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Abstract

Metabolomics, a systems biology discipline representing analysis of known and unknown 

pathways of metabolism, has grown tremendously over the past 20 years. Because of its 

comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, 

the scale needed to answer the question(s), collection and storage of the sample specimens, 

methods for extraction of the metabolites from biological matrices, the analytical method(s) to be 

employed and the quality control of the analyses, how collected data are correlated, the statistical 

methods to determine metabolites undergoing significant change, putative identification of 

metabolites, and the use of stable isotopes to aid in verifying metabolite identity and establishing 
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pathway connections and fluxes. This second part of a comprehensive description of the methods 

of metabolomics focuses on data analysis, emerging methods in metabolomics and the future of 

this discipline.

Introduction

This is the second part of a summary of a training workshop on metabolomics published in 

the previous issue of the Journal of Mass Spectrometry1. The workshop, supported by a R25 

grant from the NIH Common Fund Program in Metabolomics, has been held each summer at 

the University of Alabama in Birmingham since 2013. It is focused on the analysis of 

metabolomics data collected using NMR and MS platforms as well as other applications of 

metabolomics, the future of metabolomics, and other training opportunities for interested 

investigators.

1. Data Analysis

a. 1H-NMR

Derivation of metabolomics data from NMR spectra is the use of chemometric analysis2, 3. 

After spectral pre-processing during which the added internal standard, e.g., DSS, is 

assigned to 0 ppm, the NMR spectra are “binned” using a defined interval (e.g., 0.4 ppm) 

(Fig. 1). This can be achieved using a number of different commercially software platforms 

including ACD[1] (www.acdlabs.com), Chenomx (www.chenomx.com) and MestreNova 

(http://mestrelab.com/). NMR spectra also contain several elements which may need to be 

removed prior to statistical analysis. These come from the protons in water, urea (in the case 

of urine), protons resonances of noise regions upfield to the DSS peak and those that are 

downfield from most metabolites (Fig. 1). Another issue can be the pH of the sample, 

particularly in urine. NMR peak alignment tools4, 5 are helpful to overcome issues with pH 

based chemical shift variation. By adding imidazole, the chemical shift of its protons allows 

the adjustment of other proton resonances susceptible to pH enabling identification using pH 

sensitive NMR libraries such as Chenomx. Another way is to use a buffer solution to control 

pH.

Untargeted NMR metabolomics analysis is typically performed in a high throughput manner 

by binning NMR data. Resulting “bin” data can be used as the input for principal component 

analysis (PCA) and partial least squares discriminant analysis (PLS-DA) or orthogonal 

partial least squares discriminant analysis (OPLS-DA) to determine the extent of differences 

between experimental groups and to identify the metabolic features that are important for 

distinguishing the study groups. The NMR data are mean centered and scaled (unit variance 

or Pareto) prior to multivariate data analysis.

A particular advantage of NMR metabolomics is that it is quantitative. The summed area of 

the peaks associated with each metabolite is representative of its concentration when 

referenced to an internal standard like DSS. Chenomx software can be used to pre-process 

1ACD has a free academic version
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and profile NMR spectra to identify and quantify metabolites. Metabolite concentrations can 

then be used for parametric statistics.

b. LC-MS and GC-MS

The goal of data pre-processing is to extract information about metabolite ions from raw 

mass spectrometry data. The raw data consists of a series of mass spectra each of which is 

acquired at a specific time and thus has a scan acquisition time (i.e., retention time) 

associated with it. Together with the mass-to-charge ratio and relative abundance of each 

mass-to-charge ratio, the raw data are three-dimensional.

Data pre-processing mostly occurs in two-dimensional spaces. The first two-dimensional 

space is the mass-to-charge ratio and relative abundance for each particular retention time, 

i.e., processing occurs at the spectrum level. The second is the retention time and relative 

abundance for a particular mass-to-charge ratio or all of the mass-to-charge ratios. The 

relationship between the retention time and the summation of relative abundance values for 

all of the mass-to-charge ratios gives rise to the total ion chromatogram (TIC). The 

relationship between the retention time and relative abundance values for a particular mass-

to-charge ratio gives rise to the extracted ion chromatogram (EIC).

The data processing workflow consists of a sequence of steps as depicted in Figure 2. 

Centroiding concerns converting spectral data in profile mode to centroid mode by 

determining the most likely mass values detected in each spectrum. The subsequent steps 

about features start from detecting all of the chromatographic peak features in each EIC.

For mass analyzers with unit mass measurement accuracy, an EIC can be easily obtained by 

extracting each unit mass and its relative abundance value over time. For mass analyzers 

with high mass measurement accuracy, there are two approaches. The first approach is 

through mass binning. Basically, the mass axis is divided into equal bins and all of the mass-

to-charge ratios that fall into one mass bin and their corresponding relative abundance values 

give rise to an EIC. The advantage of this approach is that the algorithm is easy to 

implement and all of the EICs in a dataset can be rapidly built. The disadvantage is that both 

EIC splitting and merging can happen. Splitting occurs when a binning boundary separates 

mass-to-charge ratios that belong to the same mass into two different bins. Merging occurs 

when mass-to-charge ratios that belong to two different masses are sandwiched between two 

adjacent binning boundaries. There are methods to avoid these issues by combining adjacent 

bins (n, n+1) to check for peaks. This method, matchedFilter, was used in the widely used 

software tool, XCMS6.

A second, more sophisticated approach to building EICs is to automatically determine the 

binning boundaries. Toward this end, XCMS now uses an intelligent binning algorithm 

(centWave) to find areas of interest7. These areas are found by a tracking algorithm that 

looks for a smooth slope with a small amount of m/z drift. Once this pass is made over the 

single LC/MS spectrum, a second algorithm is used to integrate the peak. A series of 

wavelets are fitted to the peak until the best wavelet is found. If no wavelet was fitted 

successfully, then the area is not a peak. Some areas contain co-eluting peaks and the 

wavelets are able to pull these peaks apart. This approach overcomes the disadvantages of 
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the aforementioned binning at the cost of calculation time. However, with ever increasing 

computing powers, this is not a big issue any more.

i. LC-MS data pre-processing—With all of the EICs built, feature detection determines 

all of the chromatographic peak features. A feature is defined as an ion with a unique 

combination of m/z and retention time values. In an EIC, there could be one or more 

chromatographic peak features. Since these peak features could be of different widths, 

wavelet transform has been used as a robust method for this purpose.

