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Abstract

A statistical framework for evaluating definitions of extreme weather phenomena can help weather 

agencies and health departments identify the definition(s) most applicable for alerts nd other 

preparedness operations related to extreme weather episodes.

An extreme heat event (EHE) is defined as a sustained period of abnormally and 

uncomfortably hot, and usually humid, weather (Meehl and Tebaldi 2004). EHEs can 

negatively impact vital aspects of society, including agriculture, power production and 

consumption, and human health (National Research Council 2010; IPCC 2007). In the 

United States, fatalities related to naturally occurring ambient temperature extremes 

(hypothermia or hyperthermia) account for far more deaths in most years than those 

resulting from the combined effects of natural disasters such as storms and floods (Berko et 

al. 2014). The relationship between extreme temperature and mortality has been well 

described (Barnett et al. 2012; Barnett et al. 2010; Curriero et al. 2002; Medina-Ramon and 

Schwartz 2007), and studies have reported an added effect of heat waves independent of the 

effects of individual daily temperature extremes (Anderson and Bell 2011; Gasparrini and 

Armstrong 2011; Hajat et al. 2010; Hertel et al. 2009). Previous studies have also explored 

the sensitivity of the temperature–mortality relationship to different measures of 

temperature, as well as the duration and threshold type/intensity, used to define EHEs 

(Barnett et al. 2012; Barnett et al. 2010). Adverse health outcomes associated with EHEs are 

often preventable (Fowler et al. 2013; Choudhary and Vaidyanathan 2014); however, it is 

Corresponding Author: Ambarish Vaidyanathan, Centers for Disease Control and Prevention, 4770 Buford Hgwy., MS F60, Atlanta, 
GA 30341 rishv@cdc.gov. 

HHS Public Access
Author manuscript
Bull Am Meteorol Soc. Author manuscript; available in PMC 2017 September 05.

Published in final edited form as:
Bull Am Meteorol Soc. 2016 October ; 97(10): 1817–1830. doi:10.1175/BAMS-D-15-00181.1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



imperative to identify such events in advance and take measures to reduce the public health 

risk.

Many EHE definitions are available from the literature (Anderson and Bell 2011; Basagaña 

et al. 2015; CDC 2013; Easterling et al. 2000; Hajat et al. 2006; Hajat et al. 2010; Huth et al. 

2000; Kent et al. 2014; Kovats and Hajat 2008; Meehl and Tebaldi 2004; Nairn and Fawcett 

2014; Pascal et al. 2006; Pascal et al. 2013; Peng et al. 2011; Robinson 2001; Smith et al. 

2013). Typical EHE definitions can be decomposed into the following core variables:

1. daily heat metric—heat metrics, such as daily maximum and mean temperature, 

and diurnal temperature difference are typically employed in EHE definitions;

2. duration—the number of consecutive days of extreme heat needed to constitute 

an EHE; the minimum duration for most definitions varies from 2 to 4 days;

3. threshold type—absolute, which is based on a daily heat metric threshold that 

does not change, or relative, which is based on an exceedance above a set 

percentile, which varies according to the underlying daily heat metric distribution 

for a given location; and

4. threshold intensity, which indicates the extremity of deviation considered to 

represent exposure to extreme heat. Most definitions refer to exceedances above 

absolute thresholds such as 90°, 95°, 100°, or 105°F or exceedances above 

relative thresholds such as 95th, 97th, 98th, or 99th percentiles.

Extreme heat exposures (distinct from EHEs) have been defined using thermal indices, 

which are derived based on human energy balance and incorporate physiological attributes 

as well as the effects of the thermal environment on human health (Cheng et al. 2012; Höppe 

1999; Matzarakis et al. 1999; Nastos and Matzarakis 2012; Parsons 2014; Vanos et al. 2012). 

Additionally, EHEs have been defined using biometeorological indices that utilize ambient 

temperature and other relevant weather parameters; widely used examples of such indices 

are wet-bulb globe temperature (Budd 2008), apparent temperature (heat index) (Rothfusz 

1990), humidex (Vaneckova et al. 2011), the Thom discomfort index (Thom 1959), and the 

spatial synoptic classification (SSC) (Sheridan et al. 2009). Of note is that the SSC is an 

airmass-based categorical classification system that is customized to a geographic area using 

retrospective health data and has been adopted by some local weather forecast offices in the 

United States (Hondula et al. 2014).

