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Background: Recent evidence supports that the maternal gut microbiota impacts the initial infant gut microbiota.
Since the gut microbiota may play a causal role in the development of obesity, it is important to understand how
pre-pregnancy weight and gestational weight gain (GWG) impact the gut microbiota of mothers at the time of
delivery and their infants in early life. In this study, we performed 16S rRNA gene sequencing on gut microbiota
samples from 169 women 4 days after delivery and from the 844 samples of their infants at six timepoints during
the first 2 years of life. We categorized the women (1) according to pre-pregnancy body mass index into
overweight/obese (OW/OB, BMI = 25) or non-overweight/obese (BMI < 25) and (2) into excessive and non-excessive
GWG in the subset of mothers of full-term singleton infants (N = 116). We compared alpha diversity and taxonomic
composition of the maternal and infant samples by exposure groups. We also compared taxonomic similarity

Results: Maternal OW/OB was associated with lower maternal alpha diversity. Maternal pre-pregnancy OW/OB and
excessive GWG were associated with taxonomic differences in the maternal gut microbiota, including taxa from the
highly heritable family Christensenellaceae, the genera Lachnospira, Parabacteroides, Bifidobacterium, and Blautia.
These maternal characteristics were not associated with overall differences in the infant gut microbiota over the
first 2 years of life. However, the presence of specific OTUs in maternal gut microbiota at the time of delivery did
significantly increase the odds of presence in the infant gut at age 4-10 days for many taxa, and these included

Conclusions: Our results show differences in maternal gut microbiota composition at the time of delivery by pre-
pregnancy weight and GWG, but these changes were only associated with limited compositional differences in the
early life gut microbiota of their infants. Further work is needed to determine the degree to which these maternal
microbiota differences at time of birth with OW/OB and GWG may affect the health of the infant over time and by

Background

Obesity prevalence among children and adolescents has
increased dramatically in recent years [1, 2]. Maternal
obesity and excessive gestational weight gain (GWG) are
associated with increased risk for offspring obesity, and
these associations are not fully explained by genetic and
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lifestyle factors. Recent research suggests that the gut
microbiota may also contribute towards the develop-
ment of obesity, and it has been hypothesized that the
gut microbiota may be a mechanism to explain the
transgenerational transmission of obesity risk [3]. The
maternal gut microbiota may influence infant obesity
risk through in utero programming effects [4] or
through vertical transfer of obesogenic gut microbiota
from mother to child during birth [5] and in breastmilk
[6]. Understanding the relationship between the gut
microbiota and obesity in mothers and their children
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may offer unique opportunities to interrupt the cycle of
obesity [3].

There is increasing evidence to support that the gut
microbiota may play a causal role in obesity [7, 8]. Some
studies have shown differences in maternal gut micro-
biota at different timepoints during pregnancy by obesity
status and gestational weight gain [9, 10]. Research
about whether these maternal characteristics are associ-
ated with differences in the early infant gut microbiota
has been inconsistent [11-13]. However, gut microbiota
during infancy has been associated with rapid early
growth and later overweight and obesity [14, 15], and
numerous exposures known to impact the early gut
microbiota, such as birth via cesarean section and antibi-
otics, have also been associated with increased obesity
risk [16, 17].

In this study, we evaluate whether maternal pre-
pregnancy overweight/obese (OW/OB) or excessive
gestational weight gain (GWG) are associated with
differences in the maternal gut microbiota at the time
of delivery or in the gut microbiota of their infants
during the first 2 years of life. We also assess the
similarity between maternal gut microbiota at the
time of delivery and early infant gut microbiota. This
is a very important area of research because the gut
microbiota is alterable—through diet, pre- and pro-
biotics, and antibiotic usage. Understanding the rela-
tionship between the gut microbiota and obesity in
mothers and their infants may offer opportunities for
obesity prevention measures.

Methods

Study cohort

NoMIC is a Norwegian birth cohort of 552 children de-
signed to study the establishment of gut microbiota
during infancy and its consequences for child health.
Participating mothers, recruited between 2002 and
2005, were asked to fill out periodic questionnaires and
to collect and freeze fecal samples from themselves at
4 days post-partum, and from their infants at days 4,
10, 30, 120, 365, and 730 post-birth. Study personnel
retrieved the fecal samples and kept them frozen during
transport to the Biobank of the Norwegian Institute of
Public Health, Oslo, where they were stored at -20 °C
upon arrival.