Among all of the peak features, a high percentage of them are produced by random noise 

and contaminants and need to be filtered out. A few criteria can be used for filtering, 

including the signal-to-noise ratio of each peak feature, the width, the shape, and total area 

underneath a feature. This is achieved in the step of feature filtering. Subsequently, all of the 

remaining peak features in a data file are grouped based on their chromatographic peak 

shape. Peaks that are similar in terms of the shape are most likely related to a single 

metabolite. These peaks in the same group could be isotopes, adducts, neutral-losses and the 

molecular ions8. What would eventually determine the identity of the molecule that has 

produced this group of ions is the molecular ion.

For each feature group, each feature is assigned a most likely ion type (isotope, adduct, 

neutral-loss, or molecular ion) in the feature annotation step.

So far, each processing step including mass recalibration, centroiding, feature detection, 

feature filtering, feature grouping, and feature annotation have been carried out for each data 

file. With all of the features that have been annotated for each data file, features are aligned 

across data files. The purpose of this step is to correct retention time shift that has occurred 

in the course of analyzing many biological samples on the analytical platforms.

Many retention time correction methods are used in existing software. A warping-based 

approach by modeling the global retention time shift over time finds similar peak shapes to 

warp the spectra to a median spectrum. Another is to find anchors, features that do not have 

a large drift in time. These anchors can then be used to align the LC-MS spectra in a non-

linear fashion. A third is to determine features that correspond to the same metabolite across 

data files. The criteria for this determination include similarity in terms of isotopic profile, 

mass, and retention time. The latter approach is computationally more challenging and more 

time consuming, but more accurate.

Software(s) to perform the aforementioned is(are) provided by individual instrument 

manufacturers. However, there are extremely useful community providers of this type of 

software. A very powerful software for analysis of metabolomics data is XCMS6. It can be 

used on an investigator’s computer at the command line level using R. Alternatively, 

investigators can upload their data to an online version of XCMS (https://

xcmsonline.scripps.edu)9. Depending on the instrument generating their data, it may be 

necessary to convert the data into .mzML, .mzXML or .NetCDF format10. Once loaded, an 

investigator selects the individual datasets to be compared, adjusts certain parameters based 

on the nature of the GC-MS or LC-MS instrumentation (acceptable peak widths, mass 
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accuracy, etc.), and submits a job for the Scripps server to process. Once ready, the 

investigator reviews the results online. These come in graphical form (color-coded total ion 

current chromatograms with and without retention time warping, Cloud plots (Fig. 3) 

identifying ions that are increased (green) or decreased (red) superimposed on the mean total 

ion chromatogram (in gray), and multidimensional statistical plots11. Furthermore, a more 

interactive form of XCMSonline has become available12. The data can also be exported and 

after arranging into files containing m/z values of the ions and their intensities, can be 

analyzed by other statistical programs that are freely available on the internet. One of these 

is MetaboAnalyst (www.metaboanalyst.ca). Metabolites can also be compared across 

different datasets using metaXCMS13.

A second publicly available program that in addition is excellent for data presentation is 

Mzmine14 – it can be downloaded at http://mzmine.github.io/ and works on both Macs and 

PCs. Once loaded, the user has the option of working at the command line and thereby 

writing programs to optimize use of Mzmine, or using a graphical user interface to utilize 

pre-programmed software functions. The file formats that can be used with Mzmine 

are .CDF and .mzXML. Once loaded, a useful way of looking at the MS data is to plot the 

intensities of either selected ion masses or ranges of ions masses for user-defined times. To 

assist in the identification of significant peaks, the ions can be displayed in a 3D-plot (Fig. 

4A). In this example, the urine was from a subject who had been treated with gemcitabine. 

By selecting m/z 264.08 with a 5 ppm mass window, an ion chromatogram revealed that 

gemcitabine eluted at 15.2 min (Fig. 4B). Mzmine has filtering functions for the raw data 

including carrying out alignment across multiple samples. There are other programs that can 

be used in this context and recently they have been evaluated comparatively15.

ii. GC-MS data pre-processing—A major difference between pre-processing LC-MS 

and GC-MS data is that the latter must include a deconvolution step for constructing a 

“pure” spectrum for each metabolite measured by the mass analyzer. This is because GC-

MS analytical platforms usually use electron ionization that causes fragmentation of 

molecules at the ionization source. As a result, what the mass analyzers produce are 

fragmentation spectra, similar to the MS/MS spectra that are produced on LC-MS platforms. 

Since different metabolites could elute from the gas chromatography column at the same 

time (co-elution) when separation is not perfect, the same GC-MS spectrum could contain 

fragments from different metabolites and deconvolution is needed to separate them into their 

individual spectra.

For this purpose, AMDIS (Automated Mass Spectral Deconvolution and Identification) was 

developed and has been widely used (http://chemdata.nist.gov/mass-spc/amdis/downloads/).

c. Statistical Analysis

With the quantitative information of metabolite ions (peak area or peak height) determined 

at the data pre-processing stage, statistical algorithms are applied to identify those ions that 

are significantly altered between control and experimental groups. Before statistical analysis 

can begin, it is necessary to remove from the file of integrated peak areas those from the 

dead volume before any of the sample reaches the mass spectrometry detector and those 
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eluting during column washing and re-equilibration. Selective removal of NMR peaks may 

also be carried out as noted above.

The fully processed data are then uploaded to MetaboAnalyst16 (www.metaboanalyst.ca). 