Within the context of the outline above, EHEs are defined using several daily heat metrics 

but are primarily based on meteorological variable deviations (e.g., temperature) from the 

historical norm, and a majority of studies have applied one definition to all climate regions. 

Studies that have evaluated EHEs are limited to a few geographic areas (Gasparrini and 

Armstrong 2011; Hajat et al. 2010; Ishigami et al. 2008) and extending definitions from such 

studies to the entire United States could result in the misidentification of EHEs in terms of 

human health effects. Some studies that have been published evaluated EHE definitions 

using health data (Anderson and Bell 2009; Hajat et al. 2010; Kent et al. 2014; Pascal et al. 

2006; Zhang et al. 2012) but almost all of the studies conducted nationally failed to evaluate 

EHE definitions using data on health outcomes having a clear causal link to extreme heat. 
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On the whole, there is a lack of consensus in the scientific literature on definitions and 

procedures to accurately identify periods of extreme heat having the potential for adverse 

health impacts.

Issuance of alerts and health advisories, prior to or during extreme weather events, can be 

critical to averting adverse health outcomes and is a service currently supported by weather 

and public health agencies involved in preparedness, response, and recovery operations. 

Alerts and health advisories are presumably most effective when based on weather event 

definitions that best reflect related health concerns. In this paper, we use episodes of extreme 

heat as an example to illustrate the application of a statistical framework within which to 

evaluate a candidate set of definitions in the context of heat mortality.

The evaluation is conducted by climate regions, recognizing that populations living under 

different prevailing climate conditions might adapt differently to weather-related exposures, 

including episodes of extreme heat (Davis et al. 2003), which in turn allows for the 

possibility that the most appropriate definitions might vary with climate region. Although we 

demonstrate the application of this framework to identify appropriate EHE definitions using 

county-level heat mortality data, the basic framework might also be applied to data 

describing other extreme weather events with well-established links to adverse health 

outcomes and, potentially, at other levels of geography.

Methods

Meteorological data

We used station-based meteorological data for the years 1999–2009, and any county in the 

contiguous United States (lower 48 states) that had an automated surface observing system 

(ASOS) unit (NOAA/NWS 1999) was considered for the present demonstration. We 

obtained these data from the National Oceanic and Atmospheric Administration's National 

Centers for Environmental Information (NCEI; www.ncei.noaa.gov/). The spatial coverage 

of the ASOS stations is shown in Fig. 1. For each station we adopted a completeness 

criterion requiring nonmissing values for at least 75% of the hourly weather observations in 

a given day (at least 18 of 24 hourly measurements) for purposes of calculating daily heat 

metric summaries. For each county and day, a county-level estimate was calculated as the 

average of all available station-level heat metric summaries. Counties with estimates for at 

least 95% of the days covered by the summer months (1 May– 30 September) of each 

individual year (1999–2009) were included in the demonstration dataset.

EHE definitions and core variables

For this study, we considered a number of EHE definitions that have been used in public 

health research and/or widely cited in the literature. Table 1 summarizes the different 

combinations of core variables used to define an EHE in this analysis. We used daily 

maximum temperature (Tmax), daily maximum heat index (HImax), daily average 

temperature (Tavg), and a combination of Tmax and daily minimum temperature (Tmin) as 

daily heat metrics; all heat metrics were represented in degrees Fahrenheit and we used the 

formula cited in Robinson (2001) to compute HImax. We considered EHE definitions with 
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both absolute and relative thresholds. Absolute thresholds were set at various intensity 

values, including 90°, 95°, 100°, and 105°F. Relative thresholds were calculated using two 

different approaches. We calculated percentile-based relative thresholds representing 

different intensities, including the 80th, 85th, 90th, 95th, 98th, and 99th percentile values 

and, for one definition, that of Huth et al. (2000),1 we used the 81st and 97.5th percentile 

values. We computed these percentiles using heat metric data for the summer months for the 

years 1999–2009. We obtained station-level climate normal information from the NCEI, that 

is, the mean and standard deviation of the daily heat metrics computed based on data from 

1981 to 2010 (Arguez et al. 2012); climate normals were unavailable for the heat index. We 

operationalized EHE definitions with minimum duration, that is, the number of consecutive 

days needed to constitute an EHE, variously ranging from 2 to 4 days. Varying minimum 

durations coupled with the various thresholds for each daily heat metric resulted in a total of 

92 variants (Table 1). Table ES1 (in the online supplemental material; http://dx.doi.org/

10.1175/BAMS-D-15-00181.2) provides precise details for each of these variants. We 

operationalized each EHE definition/variant using a binary [yes (1) or no (0)] variable, 

classifying each day in each county during the summer months as either an “EHE day” or a 

“non-EHE day.”2 Days for which daily county-level data were not available could in some 

instances have interrupted a data sequence that might otherwise have qualified the 

surrounding days as EHE days. However, because of the high data completeness threshold 

employed, we believe any such effects to be minimal.