The study was approved by the Regional Ethics
Committee for Medical Research in Norway (approval
ref. 2002, S-02216) and the Norwegian Data Inspectorate
(ref 2002/1934-2). The approvals, as well as informed
consent from the mothers, were obtained prior to col-
lection of data and samples. The NoMIC study was
funded by the FRIMEDBIO program at the Norwegian
Research Council.
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Study sample

This study includes the subset of 169 mothers from
NoMIC who provided a fecal sample, whose sample pro-
vided high quality Illumina data, and for whom both
height and pre-pregnancy weight were available to calcu-
late BMI (Additional file 1: Figure S1). Additionally, 844
gut microbiota samples during the first 2 years of life
were available from the 181 children of these women
(Additional file 1: Figure S1). This study sample showed
some differences from the larger NoMIC cohort; they
had lower median BMI, were more educated, and were
less likely to smoke during pregnancy (Additional file 1:
Table S1).

Exposure definitions

Pre-pregnancy BMI was based on maternal self-report of
weight at the first clinic visit; the median time of the first
visit was at 9 weeks of gestation (IQR 7.3-11.3 weeks).
At that visit, height and weight were measured and in-
formation on pre-pregnancy weight was obtained from
the mother. A large discrepancy within the time frame
of only 9 weeks would likely have been noted by the
health workers. Moreover, GWG has been validated in
our study (see below). Pre-pregnancy BMI was initially
categorized as underweight, normal weight, overweight,
and obese according to standard definitions [18]. We
then further combined these groups into the following:
(1) non-OW/OB: underweight (N = 7) and normal
weight (N = 110), BMI <25 (N = 117); and (2) OW/OB:
overweight (N = 32) and obese (N = 20), BMI >25
(N = 52).

When evaluating the impacts of excessive GWG on
the gut microbiota, women who were missing GWG
(N = 1) and not full term (N = 50) were excluded be-
cause there are not well-established weight gain recom-
mendations for pre-term births. Furthermore, we chose
to exclude mothers of twins since there were only two,
making this difficult to account for in statistical models,
and since the weight gain guidelines for mothers of
twins are considered provisional. Thus, the sample size
for the analysis of GWG was N = 116 (Additional file 1:
Figure S1). The recommended range of the Institute of
Medicine (IOM) were used to define adequate GWG,
which is based on pre-pregnancy BMI (Additional file 1:
Table S2); weight gain less than the recommended range
for the respective BMI group was considered “low”
(N = 12), within the range as “adequate” (N = 41) and
greater was considered “excessive” (N = 63) [19]. We
grouped low and adequate (N = 41) GWG together due
to the small number in the low group, and compared to
excessive GWG. GWG was calculated using the pre-
pregnancy weight and final weight from self-report in a
questionnaire approximately 1-month post-delivery.
When missing self-reported final weight (9%), the final
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recorded weight preceding birth in the medical records
of prenatal clinic visits was used. Self-reported GWG
has been validated in the larger NoMIC study among
380 subjects with both self-reported and objective
records of GWG obtained from their pregnancy jour-
nals. The Spearman correlation between the self-
reported GWG and GWG according to pregnancy
journals was 0.95, with a p value of <0.001 and the
corresponding intraclass correlation (ICC) was 0.94,
with a p value of <0.001.

Additional data sources

Maternal questionnaires provided information on mode
of delivery, education, parity, maternal smoking, ethni-
city, and use of antibiotics. Maternal age at delivery was
calculated based on birth date from the Norwegian per-
sonal identification number. We obtained information
on gestational age and preterm delivery from the
Medical Birth Registry of Norway.

Processing of microbial samples

DNA was extracted using standard protocols, as previ-
ously described for this cohort [20]. The extracted DNA
was amplified using polymerase chain reaction (PCR)
with barcoded primers targeting the V4 region of 16S
ribosomal RNA (rRNA). Sequences were generated using
an Illumina HiSeq instrument (Illumina, San Diego,
CA). Operational taxonomic units (OTUs) were assigned
using UCLUST [21] as implemented in QIIME [22] via a
closed reference-based system using the Greengenes
13.8 [23] database and a 97% threshold. A rarefied OTU
table at 5000 sequences per sample served as input for
the analyses.

Statistical analysis

We compared maternal demographic and birth charac-
teristics by pre-pregnancy weight group and excessive
GWG status using chi-squared tests for categorical vari-
ables and Wilcoxon rank-sum tests for continuous
variables.