Data are organized into individual Excel files in the .csv format. The first column of each 

file is the list of m/z values or the list of 1H-NMR chemical shifts. The second column is the 

corresponding peak area for each m/z value or NMR chemical shift. The files are organized 

in folders into the two groups being compared. Note that the names of each file and of the 

folders must not include spaces. The two folders are combined into a .zip file and uploaded 

to MetaboAnalyst (which will check for any errors and if none report on the total number of 

metabolites to be analyzed). MetaboAnalyst also checks for missing values and allows for 

selection of interquartile range (preferred). Next, it is important to apply a normalization 

function. Commonly this is a weighted correction to the collected data. This could very 

simply be due to differences in the amount of sample taken. For example, in a study 

involving collected plasma, all the samples except two had 100 µL of plasma available. The 

volumes of the other two samples were 75 µL and 90 µL. The peak areas of the latter two 

sample dataset values were therefore increased by 100/75 and 100/90, respectively. As noted 

earlier, it is important to have internal standard(s) added to the samples being processed. A 

further correction to peak areas is then to normalize to the mean area of the standard across 

all samples divided by the area of the standard in individual samples.

While the above approach works for plasma and serum, fluids such as urine, follicular fluid 

and bronchoaveolar lavage are subject to dilution that it is a function of either how much an 

animal or human subject has drunk prior to collection (urine), or how much fluid 

(physiological saline) was flushed into a cavity to recover follicular fluid and 

bronchoaveolar lavage. In these cases, other correcting factors can be employed. For urine, 

the creatinine concentration has been widely used to do this correction although in cases of 

kidney dysfunction it is not appropriate. For follicular fluid and bronchoaveolar lavage with 

unknown dilutions caused by the lavage fluid, normalization by dividing by the total ion 

current (TIC) is a reasonable approach. The assumption here is that the greater majority of 

the observed signals are unchanged and therefore the sum of the observed ions is an 

effective normalizing factor.

The next consideration for the dataset is to apply the interquartile range (IQR). If all the data 

are ranked and divided into four equal parts, the IQR represents the middle 50% of all the 

data points. If the data are not normally distributed, then log transformation may be applied 

although this creates problems since it cannot handle zero values. Finally, to reduce the 

contribution of the most intense ions in the dataset, the data can be mean centered (i.e., the 

mean value for a metabolite is subtracted from each metabolite ion value) and then the 

variance is scaled by the square root of the standard deviation. The data are now ready for 

univariate and/or multivariate analysis16.

Many different normalization functions have been developed and are suitable to different 

problems including both dilution and batch effects16, 17. Median fold change normalization 

has the ability to reduce dilution effects without altering the biological effect. This method 
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was tested with log transformations of LC-MS data and showed to improve overall analysis 

with multivariate statistics by increasing the statistical agreement with these methods.

i. Univariate analysis—A serious problem encountered in applying statistical analysis to 

all –omics data is that the number of samples (n = 3–6 for cells, n = 8–15 for an animal 

study, n = 30–100 for a controlled clinical study and n = 100–1,000 for an epidemiological 

study) is smaller than the number of observed variables. Taking a univariate approach, a 

Student’s t-test comparing the amount of a single metabolite ion in a control group with 

another in a treatment group and selecting significant metabolites based on p-values is 

fraught with problems due to the multiple testing issue. The Bonferroni correction19, 

dividing the normally acceptable p-value for significance for comparison of a variable 

between two groups (p<0.05) by the number of observed metabolite ions (m) is very harsh 

and may result in the loss of real metabolite differences. Using fold-change as a 

discriminator, as was widely used in the early days of transcriptomics20, is no longer 

regarded as acceptable. However, the use of a Volcano plot (Fig. 5) that combines fold 

change and pairwise significance is widely accepted21. In this, fold-change is plotted as the 

logarithm to the base two on the horizontal axis and the negative logarithm of the p-value on 

the vertical axis. The investigator may select a reasonable fold-change, say 1.5, and p-value, 

say p<0.01 (log10 P = 2). In the plot, metabolites appearing in the upper left and right 

quadrants are considered candidates for metabolites which are significantly changed. The 

false discovery rate (FDR) correction of the p value (resulting in a q value) is becoming a 

widely accepted alternative to the Bonferroni correction22, 23. This method is a less 

stringent, multiple testing correction that results in fewer features/metabolites as false 

negatives. There are many variations of the FDR approach and their variability in output has 

been systematically evaluated24.

ii. Multivariate analysis—The data may also be analyzed using multivariate analysis. The 

two major methods currently used in the field are principal components analysis (PCA) and 

partial least squares discriminant analysis (PLS-DA). PCA is a data reduction technique that 

allows high dimensional datasets (such as those in metabolomics) to be reduced to a few 

major principal components. By plotting the scores (the weighted sum of the contribution of 

each metabolite to a principal component) of these components (normally principal 

components with eigen values greater than 1), users may find that a class of observations 

(samples) are distinct from one another (Fig. 6A). Using the loadings plot features that are 

contributing to this separation, metabolite ions can be selected and further analyzed to 

identify if they are biologically relevant metabolites. It should be noted that as PCA does not 

use any data classification to find the principal components, it is a non-supervised method. 

The other major method, PLS-DA, is a supervised method. This method uses a binary class 

group (Y) to explain the variables in the data matrix (X). Much like PCA, PLS-DA scores 

plots can be viewed with different projections in the scores and loadings plots (Fig. 7). 