Mortality data

We obtained mortality data from the National Center for Health Statistics (NCHS) National 

Vital Statistics System for the years 1999–2009 and identified records representing heat 

deaths based on International Classification of Diseases, 10th revision (ICD-10; 

www.who.int/classifications/icd/icdonlineversions/en/), external cause codes. Specifically, 

we selected death records for which exposure to excessive natural heat (ICD-10 code X30) 

was listed as the underlying cause of death; the underlying cause of death is defined as the 

disease or injury that initiated the chain of events leading to death (Hanzlick et al. 2006). We 

summarized the extracted death records for the summer months to obtain counts of heat 

deaths by county of residence and day. (County of residence was used as opposed to county 

where death occurred to facilitate calculation of population-based rates.) We then assigned 

the data for each county to one of the nine U.S. climate regions, which are aggregations of 

states based on homogeneous long-term climatology (Fig. 1); a description of these regions 

is available from the NCEI (www.ncdc.noaa.gov/monitoring-references/maps/us-climate-

regions.php). Additionally, as a result of small death counts in the West North Central and 

Northwest regions, we combined these two regions into the “North West Central.” We 

excluded counties that did not have meteorological data (or that did not meet the 

completeness criterion for such data) and made adjustments to account for county boundary 

1Per Huth's definition, a heat wave is defined as the longestperiod of consecutive days satisfying the following threeconditions: 1) the 
daily maximum temperature is above T1(97.5th percentile) for at least three consecutive days, 2) thedaily maximum temperature is 
above T2 (81th percentile) during the entire period, and 3) the average of the daily maximumtemperature over the entire period is 
greater than T1.
2We added a buffer of 3 days to the start and end of the summermonths to account for any potential EHE that either startedprior to 1 
May and ended on or shortly after 1 May, or startedon or shortly before 30 September and ended in the early partof October. The 
buffer days were not included in the analysis.
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changes that occurred between 1999 and 2009 (www.census.gov/geo/reference/county-

changes.html).

Population and other ancillary data

For incidence rate denominators we used county-level bridged-race population estimates 

developed by NCHS and the U.S. Census Bureau (www.cdc.gov/nchs/nvss/

bridged_race.htm). In addition to the meteorological data described in the meteorological 

data section above, we note the availability of a number of county-level measures of health, 

behavior, and economic conditions that could influence heat-related health outcomes. 

Percentages of residents of all ages living in poverty and percentages of residents aged 0–64 

years without health insurance are available from the U.S. Census Bureau; prevalence 

estimates of current adult smokers are available from the Centers for Disease Control and 

Prevention (CDC) Behavioral and Risk Factor Surveillance System; data on diabetes 

prevalence, adults that reported no leisure-time physical activity, and obesity prevalence 

(body mass index ≥ 30) are available from the CDC National Center for Chronic Disease 

Prevention and Health Promotion, Division of Diabetes Translation, while residential air 

conditioning prevalence data are available from a private vendor (efficiency 2.0). For the 

present demonstration, however, we felt that these data could not be meaningfully 

summarized across entire climate regions, as would be necessary for their inclusion in the 

modeling process described subsequently (see the section on rate regression modeling 

below). While EHEs tend to occur over broad geographic scales (and can thus be plausibly 

summarized across regions), measures such as those identified above might be expected to 

vary at more localized scales.

