, as shown in Fig. 4B.

Eq. 9 is tested in Fig. 2, Eq. 11 is tested in Fig. 5, Eq. 12 is
tested in Fig. 4, and Eq. 10 is tested in Fig. 6. Note that testing
Eq. 11 requires measurement of Enoise , which is difficult to do
directly in the numerics, as it would require identification of all
of the vibrational modes of the contact network, at all instants
of time. To test Eq. 11, we measure a proxy for Enoise : the char-
acteristic kinetic energy in the relative motion between particles
m〈u2

N 〉/2, where uN is the normal velocity at contact, as shown in
Fig. 5. It is a lower bound on Enoise . (Indeed, for low-frequency
vibrational modes, the kinetic energy is larger than the relative
kinetic energy between neighboring particles.)

A B

Fig. 5. Ratio of estimated energy of mechanical noise 1/2m〈u2
N〉 to the

potential energy scale 1/2k∆2D2. This is an approximation for R, defined
as in Eq. 3, shown (A) vs I and (B) vs I/∆1/4. The dotted line in B has a slope
of 1.6.
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Fig. 6. (A) The sliding velocity at contacts collapses when plotted vs I/∆1/4;

dotted line shows (I/∆1/4)
−2/5

, predicted by theory. (B) Effect of exter-
nal vibrations on rheology, for various dimensionless amplitude of external
noise, V , as predicted by the phenomenological model.

Our prediction that the correct scaling variable for these
macroscopic quantities is I /∆1/4 is in perfect agreement with
data. The predicted exponent α of Eq. 10 is in excellent agree-
ment with observations. This is also true for Eq. 9 if finite size
effects are included in the theory (see Finite-Size Effects in χ).
Our measurements for the other exponents give γ= 1.6 (Fig.
5B) and β= 0.8 (Fig. 6B), overall in good agreement with pre-
dictions, considering the approximations made.

These results correspond to a detailed microscopic descrip-
tion of mechanical noise in granular materials. It is mean field
in character, but already appears to capture the essential aspects
of the phenomenon. Obviously, the contact mechanics of real
granular media can be much more complicated than the har-
monic contact description discussed here (4, 36). For exam-
ple, real grains in three dimensions are Hertzian, with an elas-
tic potential V (h)∝E(h/D)5/2, where E is the grain Young’s
modulus. For such grains, the typical dimensionless contact
deflection ∆∝ (p/E)2/3, and the characteristic stiffness scales
as k ∝ED(p/E)1/6. This entails that δf ∝E

3/5
noise . Likewise, the

damping coefficient ηN may also depend on ∆. Our framework
can readily be extended to include these different contact prop-
erties, which can slightly alter scaling exponents, but will not
change the physical picture.

Another important possibility to consider is that the dynamic
friction coefficient is smaller than the static one. This will not
affect the description of mechanical noise leading to Eqs. 9–12.
However, it will cause the macroscopic friction to decrease even
more with χ. In our phenomenological model, it corresponds to
an increase in the coefficient b appearing in Eq. 2, which will
enhance the amplitude of hysteresis.

External Noise in Granular Flows
Applying external vibrations is known experimentally to affect
rheological properties and hysteresis (8, 10, 13, 31, 36, 37), as
we now quantify. Even small typical noise can generate very rare
events where noise is locally large, leading to rearrangements and
creep flow. We do not seek to describe here this effect, which
occurs at very small inertial number (10). Instead, we focus on
the dynamical range relevant to hysteresis and to our theory.
When a sheared material is subject to external noise, the dimen-
sionless noise R will get an additional contribution. Let Ee be
the characteristic energy per grain from the external noise, and
define Rext ≡ Ee/Ep ∼ (V/∆)2, where V =

√
Ee/(1/2kD2)

and Rtot = R +Rext . Using Eqs. 4 and 5 for R, and Eq. 8 with
Rtot in place ofR, we find

Rtot ∼ QR−1−θs
tot

(
I

∆1/4

)2

+
V2

∆2
. [13]

Thus, external noise is relevant for I . I †, where I †∼V2+θs

∆−7/4−θs Q−1/2. The results of Eq. 13 are shown in Fig. 6B

for a range of V (with θs =−1/3). There are two regimes: For
weak noise, µ remains nonmonotonic, but the value of µc is low-
ered. However, as noise is increased and I †> I∗, the nonmono-
tonicity of µ disappears entirely. We thus predict that, for suffi-
ciently strong applied noise, flow becomes stable, and hysteresis
disappears.