Simca (http://www.umetrics.com/products/simca), a well-used multivariate software analysis 

suite, and MetaboAnalyst16 output the variable importance in projection (VIP) score. This 

score can be used along with a contribution score to find the most predictive features for the 

class.
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By selecting those metabolites that appear to be significant in both univariate and 

multivariate analysis, there is an increased chance that they can be validated in separate 

experiments. It is necessary then to look at selected ion chromatograms for these metabolite 

m/z values to eliminate any metabolites that have irregular peak shapes. Also, it is also 

worth filtering the results to isolate for further analysis those peaks that had sufficient 

intensity to trigger collection of MS/MS data.

d. Confirming metabolite data

Even a metabolite ion that is strongly related to the phenotype being studied and has shown 

to be significantly different by univariate and/or multivariate analysis must be confirmed by 

independent LC-MS analysis. Typically, the mass transitions between the precursor ions 

(MS1) and their product ion(s) formed by MS/MS (that were collected in untargeted 

metabolomics analysis) are used to generate a multiple reaction monitoring assay. Ideally, 

this assay is carried out on sets of biological samples held back from the untargeted 

metabolomics analysis so as to provide an independent assessment of the significance of the 

metabolites.

i. Identifying metabolite ions—Once statistical analysis has generated a list of 

potentially changed metabolite ions, their m/z values can be matched against public 

metabolite databases such as METLIN (https://metlin.scripps.edu/index.php), the Human 

Metabolite Database (http://www.hmdb.ca), and the Lipidmaps database (http://

www.lipidmaps/org). These databases contain MS and MS/MS information. A disadvantage 

that investigators frequently encounter is that the databases contain different sets of 

metabolites and when metabolites are in common, the databases use different alphanumeric 

IDs. In addition, there are proprietary databases as part of workstations (MassHunter) 

associated with commercial instruments (Agilent), as well as those in comprehensive 

metabolomics analysis services such as Metabolon (http://www.metabolon.com). The Fiehn 

lab provides a tool for interconversion of metabolite IDs (http://cts.fiehnlab.ucdavis.edu). 

Although it interconverts IDs from a very long list of databases, at the present time it is not 

possible to convert METLIN IDs to other formats. It is also common that investigators do 

not find their feature in a database either because the feature is not a metabolite, the feature 

is an adduct and is not being searched correctly in the database, or the metabolite is not in 

the databases yet.

For GC-MS data, the Fiehn lab (http://metabolomics.ucdavis.edu) and the NIST databases 

(http://www.nist.gov/srd/nist1a.cfm) provide extensive searching capabilities.

Besides the biochemical databases, there are others that are more comprehensive, 

encompassing all known chemicals. One of these is Chemspider (http://chemspider.com). By 

entering the monoisotopic mass (note, not the mass of the ion, but the molecular weight of 

the unionized molecule) under intrinsic properties, all records with that mass can be 

downloaded. For instance, the isoflavone genistein with empirical formula C15H10O5 has a 

monoisotopic mass of 270.053 Da. If the mass window is limited to ± 0.01 Da, there are 

3,316 records in Chemspider, although not all the compounds retrieved have the formula 

C15H10O5. Narrowing the mass window ten-fold to ± 0.001 Da reduces the number of 
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records to 319; however, every one of them has the empirical formula C15H10O5. Therefore, 

no matter how powerful a mass spectrometer may be at determining exact mass[2], it is 

likely that there are multiple other (isobaric) compounds at that mass.

A comprehensive analysis of an unknown metabolite in terms of its LC or GC retention 

time, isotope distribution, accurate mass, and fragment ion patterns in MS/MS helps to 

identify its structure.

Exact mass does have an advantage in that it may allow the investigator to determine the 

empirical formula of a metabolite. Because the mass defects for each element (except 

carbon) are non-zero, observed masses do not form a continuum of masses. Metabolites that 

are fully saturated with hydrogen have the highest, positive mass defect. For instance, the 

monoisotopic ion of palmitate [M-H]− molecular ion is m/z 255.233 with its 31 hydrogens 

each contributing 0.00783 Da to the mass defect. On the other hand, the monoisotopic mass 

of the [M-H]− ion of 5-methylthio-D-ribose-1-phosphate (empirical formula C6H12O7PS) is 

259.004. The small mass defect for this metabolite occurs because the negative mass defects 

of seven oxygen atoms (each −0.00509 Da), phosphorus (−0.02624 Da) and sulfur 

(−0.02793 Da) offset the positive mass defect of the 12 hydrogen atoms.

Of course, chromatographic retention time is an additional, independent parameter to be 

used in confirming or denying metabolite identity. Indeed, investigators use (at least) two 

different LC methods to ensure identity. Usually, this involves different stationary phases 

(e.g., reverse-phase versus hydrophilic interaction liquid chromatography) or mobile phases 

with different pHs, e.g., 0.1% formic acid (pH 2) and 10 mM ammonium acetate (pH 7). 

Where the metabolite has a chiral center (and thereby the R- and S-isomers otherwise 

behave identically), a chiral stationary phase may have to be employed. Ion mobility mass 

spectrometry is a powerful approach for the study of metabolites25 and has recently been 

applied to the separation of isomeric, isobaric lipid metabolites26.

ii. Interpreting MS/MS data—While identifying metabolite ions may eventually be 

computer-driven, at the present time less than 20% of the observed ions (at exact masses) 

have putative identities. Of those that have an ascribed chemical identity, only an even 

smaller number have associated MS/MS spectra. A complication in interpreting MS/MS 

spectra is that the product ions and their ratios that are observed are in part due to the mass 

spectrometer being used and the conditions for collision-induced dissociation. MS/MS 

spectra in the METLIN database are recorded at increasing potential gradients (0, 10, 20 and 

40 V) giving successively greater extents of ion dissociation. In real time LC-MS analysis, 

many systems use a rolling potential during analysis of a selected peak since it cannot be 

predicted a priori what the optimum potential is for dissociation of an unknown precursor 

ion. This thereby leads to a MS/MS spectrum that is an average.

As such, interpreting MS/MS spectra may involve not only comparison to MS/MS spectra of 

precursor ions of the same m/z as the metabolite, but also to other precursor ions with 

2Exact mass is correct in the sense that a compound has an exact mass. However, experimental measurement of the mass of an ion 
always has error. The most accurate mass spectrometers used in metabolomics can measure mass with an error of ~100 ppb, i.e., to the 
5th decimal place.
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different m/z values where the product ions are nonetheless the same. This suggests that 

metabolite and the known compound are structurally similar27, 28.