Evaluating EHE definitions using heat mortality data

Separately evaluating 92 different EHE definitions/variants and compiling results could 

become unmanageable from an operational standpoint; hence, we used cluster analysis as a 

preliminary data reduction technique to group EHE definitions into homogeneous sets. We 

differentiated any two EHE definitions based on county-day disagreements between the 

binary variables representing the operationalized definitions. For a given county and year, 

the total count of daily disagreements between two definitions is provided by the sum of the 

off-diagonal frequencies, as shown in Table ES2 in the online supplemental material to this 

article. (This sum represents the squared Euclidean distance between two vectors of binary 

variables.) Because the main research focus is on human health effects, these counts were 

weighted by the yearly county population estimates in order to ensure proportional 

representation. The population-weighted disagreement counts were then summed across 

counties (nationwide) and years to obtain an overall measure of disagreement (or distance) 

between the two EHE definitions. A distance matrix containing the overall disagreement 

measures for all pairs of EHE definitions (4,186 pairs) was used as input into the clustering 

procedure.

We applied a hierarchical clustering technique and employed an average distance metric to 

determine distances between clusters that might be merged in each step of the clustering 

process (Kalkstein et al. 1987; Zhang et al. 1996). Average distance is calculated using the 

formula
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(1)

where Ca and Cb are two disjoint clusters; na and nb are the number of members within 

clusters Ca and Cb, respectively; and d is the squared Euclidean distance between two 

members of the two disjoint clusters.

We divided the final hierarchical cluster (one large cluster encompassing all definitions) into 

smaller clusters, taking into consideration various diagnostics including the R-squared, 

pseudo-F, and pseudo-t-squared indices. Based on these diagnostics, we identified relatively 

distinct high-level clusters. One representative EHE definition was then selected from each 

high-level cluster. Representative definitions were selected according to the following 

criteria: 1) EHE definitions/variants that are well recognized in the literature, 2) application 

in studies conducted in the United States, and 3) application in nationally representative 

studies (i.e., those studies that covered the various climate regions of the United States). 

Recognizing the possibility of delayed or extended health effects associated with EHEs, 

each representative EHE definition was combined with the following exposure offsets: no 

lag (i.e., no offset), a 1-day lag, and 1-, 2-, and 3-day extended (post-EHE) effects (Fig. 2).

Rate regression modeling

We applied rate regression models to evaluate the relationship between operationalized EHE 

definitions and heat deaths. The following model was used to estimate the death rate per 

person day for each EHE definition/variant and exposure offset combination:

(2)

with model terms defined as follows: D is the count of deaths for each combination of 

region, year, and EHE status;3 E[D] is the expected count of deaths; P is the number of 

person-days of exposure for which D is measured; α is the intercept; βregion is the inter cept 

offset for the climate region; βEHE is the effect parameter for the binary variable 

representing the operationalized EHE definition/variant and exposure offset combination; 

EHE is the binary variable representing the operationalized EHE definition/ variant and 

exposure offset combination; βEHE.Region is the effect parameter for the interaction between 

the region and EHE; and Region is the classification (indicator) variable for the region.

To compensate for overdispersion, we specified a negative binomial link. Using this 

modeling approach, we estimated region-specific baseline rates of the heat death (in the 

absence of an EHE) and region-specific EHE rates of heat death (in the presence of an 

EHE). We termed the estimated increases in rates due to EHEs as “EHE effects.”

3To facilitate reliable modeling diagnostics as well as convergence, data were collapsed according to a three-way stratification: climate 
region × year × EHE status (for the EHE definition/variant and exposure offset combination under consideration).
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We used the estimated EHE effects to identify the “best” EHE definition/variant and 

exposure offset combinations for each region. One might hypothesize that there is some 

“gold standard” EHE definition that best explains heat mortality; the various EHE 

definitions considered in this evaluation represent approximations to this hypothetical gold 

standard. The extent to which each operationalized EHE definition deviates from the 

hypothetical gold standard can be expected to materialize in the form of attenuation bias 

(i.e., weaker estimated EHE effects than might be ideally attained). By this reasoning, the 

strongest estimates, presumably corresponding to those with the least attenuation bias, are 

assumed to best represent the gold standard. We tested this reasoning by simulating various 

“ideal” datasets, each with health outcomes following a probability distribution conforming 

to a different (and arbitrary) gold standard EHE definition, and then observing the influence 

of deviations from the gold standard. The steps in our simulation exercise are described in 

Fig. 3.