In the slider-block experiments of ref. 13, a block is pulled over
a granular bed in the presence of external vibrations of ampli-
tude A and frequency ω. A transition from stick–slip to steady
motion is observed, which does not depend on A and ω indepen-
dently, but only on their product Aω. This is expected from our
analysis, since the external vibrational noise controlling the tran-
sition should be of order Ee ∼ 1/2m(Aω)2, indeed a function of
Aω only.

Our framework can also predict the noise needed to trigger
flow in a static configuration with µ = µc−δµ. Yielding will occur
when the noise-induced reduction of static macroscopic friction
is larger than δµ, which, according to Eqs. 2 and 8, occurs when
δµ< bµcχ∼ bµc

(
V/∆

)1+θs or V >C∆(δµ)1/(1+θs ), where C is
a constant. This prediction is consistent with the earlier observa-
tion that the noise threshold increases with the confining pres-
sure (38, 39). It would be interesting to further test the depen-
dence of this threshold on δµ.

Conclusion and Outlook
We have shown that velocity weakening in dry granular flows is
a collective phenomenon, which emerges even if absent at the
contact level. We have explained this observation based on a
microscopic theory characterizing the endogenous mechanical
noise induced by collisions, as well as its effect on the struc-
ture. To understand the latter, a characterization of elemen-
tary excitations on granular packings was performed, argued
here to correspond to contacts that are rolling but close to slid-
ing. This framework rationalizes several experimental observa-
tions, including the factors governing the strength of hystere-
sis and the effects of exogenous noise. It also makes detailed
scaling predictions on the noise level, the fraction of sliding
contacts, and the typical sliding velocity, in good agreement
with numerical observations. Several new predictions are made
that can be experimentally tested, most obviously the fact that
velocity weakening should become very small or even vanish if
sufficiently deformable particles are considered. This could be
checked in an inclined plane experiment. From a theoretical
perspective, an important question for the future is what deter-
mines the exponent θs characterizing excitations in frictional
packings—a question now well understood for hard frictionless
particles (25, 40).

It is interesting to compare our results to Melosh’s work on
earthquakes (18, 19), where he proposed that acoustic emis-
sion fluidizes the fault gouge and causes the macroscopic fric-
tion to drop by a factor of order 10, as observed (41). Melosh
assumes that most of the energy dissipated goes into vibrations,
whereas we find numerically, in granular flows, that, for iner-
tial numbers of interest for velocity weakening (say I = 10−3),
this is only true for a few percent of the injected power (28).
Likewise, in granular materials, the hysteresis is a small effect,
10% at most (1). Why such effects would be much larger in
the context of a fault gouge is currently unclear, although it
has been reported, based on landslides, that velocity weakening
effects appear to grow with the length scale of the phenomenon
considered (42).

Here we have focused on µ, but the particle volume fraction
φ is also important in constitutive relations. Several works have
observed that φ(I ) can become nonmonotonic, corresponding to
anomalous compaction (9, 21, 43). [In our numerical results, we
did not detect a noticeable nonmonotonicity in φ(I ). As indi-
cated by ref. 21, particle angularity may significantly enhance
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such anomalous compaction.] In ref. 21, this compaction was
argued to arise from mechanical noise, and shown to diminish
under the action of external vibrations, in a scenario qualitatively
similar to our theory. Future work should carefully probe both µ
and φ together to see if this link can be strengthened.

Finally, it would be desirable to extend the present descrip-
tion to overdamped non-Brownian dense suspensions. Earlier
experiments show that hysteresis increases with inertia, but do
not rule out a finite amount of hysteresis in the viscous limit

(14, 44). Overdamped simulations support that χ increases with
the viscous number (35) (playing a role similar to the inertial
number), but very weakly. Following the discussion of Eq. 2, this
behavior may be sufficient to lead to hysteresis. In that case, how-
ever, there is no microscopic theory for χ available.
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laires par simulation numérique discrete. PhD thesis (Ecole Nationale des Ponts et
Chaussées, Paris).
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