Direct comparisons between product ions of standards and unknowns can provide important 

structural information of unknown biological products. For example, 3’-chlorodaidzein was 

identified when differentiated HL-60 cells were incubated with the isoflavone daidzein (7,4’-

dihydroxyisoflavone). Its identification was based on comparison between the product ion 

mass spectra of the standard and the biological product (Fig. 8A, B). The presence of the 

m/z 35 ion together with the loss of 36 Da (HCl) indicated that daidzein had been 

chlorinated29, 30. Isomers such as C- and O-glucosides of flavonoids can be distinguished by 

their MS/MS fragmentation patterns31. For example, the carbon-carbon link in the C-

glucoside of daidzein (puerarin) is relatively stronger than the ether linked O-glucoside 

(daidzin). For daidzin, ions break easily at the weakest point and the entire sugar moiety in 

daidzein 7-O-β-D -glucoside is lost (−162 Da) (Fig. 8C). In contrast, for the C-glucoside 

puerarin, the glucose moiety is retained and ions representing losses of water are prominent 

(Fig. 8D).

Interpreting MS/MS data is also very useful in studying metabolic transformation. For 

example, the loss of glucuronic acid (176 Da) can be used for the characterization of β-

glucuronide metabolites observed in serum/plasma, urine and other biofluids32. Similarly, 

GSH conjugates upon MS/MS produce characteristic product ions m/z 306, 272, 254, 210, 

179, 160 and 143 in the negative ion mode33.

Other methods used to discern the identity of a metabolite are similar to compound 

identification in natural products chemistry. These methods begin with preparative 

chromatography to isolate the metabolite in increasingly more purified forms. This allows 

both chemical derivatization to identify the number and nature of reactive groups and 

chemical or enzymatic hydrolysis to examine the conjugate nature of the metabolite. If very 

pure forms of the metabolite can be obtained, other spectroscopic methods can be brought 

into the analysis. These include infra-red analysis as well as NMR. If enough of the 

metabolite is isolated, NMR is particularly valuable since pulse sequence methods can be 

used to determine the protons attached to individual carbon atoms, and those protons that are 

interacting and the distances between them. This information is critical to differentiate 

between compounds based on GC-MS or LC-MS information.

iii. Use of isotopes in metabolite analysis—Isotopic labeling of precursors to identify 

metabolites in a pathway has had a history of more than 80 years. It began with deuterated 

water and moved onto the use of 3H and 14C radiolabeled forms of metabolite precursors. To 

enable studies in humans, emphasis has been placed on the use of stable isotopes 

(2H, 13C, 15N and 18O). By starting with uniformly 13C-labelled glucose, all the metabolites 

that constitute primary and secondary pathways of its metabolism can be discerned by 

following the increased 13C-intensities of the metabolites. Both NMR and mass 

spectroscopic methods are widely used in stable isotope resolved metabolomics analysis.

An interesting development to these methods is IROA (isotope ratio outlier analysis, http://

www.iroa.com)34. In this method two forms of 13C-labeled glucose are incubated with the 
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system under test. The first form is 95% 13C/5% 12C-glucose (experimental condition) and 

the other is 5% 13C/95% 12C-glucose (control condition). When extracts of each are mixed, 

ions representing metabolites have a U-shaped isotope profile - the extremes are all 12C-

labeled and all 13C-labeled forms of the metabolite. Usefully, the difference in mass between 

the all 12C-labeled and all 13C-labeled forms of the metabolite represents the number of 

carbon atoms it has (Fig. 9). This can be very valuable in limiting the number of empirical 

formulae that are consistent with the observed m/z of the metabolite. A similar approach 

(HiTIME, High-Resolution Twin-Ion Metabolite Extraction) has been described for the 

metabolites of acetaminophen35.

As a final step, it’s typical to chemically synthesize the new metabolite, either to verify that 

it is identical to the biological metabolite, or to use it in an isotopically labeled form for 

pathway analysis or absolute quantitation by isotope dilution mass spectrometry analysis. 

The NIH Common Fund Metabolomics Program has issued contracts to RTI International 

and SRI International for metabolite synthesis. Interested investigators may nominate 

compounds for synthesis or request existing compounds at http://

www.metabolomicsworkbench.org/standards/nominatecompounds.cgi.

2. Pathway analysis

Metabolomics has two principal goals: to identify (1) a useful biomarker or panel of 

biomarkers that accurately predict a particular phenotype, and/or (2) the metabolic 

pathway(s) and hence the underlying proteins and/or genes that lead to the phenotype. 

Whereas biomarkers, once validated, allow immediate implementation, knowledge of 

pathways may allow targeting of an enzyme activity, a transporter of a metabolite, or a 

transcription factor regulating a metabolic process. Many of the biochemical pathways were 

established in the early days of biomedical research once isotopically labeled forms of 

metabolite precursors became available. Databases of these pathways and more recently 

described pathways are available in publicly accessible and searchable sites such as KEGG 

(Kyoto Encyclopedia of Genes and Genomes - http://www.genome.jp/kegg/), MetaCyc 

(http://metacyc.org), BioCyc (http://biocyc.org) and Metscape (http://metscape.ncibi.org/) 

which is a plug-in for Cytoscape (http://cytoscape.org). GeneGo (https://portal.genego.com/) 

and Ingenuity pathway analysis (http://www.ingenuity.com/products/ipa) are examples of 

commercial pathway analysis software tools.