Maternal alpha diversity

Alpha diversity measures the microbial diversity of each
sample. There are many alpha diversity measures, and
they differ in how they weight richness and evenness
and whether they incorporate phylogenetic distance. We
chose to evaluate three measures of alpha diversity:
Shannon diversity index (evenly weights richness and
evenness), PD whole tree (emphasizes phylogenetic
diversity), and observed species (number of OTUs ob-
served at standardized sequencing depth; richness).
Rank-based regression was used to model alpha diversity
measures with pre-pregnancy weight status as the
primary covariate of interest. The following maternal
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characteristics were controlled for in the analysis: mater-
nal age, education (< 12 years, 12 years, > 12 years), Nor-
wegian ethnicity, parity (nulliparous, 1 prior child, > 1
prior child), twins, and smoking during pregnancy
(never, former, occasional, daily <10, daily >10). The
same methods were utilized for comparing women by
GWG group, except that twins were excluded from the
list of covariates since all births were singleton.

Association between maternal characteristics and maternal
microbiota composition

We visualized relationships between microbiota diversity
across samples using principal coordinate analysis
(PCoA) plots of weighted and unweighted UniFrac dis-
tance [24]. Random forests were first used as a feature
selection technique in order to evaluate which OTUs
were most important to differentiate samples based on
maternal pre-pregnancy OW/OB status [25]. This ma-
chine learning approach ranks factors in terms of their
ability to discriminate exposure status, while taking into
account the interrelationships in high-dimensional com-
plex data. This method uses decision trees, and each tree
is trained on a subset of the data and then tested on the
remaining data; the error of these repeated tests is called
the “out of bag” error rate. Breiman’s random forest al-
gorithm with down sampling [25] was used to classify
women’s pre-pregnancy weight group based on the per-
cent abundance of the OTUs. All OTUs that were
present in less than 10% of the samples and those with a
maximum percent abundance less than 0.25% were ex-
cluded; 448 OTUs met these prevalence cutoffs. The R
function varselRF [26] was used to select the most
important taxa for classifying the exposure. This is a re-
cursive technique that eliminates variables based on the
importance scores. We evaluated the classification ac-
curacy of these selected features by computing the ratio
of the out of bag error from a random forest using these
features to classify simulated random data to the error
from a similar random forest classifying the true expos-
ure status [27].

Since random forests do not provide information on
the nature of the relationships between these exposures
and the selected taxa, we assessed the direction of the
associations by modeling the OTUs individually as out-
comes in beta-binomial generalized linear regressions,
which account for overdispersion in the sequence
counts, using the SAS procedure NLMIXED. The
models included the total number of sequences (5000
for all taxa) as an offset in order to allow for inference
on the relative abundance. We also included covariates
in the models, controlling for the same maternal charac-
teristics as in the models of alpha diversity.

These methods were repeated for different scenarios.
First, genus level taxonomies were used rather than
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OTUs to model pre-pregnancy weight group with the
same prevalence cutoffs as for OTUs, leaving 169 gen-
era. We used these same methods to model excess
GWG in the subset of women who were full term with
singleton births, both at the OTU level and the genus
level of taxonomy. The random forest of OTUs included
the 403 OTUs that met the prevalence cutoffs; the ran-
dom forest at the genus level included 80 genera.

We also performed sensitivity analyses. First, we exam-
ined continuous exposures of maternal pre-pregnancy
BMI rather than OW/OB, and GWG (kg) in excess of
the recommended GWG range rather than the dichot-
omous measure. Both of these showed fairly consistent
taxonomic associations with the gut microbiota. We also
excluded overweight women, comparing OB to non-
overweight/obese. However, the classification accuracy
was worse than in the primary analysis.

Association between maternal characteristics and infant
microbiota alpha diversity and composition over the first

2 years of life

In order to evaluate the association between exposure to
maternal OW/OB or excessive GWG and infant gut
alpha diversity, we used longitudinal hierarchical linear
regressions with a random intercept for infant within
family. We controlled for the same maternal characteris-
tics as in the models of maternal alpha diversity, in
addition to the following potential mediating variables:
delivery mode at birth (cesarean section or vaginal), ges-
tational age at birth, exclusive breastfeeding (yes/no at
the time of the sample), and antibiotic exposure (yes/no
at the time of the sample).