After the simulation exercise indicated that the attenuation bias concept is applicable to our 

situation, we employed model (2) to identify the EHE definition/ variant and exposure offset 

combinations having the strongest effect estimates. We evaluated each of the EHE 

definitions/variants selected as high-level cluster representatives crossed with the five 

exposure offsets and ranked the results in descending order based on the lower confidence 

limit associated with each EHE effect estimate, for each climate region. Further, to 

characterize the region-specific differences in population-level susceptibility to extreme 

heat, we conducted a random effects meta-analysis, by region, based on the 10 “best” 

region-specific EHE definition/variant and exposure offset combinations, to estimate the 

mean baseline rate, the mean EHE effect, and associated confidence intervals (CIs) for each 

region. We carried out our data analyses using the Statistical Analysis System (SAS version 

9.3), Environmental Systems Research Institute's GIS software (ESRI, ArcGIS version 9.3), 

and comprehensive meta-analysis software (CMA version 2.0).

Results

Table 2 summarizes the number of heat deaths and counties with meteorological data, by 

climate region. A total of 3,829 heat deaths were identified for the contiguous United States 

during the summer months of 1999–2009, and 2,218 (58%) of these deaths were among 

residents of counties with meteorological data meeting the stated completeness criterion 

(complete data). For the latter group the state of residence and the state where death 

occurred were the same in 94% of cases; the county of residence and the county where death 

occurred were the same in 83% of cases and in another 6% of cases the counties were 

geographically adjacent. The average fraction of the U.S. population living in counties with 

complete meteorological data was 57% over the 11-yr period considered here. The South 

region had the largest number of counties with complete meteorological data (n = 91) and 

also the largest number of heat deaths (n = 481) among residents of those counties. The West 

region had the smallest number of counties (n = 38) with complete meteorological data, 

although counties in this region are notably among the most geographically expansive. The 

North West Central region, which was formed by combining the Northwest and West North 

Central regions, had the smallest number of heat deaths (n = 72) among residents of counties 

with complete meteorological data.
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Figure 4 shows a dendrogram (or cluster tree), which depicts the sequential clustering of the 

EHE definitions/variants in a hierarchical manner. We delineated the final high-level 

clusters, taking into consideration the R-squared, pseudo-F, and pseudo-t-squared indices 

(data not shown). The break points were also influenced by subjective assessments of the 

homogeneity of members within clusters and the heterogeneity across clusters. We 

ultimately settled on five high-level clusters. We labeled each high-level cluster to reflect the 

underlying feature(s) common to the definitions/variants comprising it. Cluster 1 was the 

first cluster delineated and it contains only definitions/variants that are based on absolute 

thresholds for several of the daily heat metrics. Cluster 2 contains definitions/variants based 

on thresholds that are predominantly moderate in intensity. Cluster 3 contains definitions/

variants based on thresholds that are slightly more severe than those for cluster 2. Cluster 4 

contains definitions/variants based on thresholds that are predominantly extreme in nature. 

Cluster 5 consists of definitions/variants that rely on relative thresholds constructed from 

long-term climate-normal data, with thresholds that are predominantly low. Table ES3 in the 

online supplemental material lists the EHE definition/ variant that was selected as the 

representative from each high-level cluster. The five representative EHE definitions/variants 

crossed with the five exposure offsets resulted in 25 different combinations to be evaluated 

using the rate regression modeling framework.

Table 3 ranks the EHE definition/variant and exposure offset combinations by climate 

region. The representative definition/variant from cluster 3, daily maximum temperature 

greater than the 95th percentile for at least two consecutive days, is most strongly associated 

with heat mortality for six of the eight climate regions. The combinations of this definition/ 

variant with exposure offsets representing a 1-day lag (Lag1) or no lag (Lag0) show the 

strongest estimated EHE effects for all regions except the Southwest and South. The 

representative definition/variant from cluster 1, daily maximum heat index greater than 90°F 

for three consecutive days, combined with each of the different exposure offsets, shows the 

strongest estimated EHE effects for the Southwest. The representative definition/variant 

from cluster 4, the Huth definition, was the best definition for the South but generally shows 

the weakest estimated EHE effects for other regions. The representative definition/variant 

from cluster 2, daily maximum and minimum temperature greater than the 80th percentile 

for at least three consecutive days, ranked fairly high (depending on the exposure offset) for 

the Central, Northeast, and Southeast regions; Lag1 and Lag0 represent the best exposure 

offsets. The representative definition/variant from cluster 5, daily mean temperature greater 

than the mean plus one standard deviation of the long-term climate normal for at least three 

consecutive days, shows the weakest estimated EHE effects overall. For most regions, no 

one definition/variant is distinctly superior to all others. We also provide a table in the online 

supplement (see Table ES4) that describes other metrics such as the percentage of days 

classified as EHE days and percentage of heat deaths covered by EHE days for each 

representative EHE definition/variant and exposure offset combination.