A novel approach to connecting metabolites is Mummichog (http://mummichog.org). It 

started as a pathway and network analysis tool for untargeted metabolomics36. Mummichog 

assumes that statistical testing at feature level, even without metabolite annotation, can select 

a subset of m/z features that carry biological meanings, which can be potentially projected 

onto metabolic networks as enriched patterns (Fig. 10). Such patterns can be quantified by 

over-representation statistics, in combination with network topologies. The null distribution 

is estimated by resampling all m/z features, and multiple matches between m/z and 

metabolites are taken into account. Both conventional pathways and unbiased network 

analysis are accommodated in this framework. Thus, Mummichog can quickly generate 

high-quality hypotheses from untargeted data, so that researchers can focus their resources 
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on prioritized pathways and biological context. This approach can be successfully applied to 

mechanistic experiments37 and population-based studies38.

A deeper appreciation of the role of the microbiome that has also occurred in recent years 

has led to the realization that metabolism crosses genomic boundaries. Because the human is 

now described as a superorganism39, a combination of human eukaryotic cells and the 

prokaryotes inhabiting the gastrointestinal tract in vast numbers and those in other crevices, 

this must be taken into effect when considering metabolites and the metabolic pathways they 

are associated with. In addition, metabolites arise from the foods we eat, often another 

discrete set of genomes.

For example (Fig. 11), the isoflavone daidzein is found in the soybean mostly as its 6”-O-

malonyl-7-β-D-glucoside40. Traditional preparation of soy foods either by hot water 

extraction (to make soy milk and tofu) largely leads to hydrolysis of the malonate group to 

yield the 7-β-D-glucoside of daidzein41. Fermentation of soy to make miso, soy paste or 

tempeh causes hydrolysis all the way to daidzein as well as to the introduction of hydroxyl 

groups. Many American soy foods are based on the protein fraction of soy once the oil, but 

not the isoflavones, has been removed by extraction. Processing of the protein fraction using 

heat causes decarboxylation of the malonyl group to form 6”-O-acetyl-7-β-D-glucoside of 

daidzein41. Note that these steps do not represent metabolism, but instead a chemical 

(processing) pathway. Once in the gastrointestinal tract, daidzein, as for other isoflavones42, 

is easily absorbed into the intestinal cells. The 7-β-D-glucoside of daidzein which may enter 

the intestinal cell via the glucose transporters undergoes hydrolysis catalyzed by lactase 

phloridzin hydrolase43. In the intestinal cell, daidzein is mostly converted to its β-

glucuronide42 or sulfate ester. These phase II metabolites enter the bloodstream and are 

swept towards the liver where they undergo hepatobiliary transport from the portal vein into 

the bile. The β-glucuronide, 6”-O-malonyl-7-β-D-glucoside and 6”-O-acetyl-7-β-D-

glucoside of daidzein are not substrates of lactase phloridzin hydrolase and therefore enter 

the microorganism-rich colon. The bacteria there hydrolyze each of these conjugates to 

daidzein which undergoes reductive metabolism to form dihydrodaidzein, O-

desmethylangolensin and equol (4,7–dihydroxyflavan). Whereas daidzein has no chiral 

carbon atoms, its metabolites have a C3 asymmetric carbon. It has been shown that the 

naturally occurring form of daidzein is its S-isomer44 which binds to estrogen receptor with 

a KD of 1 nM, similar to 17β-estradiol (the R-isomer, made chemically, is a weak agonist). 

These metabolites are absorbed from the colon, return to the liver via the inferior mesenteric 

drainage and are glucuronidated and re-enter the bile. This set of metabolic steps between 

the daidzein in soy foods and S-equol therefore crosses three different types of genomes 

(Fig. 11) and at this time is not represented in pathway databases.

3. Fluxomics analysis

The concentrations of metabolites, even when measured accurately and precisely, give no 

sense of the dynamic nature of metabolism or the origins of the carbon atoms (and when 

appropriate nitrogen atoms) in a metabolite. The concentrations and turnover of metabolites 

sitting at the junctions of metabolic pathways such as pyruvate, acetyl CoA, alpha-

ketoglutarate, glutamate and glutamine may reveal the underlying features of disease45. To 
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pursue this area of metabolomics it is necessary to combine both high performance GC-MS 

or LC-MS and NMR46–50. LC-MS is used to determine the concentrations of each 

metabolite and 13C-NMR allows the identification of which carbon atoms are 13C-labeled 

and to what extent.

4. Imaging-MS

Although much of the reported information in metabolomics concerns biofluids, there is a 

growing interest in the location of metabolites in tissues. Although secondary ion mass 

spectrometry (SIMS) has been used to examine intracellular metabolites51, two main 

approaches are currently being used: rapid evaporative ionization mass spectrometry 

(REIMS) that exploits analysis of the sprays created by the surgeon’s cauterizing knife52–54, 

and imaging of frozen tissue sections using direct electrospray ionization (DESI)55–57 or 

MALDI-imaging MS58, 59. In the latter case it is necessary to deposit the MALDI matrix by 

vacuum sublimation in order to prevent shifting of the metabolites and to ensure optimum 

matrix deposition. This limits the available matrices to those that undergo sublimation. 

Using 2,5-dihydrobenzoic acid (DHB) as a matrix applied to frozen tissue sections by 

vacuum sublimation, the major lipids that are altered quantitatively in normal processes such 

as ageing or in disease processes can be viewed spatially. This information helps to establish 

mechanism and suggests possible physiological consequences of those lipid changes. An 

example from our group60 is shown in Figure 12. Several ether-linked phospholipids were 

found to be increased early after ischemia-reperfusion kidney injury in mice using MS/

MSALL lipidomics. One of these was imaged using 2,5-DHB matrix coated kidney 

cryosections in positive mode to show that it was located primarily to regions of the kidney 

rich in proximal tubules. In MALDI imaging, TOF58 and TOF/TOF analyzers are most 

frequently used59, 61, although higher mass resolution can be obtained with FT-ICR 

analyzers62. Whereas SIMS using heavy ion bombardment can provide subcellular spatial 

resolution (50 nm), the spatial resolution using MALDI is limited to the width of the beam 

(5–25 µm).