Random forests were used to identify which OTUs in
infant gut microbiota samples over the first 2 years of
life were most important to differentiate samples based
on (1) maternal OW/OB and (2) excessive GWG [25].
The same prevalence thresholds and methods were used
as in the random forests of maternal gut microbiota
samples, as described above. In addition to the OTUs,
we included sampling time as a predictor, to allow for
interactions between taxonomic abundance and age. The
analysis of maternal OW/OB included 253 OTUS; the
analysis of GWG included 251 OTUs.

Comparison of maternal and early infant gut microbiota

To compare maternal gut microbiota taxa at the time of
delivery with that of the infant at days 4 and 10, we used
longitudinal binary logistic regression with a random
intercept by child. OTU-level presence/absence of ma-
ternal samples was used as the exposure with infant
presence/absence as the outcome for each of the OTUs
selected to differentiate maternal OW/OB status or
excessive GWG. A similar logistic model was used to
evaluate presence/absence across all OTUs together, as
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well as across all of OTUs selected to differentiate the
maternal exposures, in order to assess the overall
maternal-infant taxonomic association.

We used SAS v9.4 (SAS Institute Inc., Cary, North
Carolina), R v3.2.0 [28], and QIIME v1.9.0 [22] for ana-
lyses. p values less than 0.05 were considered statistically
significant.

Results

Women with and without excess pre-pregnancy weight
generally had similar characteristics (Table 1). Excess
weight women had slightly less education and were
more likely to be smokers, as were women with exces-
sive GWG (Additional file 1: Table S3). There was a
higher proportion of women who were overweight pre-
pregnancy among those with excessive GWG relative to
those with non-excessive GWG.

Maternal alpha diversity

The median alpha diversity was significantly lower
among OW/OB women for all three alpha diversity mea-
sures examined (Table 1). In regression models controlling
for maternal age, education, Norwegian ethnicity, parity,
twins, and smoking during pregnancy (Table 2), Shannon
diversity and PD whole tree remained significantly lower
among OW/OB women. Controlling for gestational age
and maternal antibiotic use during pregnancy did not
substantially alter the results.

In the subset of full term women, excessive GWG was
not associated with significant differences in alpha diver-
sity (Shannon: 5 = - 0.1, 95% CI - 0.3, 0.1; p value = 0.53;
PD: = -0.1,95% CI - 1.9, 1.8; p value = 0.96; observed
species: B = —-4.0, 95% CI -28.3, 20.2; p value = 0.75).
Controlling for maternal BMI, gestational age and ma-
ternal antibiotic usage did not alter the null results.

Maternal microbiota composition

The overall microbiota composition of the maternal
samples resembled that typical of healthy European/US
adults, with a dominance of taxa from the phyla of
Firmicutes, Bacteroidetes, and Actinobacteria, and infant
samples became more similar to maternal samples with
age (Additional file 1: Figure S2) [29, 30]. Principal co-
ordinate analysis plots of UniFrac distance also showed a
progression of infant microbiota to one resembling ma-
ternal (adult-like) compositions over the first year of life,
but did not show strong differentiation between gut
microbiota samples by maternal OW/OB or excessive
GWG status (Additional file 1: Figure S3).

