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Abstract

Outsourcing data and computation to cloud server provides a cost-effective way to support large 

scale data storage and query processing. However, due to security and privacy concerns, sensitive 

data (e.g., medical records) need to be protected from the cloud server and other unauthorized 

users. One approach is to outsource encrypted data to the cloud server and have the cloud server 

perform query processing on the encrypted data only. It remains a challenging task to support 

various queries over encrypted data in a secure and efficient way such that the cloud server does 

not gain any knowledge about the data, query, and query result. In this paper, we study the 

problem of secure skyline queries over encrypted data. The skyline query is particularly important 

for multi-criteria decision making but also presents significant challenges due to its complex 

computations. We propose a fully secure skyline query protocol on data encrypted using 

semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol, 

which can be also used as a building block for other queries. Finally, we provide both serial and 

parallelized implementations and empirically study the protocols in terms of efficiency and 

scalability under different parameter settings, verifying the feasibility of our proposed solutions.

I. Introduction

As an emerging computing paradigm, cloud computing attracts increasing attention from 

both research and industry communities. Outsourcing data and computation to cloud server 

provides a cost-effective way to support large scale data storage and query processing. 

However, due to security and privacy concerns, sensitive data needs be protected from the 

cloud server as well as other unauthorized users.

A common approach to protect the confidentiality of outsourced data is to encrypt the data 

(e.g., [14], [31]). To protect the confidentiality of the query from cloud server, authorized 

clients also send encrypted queries to the cloud server. Figure 1 illustrates our problem 

scenario of secure query processing over encrypted data in the cloud. The data owner 

outsources their encrypted data to the cloud server. The cloud server processes encrypted 

queries from the client on the encrypted data and returns the query result to the client. 

During the query processing, the cloud server should not gain any knowledge about the data, 

data patterns, query, and query result.
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Fully homomorphic encryption schemes [14] ensure strong security while enabling arbitrary 

computations on the encrypted data, however, the computation cost is prohibitive in practice. 

Trusted hardware such as the latest Intel’s Software Guard Extensions (SGX) brings a 

promising alternative, however still has limitations in its security guarantees [9]. Many 

techniques (e.g., [17], [37]) have been proposed to support specific queries or computations 

on encrypted data with varying degrees of security guarantee and efficiency (e.g., by weaker 

encryptions). Focusing on similarity search, secure k-nearest neighbor (kNN) queries, which 

return k most similar (closest) records given a query record, have been extensively studied 

[11], [20], [39], [41].

In this paper, we focus on the problem of secure skyline queries on encrypted data, another 

type of similarity search important for multi-criteria decision making. The skyline or Pareto 
of a multi-dimensional dataset given a query point consists of the data points that are not 

dominated by other points. A data point dominates another if it is closer to the query point in 

at least one dimension and at least as close to the query point in every other dimension. The 

skyline query is particularly useful for selecting similar (or best) records when a single 

aggregated distance metric with all dimensions is hard to define. The assumption of kNN 

queries is that the relative weights of the attributes are known in advance, so that a single 

similarity metric can be computed between a pair of records aggregating the similarity 

between all attribute pairs. However, this assumption does not always hold in practical 

applications. In many scenarios, it is desirable to retrieve similar records considering all 

possible relative weights of the attributes (e.g., considering only one attribute, or an arbitrary 

combination of attributes), which is essentially the skyline or the “pareto-similar” records.

Motivating Example

Consider a hospital who wishes to outsource its electronic health records to the cloud and 

the data is encrypted to ensure data confidentiality. Let P denote a sample heart disease 

dataset with attributes ID, age, trestbps (resting blood pressure). We sampled four patient 

records p1, …, p4 from the heart disease dataset of UCI machine learning repository [22] as 

shown in Table I(a) and Figure 2. Consider a physician who is treating a heart disease patient 

q = (41, 125) and wishes to retrieve similar patients in order to enhance and personalize the 

treatment for patient q. While it is unclear how to define the attribute weights for kNN 

queries (p1 is the nearest if only age is considered while p2, p3 are the nearest if only 

trestbps is considered), skyline provides all pareto-similar records that are not dominated by 

any other records. Given the query q, we can map the data points to a new space with q as 

the origin and the distance to q as the mapping function. The mapped records ti[j] = |pi[j] − 

q[j]| + q[j] on each dimension j are shown in Table I(b) and also in Figure 2. It is easy to see 

that t1 and t2 are skyline in the mapped space, which means p1 and p2 are skyline with 

respect to query q.