5. Further training opportunities

Besides the UAB Metabolomics workshop, there are several metabolomics symposia and 

associated short workshops at institutions sponsored by the NIH Common Fund Program in 

Metabolomics (RTI International, University of Florida, University of Michigan and the 

Mayo Clinic), as well as advanced workshops at UC-Davis (advanced data processing) and 

the University of Kentucky (fluxomics and stable isotopes). There are many international 

workshops and a calendar of these is presented monthly in MetaboNews (http://

www.metabonews.ca/archive.html). There are a growing number of workshops given in 

conjunction with meetings of National Societies. The Metabolomics Society (http://

metabolomicssociety.org) has annual international meetings and has developed a subgroup 

for young investigators.

Barnes et al. Page 13

J Mass Spectrom. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.metabonews.ca/archive.html
http://www.metabonews.ca/archive.html
http://metabolomicssociety.org/
http://metabolomicssociety.org/


6. The future of metabolomics

Standardization of methodology and advancement in technology will enable the use of 

simpler systems to more easily extract, measure, and quantify the metabolome. As 

untargeted approaches reveal relevant metabolites for a system, more focused, targeted 

assays can then be used to validate these studies. As an example, a recent study used the 

available isotopically labeled metabolite standards to measure quantitatively more than 100 

metabolites at a time using triple quadrupole MRM-MS63, 64. It should be expected that in 

the future commercial companies will develop kits for the quantitative analysis of specific 

classes of metabolites in which every metabolite to be measured can be added to the 

extraction solvent in a stable, isotopically-labeled form. This isotope dilution approach will 

allow the collection of quantitatively reliable metabolite data that could be compared across 

different investigator groups, enhancing the value of these data and permitting their 

integration with other –Omics data.

With analyzers that allow 200 mass transitions to be monitored per second, analysis with 

peaks that are 10 s wide are currently available. With faster switching between transitions 

and more sensitive detection of metabolite ions, further improvements will occur. How many 

product ions are needed to successfully discriminate between metabolites has been 

approached bioinformatically65. However, since it will take many product ions to do this, 

this redundancy noticeably increases the number of mass transitions to monitor and hence 

consumes time. Q-TOF mass spectrometers provide an alternative avenue for improvement 

since they can also be used to carry out MRM analysis with the advantage that they collect 

all the product ions of a selected precursor ion at one time and with much greater accuracy 

than a quadrupole detector63.

With very fast analyzers like the TOFs, it is also possible to generate massively parallel 

separations, such as those possible with capillary electrophoresis. In addition, high-

resolution chromatography using a combination of open-tubular and packed on chips 

operating in nanofluidics is emerging as a future device66.

In the future, software for processing metabolomics data and identifying metabolites may 

move into the Cloud. The advantage of doing this is that the high current, upfront expense of 

standalone software (>$35,000) and computer hardware adequate to run the programs (>

$5,000) can be avoided. Although use of the software may require a subscription service, it 

would allow users to (a) work with the latest version of the software, (b) employ as many 

virtual computers as needed for the job in hand and (c) integrate this form of –omics data 

with data from all the other –omics. Of course, legal and proprietary issues may limit this 

approach. At this time, individual institutions may interpret Health Insurance Portability and 

Accountability Act (HIPAA) regulations regarding patient privacy to prevent the use of the 

Cloud for data processing/data storage. For similar reasons companies may not wish to put 

sensitive information in the Cloud. On the other hand, NIH and other federal agencies 

demand that data obtained with public funds be placed in databases accessible to interested 

parties. The value of putting the software in the Cloud will be to encourage all investigators 

to take part in a community development of the software. Another advantage of going to the 

Cloud is that it would allow the combination of metabolomics data with genomics, 
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transcriptomics and proteomics data. Until recently, inconsistencies in formatting between 

the data domains made this impossible on the large scale. However, SCIEX is developing a 

OneOmics capability with the Illumina in the Amazon Cloud (http://sciex.com/solutions/

life-science-research/multi-omics-bioinformatics). This should allow the integration of the 

massive amounts of –Omics data and greatly facilitate discovery of the underlying bases of 

diseases as well as the aging process.

All of these developments would be similar to the transition that occurred from refrigerator-

sized computers with 8k of memory in the 1960s to 50 years later with hand-carried, smart 

phones with 64 GB of memory. However, to do so will require continuing investment in 

physics and the rest of science and a demonstrated value of measuring the metabolome.

Finally, integration of data from the metabolomics, genomics and transcriptomics domains is 

a long sought-after goal of the investments in biomedical research and will certainly support 

the implementation of personalized (and accurate) medicine.
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Figure 1. Aligned, multiple NMR spectra with regions marked that can be deleted prior to NMR 
binning
The spectra are divided into regular small regions (0.04 ppm) called bins. As noted on this 

figure, NMR resonances with downfield chemical shifts (> 9 ppm, noise), urea resonances 

(5.4–6 ppm), the suppressed water resonance (4.8–5 ppm) and resonances in the upfield 

region (<0.4 ppm, noise and DSS) are removed from the dataset prior to binning. Binned 

NMR data are usually normalized to the total integral of each of the spectrum.
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Figure 2. Workflow for pre-processing LC-MS and GC-MS data
The collected data are first centroided to obtain the best estimates of the masses of the ions. 

This is followed by detection of features (i.e., peaks) and their grouping and alignment 

between different samples. This allows the areas of the aligned peaks to be compared 

statistically.
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Figure 3. A Cloud plot used to visualize LC-MS data
This plot is generated by XCMSonline (https://xcmsonline.scripps.edu). The two gray traces 

are the overlaid total ion chromatograms from all the samples being analyzed. Ions 

considered to be statistically different using fold change >1.5 (up or down) and p<0.01 are 

marked as circles coded for up-regulated (green) or down-regulated (red). The size of the 

circles represents the absolute value of the log2(fold change) and the depth of the color the 

−log(p-value). The online analysis also includes an interactive form of the plot where 

clicking on each dot with a mouse reveals a box containing the m/z value, retention time, p-

value, fold change, maximum intensity and where known, the identity of the ion.
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Figure 4. Presentation of LC-MS data using Mzmine
Untargeted LC-MS/MS data were converted to .mzXML format and analyzed by Mzmine. 