Table 4 provides the results of the random effects meta-analyses of the estimated baseline 

rates and EHE effects, based on the 10 best EHE definition/variant and exposure offset 

combinations, for each climate region. The North West Central region shows the lowest 

mean (95% CI) baseline rate, 1.8 (1.5–2.2) deaths per one billion person-days of risk, and 

the highest mean (95% CI) EHE effect of 22.0 (17.7–27.3). The South region shows the 

Vaidyanathan et al. Page 8

Bull Am Meteorol Soc. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



highest mean (95% CI) baseline rate of 10.0 (8.8–12.0) deaths per one billion person-days of 

risk. The lowest mean EHE effect of 6.2 (4.9–7.9) was observed in the Southeast. In general, 

colder regions of the United States show a relatively low baseline rate and a relatively high 

EHE effect, while the warmer regions of the United States show a relatively high baseline 

rate and a relatively low EHE effect.

Summary and Perspectives

EHE definitions used for issuing alerts in most heat warning systems are calibrated to the 

extreme end of the daily heat metric spectrum. As noted by Hajat et al. (2010), our findings 

similarly suggest that using a definition that only identifies extremely hot days may have a 

greater tendency to introduce false negatives and thereby underestimate the risks associated 

with extreme heat, whereas using a less stringent threshold for EHE definitions may have a 

greater tendency to introduce false positives and thereby overestimate the risks. Additionally, 

prior approaches to evaluating EHE definitions that relied on mortality data mostly 

considered deaths due to all causes (Gasparrini and Armstrong 2011; Hajat et al. 2010; 

Zhang et al. 2012). The relationship between all-cause mortality and extreme heat is 

confounded by other factors, including long-term trends in mortality and various 

sociodemographic factors (Anderson and Bell 2009; Reid et al. 2009; Semenza et al. 1996). 

While this may also be true of the relationship between heat-related health outcomes and 

extreme heat, the extent of confounding might be expected to be less pronounced because of 

the presumably stronger causal link between the exposure and such outcomes.

To the best of our knowledge, the framework described here represents the first nationally 

consistent scheme for evaluating definitions of extreme weather events, within the context of 

adverse health outcomes with clear causal links to exposures characterized by such 

definitions. The framework, applied here to the evaluation of EHE definitions, employs 

cluster analysis to identify homogeneous groupings of event definitions followed by rate 

regression modeling to estimate the effects for representatives from these groupings. It 

provides a cohesive approach to identifying those definitions (and their variants) most 

closely associated with the adverse health outcome(s) of interest. Moreover, the approach 

can also shed light on definitions that are most weakly associated with adverse health 

outcomes. For example, in our demonstration, EHE definitions with thresholds that are 

either too extreme or too moderate tend to be among those most weakly associated with heat 

mortality for most climate regions.

Extending the basic framework to include a random effects meta-analysis proved useful in 

summarizing baseline health risks and event-specific effects for different climate regions. As 

exemplified in this demonstration, the warmer regions of the United States appear to have 

relatively modest EHE effects coinciding with relatively high baseline rates, whereas colder 

areas of the United States have relatively strong EHE effects coinciding with low baseline 

rates. This may indicate that in warmer regions, some summer days that are not classified as 

EHE days are nonetheless warm enough to put susceptible populations at an elevated risk for 

adverse heat-related health outcomes. To the extent that this might elevate estimated baseline 

rates, it would simultaneously offset estimated EHE effects. Prior knowledge of such 

geographic differences in health risks over an event timeline (preevent, event, and postevent) 
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could potentially assist public health practitioners and emergency planners with advance 

preparations for extreme weather events.

While our demonstration relied on heat mortality data to evaluate EHE definitions, the 

general framework might be applied to other adverse health outcomes with well-established 

links to extreme weather events. Further, considering a fuller range of outcome severity, 

including nonfatal hospitalizations and emergency department visits, might allow 

application of the framework at finer levels of geography such as cities and/or greater 

metropolitan areas. Applying the framework at finer geographic scales could facilitate the 

integration of measures reflecting local population attributes into the modeling process, as 

potential con-founders or modifiers of the relationship between extreme weather and related 

health outcomes. For example, air conditioning (a material adaptation) is a significant 

protective factor for heat-related health outcomes (Reid et al. 2009). Studies have also shown 

differing degrees of susceptibility to extreme heat among different ethnic groups (Klinenberg 

2002; Klinenberg 2003). Incorporating such factors into the evaluation scheme might also 

provide information useful for community-specific response plans.