Gut microbiota composition showed numerous differ-
ences by pre-pregnancy weight group. Using the most
important OTUs from the random forest to classify pre-
pregnancy weight status, the out of bag error rate was
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Table 1 Demographic and birth characteristics of mothers by pre-pregnancy weight group: overweight/obese (OW/OB) and
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non-OW/OB
Variable Total (N = 169) Non-OW/OB (N = 117) OW/OB (N = 52) p value
N (%) or median (IQR)
BMI 23.1 (21.1-25.5) 216 (20.2-23.1) 272 (257-31.7) <.001
Pre-pregnancy BMI category
Underweight 7 (4.1%) 7 (6.0%) 0 (0.0%) <.001
Normal 110 (65.1%) 110 (94.0%) 0 (0.0%)
Overweight 32 (18.9%) 0 (0.0%) 32 (61.5%)
Obese 20 (11.8%) 0 (0.0%) 20 (38.5%)
Ethnic Norwegian 142 (87.1%) 95 (84.1%) 47 (94.0%) 0.13
Maternal education
<12 years education 9 (5.6%) 4 (3.6%) 5 (10.4%) 0.01
12 years education 28 (17.5%) 19 (17.0%) 9 (18.8%)
>12 years education 123 (76.9%) 89 (79.5%) 34 (70.8%)
Maternal age (years) 30.0 (27.0-34.0) 30.0 (27.0-33.0) 30.0 (27.5-34.0) 0.90
Parity
No prior pregnancies 83 (49.1%) 57 (48.7%) 26 (50.0%) 062
1 prior child 53 (31.4%) 39 (33.3%) 14 (26.9%)
>1 prior child 33 (19.5%) 21 (17.9%) 12 (23.1%)
Twins 11 (6.5%) 8 (6.8%) 3 (5.8%) 1.00
Maternal smoking at beginning of pregnancy
Never smoker 111 (66.5%) 77 (67.0%) 34 (65.4%) 0.01
Past smoker 41 (24.6%) 28 (24.3%) 13 (25.0%)
Occasional 7 (4.2%) 5 (4.3%) 2 (3.8%)
Daily smoker <10 4 (2.4%) 2 (1.7%) 2 (3.8%)
Daily smoker >10 4 (2.4%) 3 (2.6%) 1 (1.9%)
Diabetes
No diabetes 167 (98.8%) 116 (99.1%) 51 (98.1%) 0.21
T 1 (0.6%) 1 (0.9%) 0 (0.0%)
T2 1 (0.6%) 0 (0.0%) 1 (1.9%)
Glucose in urine 15 (8.9%) 8 (6.8%) 7 (13.5%) 0.16
High BP 8 (4.7%) 4 (34%) 4 (7.7%) 0.25
Gestational weight gain (kg) 14.0 (10.0-18.0) 15.0 (12.0-19.0) 11.0 (8.1-15.0) <.001
GWG relative to IOM recommendations
Low 12 (10.3%) 12 (14.6%) 0 (0.0%) 0.06
Adequate 41 (35.3%) 27 (32.9%) 14 (41.2%)
Excessive 63 (54.3%) 43 (52.4%) 20 (58.8%)
Gestational age (days) 278 (254-285) 279 (256-285) 277 (253-287) 0.80
Birth weight (kg) 337 (246-3.75) 331 (247-3.69) 344 (246-3.84) 0.29
C-section 50 (29.6%) 31 (26.5%) 19 (36.5%) 0.19
Maternal antibiotics 52 (32.1%) 35 (31.0%) 17 (34.7%) 0.71
Day of birth 9 (5.6%) 6 (5.3%) 3 (6.1%) 1.00
Day before birth 2 (1.2%) 1 (0.9%) 1 (2.0%) 0.51
Week before birth 6 (3.7%) 2 (1.8%) 4 (8.2%) 0.07
Month before birth 9 (5.6%) 6 (5.3%) 3 (6.1%) 1.00
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Table 1 Demographic and birth characteristics of mothers by pre-pregnancy weight group: overweight/obese (OW/OB) and

non-OW/OB (Continued)

>1 month before birth 26 (16.0%) 18 (15.9%) 8 (16.3%) 1.00
Antibiotics given to newborn 14 (8.6%) 7 (6.2%) 7 (14.3%) 013
Alpha diversity

Shannon 5.7 (53-6.1) 5.7 (54-6.1) 55 (5.0-5.9) 0.05

Observed species 365 (307-400) 375 (315-400) 338 (292.5-385) 0.04

PD whole tree 27.3 (23.6-30.1) 285 (24.0-306) 259 (21.8-294) 0.04

18.9%; this classification accuracy was 2.4 times better
than completely random guessing.

The most important OTUs from the random forest in-
cluded members of the genera Bifidobacterium and
Parabacteroides, as well as nine members of the order
Clostridiales. These taxa were modeled using beta-
binomial regression models (Fig. 1; Additional file 1:
Table S4). Eight of these OTUs were significantly differ-
ent by maternal pre-pregnancy weight group when
adjusting for maternal characteristics.

The random forest using genus level taxa to predict
pre-pregnancy weight status had an out of bag error rate
of 28.4%; the predictive accuracy was 1.9 times as good
as random guessing. Figure 1 shows the distributions of
the genus-level taxa ranked as most important in the
random forest and modeled using beta-binomial regres-
sions (Additional file 1: Table S5), which were generally
consistent with the OTU-level analysis.

The random forest to classify GWG group based on
OTUs had an out of bag error rate of 24.1%; this classifica-
tion accuracy was twice as accurate as random guessing.
The most important taxa included members of the genera
Methanobrevibacter, Bifidobacterium, and Bacteroides, as
well as seven OTUs of the order Clostridiales. In the beta-
binomial regression models, there were three OTUs that
were significantly higher among women with excess

GWG when controlling for maternal characteristics
(Fig. 2; Additional file 1: Table S6). The random forest
using genus-level taxa as predictors had an out of bag
error rate of 31.9%, which was 1.7 times as good as ran-
dom guessing, and showed consistent patterns as the
OTU level analysis (Fig. 2; Additional file 1: Table S7).