In A, the data are shown as a 3D-presentation. In B, an ion chromatogram was generated 

based on a selected mass of m/z 264.080.
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Figure 5. Univariate Analysis Volcano plot
The negative logarithm of the p-value for each metabolite is plotted against the logarithm to 

the base 2 of the fold change.
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Figure 6. Principal components analysis (PCA)
PCA analysis allows for the separation of the variation between samples to be separate into 

several principal components. It does not use group information to do this. The contribution 

of each metabolite in a sample to a principal component allows reduction of 1,000 or more 

factors into a single number representing that component. (A) By plotting these numbers for 

a sample in 2D-PCA or 3D-PCA formats and then color coding the point with the group 

they are derived from, allows the investigator to determine if there is a group separation. In 

the example in this figure the 95% confidence for each group is also marked. (B) The 

loadings plot provides information on which ions are contributing the most to the 

separations between the groups.
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Figure 7. Partial Least Squares-Discriminant Analysis (PLS-DA)
This form of analysis, unlike PCA analysis, is a supervised method. It, too, breaks down the 

total variation into factors that are single numbers representing the contribution of each 

metabolite to the factor. These, as before for PCA analysis, can be examined as 2D- or 3D-

plots (A) and loading plots (B).
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Figure 8. Interpreting MS/MS spectra
In the upper example, the MS/MS spectrum of authentic 3’-chlorodaidzein [A] is shown 

above the MS/MS spectrum of the HL-60 cell metabolite [B]. Characteristic product ions are 

due to losses of HCl (−36 Da) and C=O (−28 Da). In the lower example, there are marked 

differences in the MS/MS spectra of daidzein conjugated to glucose in two different ways. 

When the link is through a C-O-C bond (daidzin), the intact glucose moiety is cleaved off – 

a neutral loss of 162 Da leaving the aglycone ion (m/z 255) [C]. However, when the bond 

linking daidzein and glucose is a carbon-carbon bond (in the daidzein-8C-glucoside, 
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puerarin), the glucose moiety is retained and the observed ions are due to water losses and 

other rearrangements of the glucose moiety [D].

Barnes et al. Page 28

J Mass Spectrom. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. Isotope ratio Outlier Analysis (IROA)
The IROA approach uses two sets of distinct randomized substrates, labeled with 95% 13C 

and 5% 13C, to individually label cellular metabolomes with and without stressors. Pooled 

cells are processed and MS analysis reveals U-shaped mirrored isotopologue pairs of 

metabolites. The width of the U in Da (distance between the monoisotopic 12C and 13C ion 

pairs) gives the number of carbon atoms in the metabolite. (Permission provided by IROA 

Technologies).
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Figure 10. Mummichog analysis of LC-MS and GC-MS data to discover metabolite networks 
and pathway associations
This analysis is a selectable item (Connections) on the XCMSonline website, or it can be run 

in the command line mode after first downloading the Mummichog software. The latter is 

helpful when metabolomics data require normalization, mean centering and scaling prior to 

statistical analysis. The user creates a .txt file of all the metabolites, their m/z values, their t-

test values and their p-values (A). This file is used to determine networks of connected 

reactions (B). After statistical modeling (C) to estimate random association with 

metabolomic pathways, pathways and networks that are enriched by the significantly 

different ions are identified (D).
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Figure 11. Complex pathways of metabolism of the isoflavone daidzein across several biological 
domains
Isoflavones are synthesized in the soybean and converted to their β-glucosides which in turn 

are esterified with malonic acid and stored in vacuoles in the soybean seed. Harvested 

soybeans are soaked in water (to remove protease inhibitors) and ground and treated with 

hot boiling water to extract the proteins therein thereby forming soy milk. Soy milk is 

coagulated (not shown) to form tofu. This treatment causes hydrolysis of the malonate ester 

group and yields the β-glucoside, 7β-D-glucosyldaidzein. When this form of daidzein is 

consumed (in tofu or soymilk), it is enzymatically hydrolyzed by a physiologic enzyme in 

the small intestine to unconjugated daidzein. The latter is absorbed into the enterocyte where 

it mostly undergoes β-glucuronidation before entering the blood stream. In contrast, 

soybeans in many countries such as the USA are a rich source of polyunsaturated oil. Once 

the soybeans have been defatted they can be converted into protein products. In order to 

inactivate residual enzymes in the defatted soybean, they are subjected to toasting, a dry 

heating process. This causes decarboxylation of the malonate ester forming an acetate ester 

of 7β-D-glucosyldaidzein. This isoflavone conjugate when eaten is not a substrate for the 

physiologic enzyme and instead makes its way to the large bowel where hydrolysis is caused 

by colonic bacteria.
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Figure 12. Imaging mass spectrometry of early kidney injury
Early (6 h) increases in renal levels of an ether-linked phosphatidylcholine (PC O-38:1) with 

ischemia reperfusion (IR) kidney injury (identified using SWATH lipidomics) are 

predominantly localized to proximal tubules. (A) MALDI-IMS spectra from control and IR 

kidneys. Arrow denotes ion at m/z 824.7 consistent with sodiated ([M+Na+]) PC O-38:1. (B) 

Positive ion mode MALDI-IMS images of 2,5-DHB coated coronal kidney cryosections 

from control and IR mice showing the distribution of m/z 824.7 sodiated PC O-38:1. Lotus 

tetragonolobus lectin staining of proximal tubules in coronal kidney sections adjacent to 

those in (A) shown alongside demonstrate that PC O-38:1 is most abundant in proximal 

tubular areas. (C) Positive mode MS/MS analysis on 2,5-DHB coated kidney cryosections of 

m/z 824.7 [M+Na+] ion showing a m/z 184.1 fragment indicative of the PC headgroup in PC 

O-38:1.
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