There are some limitations to the present demonstration. Because we used station-based 

measurements as the source of the ambient heat data, approximately 40% of heat deaths 

nationwide were excluded. While sparseness in the region-wide numbers of heat deaths did 

not lead to convergence or statistical power issues in the modeling process, it prevented us 

from conducting an evaluation at a finer geographic scale. However, our ultimate goal was 

not to evaluate different EHE definitions but rather to present a general statistical framework 

for ranking EHE definitions, independent of geographic resolution to the extent possible. 

Relying on ambient weather data may also misrepresent true individual-level exposures, 

particularly in regions where summertime indoor climate control is widely employed (Davis 

et al. 2003) and in places where weather stations are not in close proximity to population 

centers. Further, this study did not consider daily heat metrics that are calculated using 

sophisticated algorithms and/or involve several synoptic weather parameters to identify 

EHEs; however, in this regard at least one other study noted a high degree of agreement 

among different temperature metrics used to characterize EHEs (Barnett et al. 2010). 

Finally, the mortality data used to test our framework are based on death certificates, which 

in some instances could lead to misclassification of deaths resulting from extreme heat 

exposure (Combs et al. 1999).

Conclusions

Increasingly, collaborations between public health and weather agencies are growing into a 

community of practice with an interest in examining the impacts of a wide range of extreme 

weather events on human health and the accompanying economic burdens. The evaluation 

framework proposed here, based on systematic but flexible statistical components, could be 

adopted by this community of practice to validate existing (or newly proposed) definitions of 

extreme weather events used to issue alerts and mitigate adverse health impacts. The 

schematic presented in Fig. 5 illustrates how the proposed framework might be adopted by 

agencies involved in emergency preparedness and response operations and identifies 

potential end-user benefits resulting from identifying definitions that are most appropriate 
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from a health perspective. For example, once the definitions for extreme heat most directly 

associated with heat-related health outcomes have been identified, statistical modeling 

approaches could be extended to quantify all excess deaths and illnesses associated with 

EHEs over historical (decadal) time scales, provided the necessary meteorological and 

health data are available. Noting that climate change is projected to increase the frequency 

and/or magnitude of EHEs (Morss et al. 2011), estimates of the historical (and projected) 

health burden associated with EHEs might help identify vulnerable populations and also 

inform adaptation efforts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Spatial coverage of ASOS weather stations with climate regions
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Fig. 2. Exposure offsets
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Fig. 3. Simulation exercise to test the attenuation bias concept
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Fig. 4. Dendrogram of hierarchical clusters
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Fig. 5. Potential uses of the statistical framework
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Table 2
Heat deaths (U.S. residents) and counties with meteorological data, by climate region, 
1999–2009

U.S. climate region No. of heat 
deaths

No. of counties with 
complete meteorological 

data

No. of heat deaths in 
counties with complete 

meteorological data

Percentage of regional 
population living in 

counties with complete 
meteorological data

Central 640 78 314 49

East North Central 150 54 93 49

Northeast 474 70 212 47

Northwest 70 40 51 73

South 890 91 481 60

Southeast 541 71 224 49

Southwest 508 43 367 64

West 508 38 455 92

West North Central 48 48 21 42

Total contiguous United 
States

3,829 533 2,218 57
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Table 4
Meta-analyzed baseline rate and EHE effect by U.S. climate region

U.S. climate region Mean (95% CI) baseline heat mortality rate (deaths per person day) × 10–9 Mean (95% CI) EHE effect

Central 4.1 (3.5–4.8) 15.0 (12.2–18.4)

East North Central 2.3 (1.9–2.8) 20.7 (15.9–26.9)

North West Central 1.8 (1.5–2.2) 22.0 (17.7–27.3)

Northeast 2.9 (2.4–3.5) 13.1 (9.9–17.4)

South 10.0 (8.8–12.0) 7.1 (5.7–8.8)

Southeast 3.8 (3.2–4.5) 6.2 (4.9–7.9)

Southwest 5.0 (4.1–6.0) 10.1 (8.1–12.5)

West 4.7 (4.0–5.5) 7.6 (6.2–9.2)
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