Association between maternal characteristics and infant
microbiota alpha diversity and composition over the first
2 years of life

The alpha diversity of infant gut microbiota over the first
2 years of life did not show an association with exposure
to maternal OW/OB or excessive GWG in any of the ex-
amined measures of alpha diversity (Additional file 1:
Table S8). Random forests trained to classify the infant gut
microbiota according to these maternal characteristics
had poor accuracy (Additional file 1: Tables S9-S10), being
only 22% better than random guessing for classifying taxa
by maternal OW/OB and 8% better for classifying exces-
sive GWG. This low level of accuracy suggests that the
models could not identify clinically meaningful taxonomic
differences [31]. We also investigated whether other fac-
tors that have been previously associated with differences
in the infant gut microbiota were likewise associated in
this cohort, including mode of delivery, breastfeeding, and
antibiotic exposure using a permutational ANOVA of

Table 2 Results of rank-based regression models of alpha diversity of maternal gut microbiota samples at the time of delivery

Shannon PD Observed species

B (95% CI) p value B (95% CI) p value B (95% Cl) p value
Intercept 5.82 (501, 6.62) <0.01 28.09 (21.03, 35.15) <0.01 35341 (26222, 444.6) <0.01
Maternal OW/OB —0.19 (-0.38, -0.01) 0.04 —1.74 (-3.36, -0.12) 0.04 —19.85 (-40.52, 0.83) 0.06
Maternal age 0.02 (-0.01, 0.04) 0.14 0.09 (-0.12, 0.29) 040 179 (=082, 441) 0.18
Norwegian —-0.27 (-0.53, -0.01) 0.04 45 (-3.73,0.82) 0.21 —32.73 (-61.78, —=3.69) 0.03
Education —0.11 (=0.27, 0.05) 0.20 —0.33 (-1.74, 1.07) 0.64 -1.22 (-19.16, 16.72) 0.89
Parity: >1 prior child —-0.1 (=037, 0.17) 048 —0.38 (-2.78,2.02) 0.76 —10.59 (—41.26, 20.08) 0.50
Parity: 1 prior child —0.15 (-0.34, 0.05) 0.14 46 (—3.18, 0.26) 0.10 —24.25 (-46.19, —2.31) 0.03
Twins —0.18 (-0.53, 0.16) 0.31 4 (-4.59, 1.5) 032 —16.01 (=54.94, 22.91) 042
Maternal smoking —0.07 (-0.17, 0.02) 0.15 —0.54 (-141,032) 0.22 —6.08 (—=17.14, 4.98) 0.28

B indicates the parameter estimate and 95% Cl is the 95% confidence interval
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unweighted and weighted UniFrac distance. All of
these exposures were highly significantly associated
(p values <0.002) with both the phylogeny (unweighted
UniFrac) and abundance (weighted UniFrac) of the infant
gut microbiota.

Comparison of maternal and early infant gut microbiota

The presence of OTUs in maternal gut microbiota at the
time of delivery significantly increased the odds of pres-
ence in the early infant gut microbiota; this was true
when evaluating the average association across all OTUs
(OR = 2.8, 95% CI 2.8, 2.9; p value < 0.01) and when spe-
cifically evaluating those associated with maternal OW/
OB (Fig. 3; OR = 2.4, 95% CI 2.0, 3.0; p value <0.001).
Yet, most of the individual OTUs associated with mater-
nal OW/OB were not significantly associated between
maternal-infant samples, and some were almost entirely
absent from the infants. However, the presence of lean-
associated OTUs in the Parabacteroides and Finegoldia

genera in maternal samples were associated with in-
creased odds of presence in the infant (OR = 2.5, 95% CI
1, 6.3; p value <0.05; OR = 3,2, 95% CI 1.5, 7.1 p value
<0.01, respectively). The group of OTUs highlighted as
important to classify maternal excessive GWG were not
significantly associated overall between maternal and
infant samples (Fig. 3; OR = 1.2, 95% CI 0.8, 1.6; p
value = 0.42).

Discussion

Both maternal OW/OB and excessive GWG have detri-
mental short- and long-term health consequences for
the infant, such as increased risk for fetal macrosomia,
obesity, metabolic syndrome, and even all-cause mortal-
ity [3]. It is possible that the maternal gut microbiota
may mediate some of the increased disease risk associ-
ated with these exposures, particularly with respect to
obesity. Our results showing numerous differences in
maternal gut microbiota associated with pre-pregnancy
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OW/OB and GWG lend support to this notion. We
found that pre-pregnancy OW/OB is associated with
both lower maternal alpha diversity as well as differences
in microbial composition, and that excess GWG is asso-
ciated with compositional differences. While we might
expect that these differences in maternal gut microbiota
would translate into overall differences in their infants’
gut microbiota, we did not find that these maternal
characteristics were associated with significant differ-
ences in the infant gut microbiota over the first 2 years
of life. However, we did find significant correlation be-
tween presence of taxa in the maternal and infant sam-
ples, particularly for the maternal taxa associated with
pre-pregnancy weight.

Most of the taxa that differentiated maternal OW/OB in
our study were higher among lean women, and many of
these have shown consistent associations with leanness in
prior studies, such as Parabacteroides (32, 33], Lachnos-
pira [34], Faecalibacterium prausnitzii [35], members of

the family Christensenellaceae [36], Ruminococcus [37],
and Bifidobacterium [38]. Furthermore, some of these taxa
may be of particular importance in the early infant gut.
Abundance of Lachnospira [33, 34, 39-41] and Faecali-
bacterium in the first 3 months of life have been associ-
ated with risk for developing asthma [42]. Furthermore,
members of Christensenellaceae family are among most
heritable taxa and have shown a protective effect against
weight gain in mouse studies involving fecal-transplants
from obese humans [36], which could make it of key
importance to explain the obesity associations across gen-
erations, as well as a key target for microbiota-based
interventions.

Our results show an association between maternal
OW/OB and low alpha diversity, which has also been as-
sociated with obesity in some prior studies [39, 43] as
well as many other diseases (including inflammatory
bowel disease [35], autism [44], asthma/allergy [40], and
dyslipidemia [43]) but may be a consequence of disease,
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as longitudinal studies are limited. Koren et al. [41] This is not entirely surprising; infant gut microbiota
showed a decrease in alpha diversity from the first to  changes drastically over the first few years of life, differs
third trimester in pregnant women, although not substantially across infants, and is affected strongly by
replicated in another study of pregnant women by other factors, including mode of delivery, breastfeeding,
DiGuilo et al. [45] and antibiotic usage [5, 49]. Other studies have also ex-

The taxa associated with excessive GWG in our results  amined these associations, and the results have been in-
are generally distinct from those associated with pre- consistent. Collado et al. found numerous differences
pregnancy OW/OB, and show less consistent patterns according to maternal pre-pregnancy weight and gesta-
with prior studies of obesity. One exception is the taxa tional weight gain (GWG) in infant samples at 1 and
Blautia, which was enriched with excessive GWG and 6 months [50]; Mueller et al. found that microbiota from
has been associated with type 2 diabetes [46], and some the first infant stool differed by maternal OW/OB only
species of this genus have been associated with obesity among vaginally born infants [11]; Galley et al. found
in a Japanese population [47]. However, other research  differences at 18—27 months only among infants of high
has suggested that Blautia may also be beneficial to  socioeconomic status [13]; and Laursen et al. found no
health in some contexts [48]. The taxa that differentiated impact of maternal obesity on microbial diversity or
maternal excessive GWG also tended to be absent or at  taxonomic composition at 9 or 18 months [12]. This
non-detectible levels in most of their infants at days 4—  prior research combined with our results suggest that
10; they tend to be later colonizers of the infant gut. maternal pre-pregnancy weight and GWG are not major

We found that maternal OW/OB and excessive GWG  determinants of the overall taxonomic composition of the
were not significant determinants of the infant gut infant gut. However, it is possible that these maternal
microbiota composition during the first 2 years of life.  characteristics may influence specific infant gut microbes
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that affect later obesity risk. It is also possible that the ef-
fect of these characteristics is more pronounced among
infants with the most exposure to maternal gut
microbiota—e.g., those who are vaginally born, breast-
fed, and unexposed to antibiotics in early life. We
aim to explore this hypothesis in future work in the
full cohort of NoMIC infants.

The differences noted in the maternal microbiota
could potentially influence the offspring through various
means, including vertical transfer during and after birth
which then shapes the gut colonization process of the
infant. Work by Backhed et al. [5] showed that the
maternal gut microbiota is a major determinant of the
infant gut microbiota; 72% of early colonizers in the in-
fant gut matched species found in maternal samples for
vaginally born infants, and 41% in infants born via C-
section. Similarly, we see that the presence of taxa in the
maternal gut microbiota at the time of delivery is highly
predictive of presence in the infant in early life. A recent
study by Nayfach et al. [51] performed a strain-level ana-
lysis to further explore the variation in maternal-infant
vertical transmission across taxa and over the first year
of life. They found evidence of extensive vertical trans-
mission of gut microbiota shortly after birth, particularly
for certain species, including Parabacteroides distasonis
and Bifidobacterium adolescentis, and that the vast ma-
jority of strains in the infants at 4 days that were trans-
mitted from the mother persisted in the infants at 4 and
12 months. This is interesting in the context of our re-
sults because species in the Parabacteroides and Bifido-
bacterium genera were both associated with leanness in
mothers, and presence of these taxa in the mother was
predictive of presence in their infants.

Some of the taxa associated with maternal pre-
pregnancy OW/OB or excessive GWG tend to be later
colonizing bacteria, such as Blautia, Ruminococcus, and
Faecalibacterium, and they may not be transferred from
the mother. However, Nayfach’s work also showed that
while strain-level similarity between mothers and infants
significantly decreased over the first year of life, the
maternal-infant species-level composition converged
over time [51]. Thus, while these taxa may not be verti-
cally transmitted to the infants, their presence in the
mother may still be predictive of species-level compos-
ition in their infants at later timepoints due to shared
environmental exposures, and may still impact the infant
risk for obesity.

The differences in the maternal microbiota seen in our
results could also have in utero impacts. The fetal
programming hypothesis sets forth the notion that expo-
sures in utero, at birth and in early life may have long-
term effects on adult health [52]. A recent study by
Agiliero et al. [4] provides compelling evidence that in
utero programming occurs, in part, through the
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maternal gut microbiota. Using a murine model, they
found that transient maternal colonization during preg-
nancy had long-term effects on the innate immune sys-
tem of the offspring, as well as the expression of
numerous genes in the newborn intestine, including
genes involved in metabolism and oxidative stress.

This study has both important strengths and limita-
tions. Our population is much larger than many of the
prior studies of maternal weight and the gut microbiota,
and it includes gut microbiota data from both the
mothers at the time of delivery and their infants over
the first 2 years of life. The maternal vaginal and skin
microbiota may play important roles in seeding the in-
fant microbiome [53], but only gut microbiota samples
were collected in this study. The population is largely of
Norwegian ethnicity, which means that some of the
taxonomic findings may not reflect patterns in other
ethnic or racial groups, or in other geographic regions.
However, the results should be internally consistent in
terms of showing support for the notion that maternal
weight characteristics may influence maternal gut micro-
biota at the time of delivery, which may affect some of
the early infant taxa. Methodologically, we used machine
learning techniques, which are particularly suited to the
analysis of complex gut microbiota data [27], and regres-
sion models that controlled for many of the known con-
founders of the relationship between maternal weight
and the gut microbiota. However, it is difficult to
completely control for certain effects, particularly for the
infant samples, which are known to be largely influenced
by breastfeeding, mode of delivery, and anti-biotic ex-
posure [5, 49].

Many of the gut microbiota associated with OW/OB in
pregnant women in this study have been previously asso-
ciated with obesity in non-pregnant adults. Some of the
taxonomic differences noted, while not previously associ-
ated with obesity, have been associated with childhood
risk for other conditions, such as asthma. Thus, pre/pro-
biotics targeted towards obesity in the general population
may be beneficial for pregnant women as well; however,
there may be additional microbiota that are particularly
advantageous for pregnant women around the time of de-
livery. For example, bacteria from the genera of Parabac-
teroides or Bifidobacterium, or those from the family
Christensenellacea, may play a protective role against ex-
cessive weight gain and be highly heritable. These and
other gut microbiota highlighted in this study offer insight
into the etiology of childhood obesity and may inform fu-
ture studies related to obesity prevention efforts based on
the gut microbiota.

Conclusions
In this study, we found that maternal OW/OB and ex-
cessive GWG were associated with differences in the
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maternal gut microbiota at the time of delivery. These
changes were only associated with limited compositional
differences in their infants. The differences seen in ma-
ternal gut microbiota could have health consequences
for the child through programming effects or direct
seeding of the infant gut microbiota. However, further
research is needed to understand whether the maternal
or infant gut microbiota are key mechanisms for the
transgenerational transmission of obesity risk.
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