Our goal is for the cloud server to compute the skyline query given q on the encrypted data 

without revealing the data, the query q, the final result set {p1, p2}, as well as any 

intermediate result (e.g., t2 dominates t4) to the cloud. We note that skyline computation 

(with query point at the origin) is a special case of skyline queries. Our protocol can be also 

used for skyline computation.
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Challenges

Designing a fully secure protocol for skyline queries over encrypted data presents significant 

challenges due to the complex comparisons and computations. Let P denotes a set of n 
tuples p1, …, pn with m attributes and q denotes input query tuple. In kNN queries, we only 

need to compute the distances between each tuple pi and the query tuple q and then choose 

the k tuples corresponding to the k smallest distances. In skyline queries, for each tuple pi, 

we need to compare it with all other tuples to check dominance. For each comparison 

between two tuples pa and pb, we need to compare all their m attributes and for comparison 

of each attribute p[j], there are three different outputs, i.e., pa[j] < (=, >) pb[j]. Therefore, 

there are 3m different outputs for each comparison between two tuples, based on which we 

need to determine if one tuple dominates the other.

Such complex comparisons and computations require more complex protocol design in 

order to carry out the computations on the encrypted data given an encryption scheme with 

semantic security (instead of weaker order-preserving or other property-preserving 

encryptions). In addition, the extensive intermediate result means more indirect information 

about the data can be potentially revealed (e.g., which tuple dominates which other, whether 

there are duplicate tuples or equivalent attribute values) even if the exact data is protected. 

This makes it challenging to design a fully secure skyline query protocol in which the cloud 

should not gain any knowledge about the data including indirect data patterns.

Contributions

We summarize our contributions as follows.

• We study the secure skyline problem on encrypted data with semantic security 

for the first time. We assume the data is encrypted using the Paillier 

cryptosystem which provides semantic security and is partially homomorphic.

• We propose a fully secure dominance protocol, which can be used as a building 

block for skyline queries as well as other queries, e.g., reverse skyline queries 

[10] and k-skyband queries [32].

• We present two secure skyline query protocols. The first one, served as a basic 

and efficient solution, leaks some indirect data patterns to the cloud server. The 

second one is fully secure and ensures that the cloud gains no knowledge about 

the data including indirect patterns. The proposed protocols exploit the partial 

(additive) homomorphism as well as novel permutation and perturbation 

techniques to ensure the correct result is computed while guaranteeing privacy.

• We provide security and complexity analysis of the proposed protocols. We also 

provide a complete implementation including both serial and parallelized 

versions which can be deployed in practical settings. We empirically study the 

efficiency and scalability of the implementations under different parameter 

settings, verifying the feasibility of our proposed solutions.
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Organization

The rest of the paper is organized as follows. Section II presents the related work. Section III 

introduces background definitions as well as our problem setting. The security subprotocols 

for general functions that will be used in our secure skyline protocol are introduced in 

Section IV. The key subroutine of secure skyline protocols, secure dominance protocol, is 

shown in Section V. The complete secure skyline protocols are presented in Section VI. We 

report the experimental results and findings in Section VII. Section VIII concludes the paper.

II. Related Work

Skyline

The skyline computation problem was first studied in computational geometry field [3], [25] 

where they focused on worst-case time complexity. [23], [29] proposed output-sensitive 

algorithms achieving O(nlogk) in worst-case where k is the number of skyline points which 

is far less than n in general.

Since the introduction of the skyline operator by Börzsönyi et al. [4], skyline has been 

extensively studied in the database field. Kossmann et al. [24] studied the progressive 

algorithm for skyline queries. Different variants of the skyline problem have been studied 

(e.g., subspace skyline [7], uncertain skyline [34] [30], group-based skyline [28], [26]).

Secure query processing on encrypted data

Fully homomorphic encryption schemes [14] enable arbitrary computations on encrypted 

data. Even though it is shown that [14] we can build such encryption schemes with 

polynomial time, they remain far from practical even with the state of the art 

implementations [18].

Many techniques (e.g., [17], [37]) have been proposed to support specific queries or 

computations on encrypted data with varying degrees of security guarantee and efficiency 

(e.g., by weaker encryptions). We are not aware of any formal work on secure skyline 

queries over encrypted data with semantic security. Bothe et al. [5] and their demo version 

[6] illustrated an approach about skyline queries on so-called “encrypted” data without any 

formal security guarantee. Another work [8] studied the verification of skyline query result 

returned by an untrusted cloud server.

The closely related work is secure kNN queries [11], [19], [20], [33], [35], [39], [41], [42] 

which we discuss in more detail here. Wong et al. [39] proposed a new encryption scheme 

called asymmetric scalar-product-preserving encryption. In their work, data and query are 

encrypted using slightly different encryption schemes and all clients know the private key. 

Hu et al. [20] proposed a method based on provably secure privacy homomorphism 

encryption scheme. However, both schemes are vulnerable to the chosen-plaintext attacks as 

illustrated by Yao et al. [41]. Yao et al. [41] proposed a new method based on secure Voronoi 

diagram. Instead of asking the cloud server to retrieve the exact kNN result, their method 

retrieve a relevant encrypted partition E(R) for E(Q) such that R is guaranteed to contain the 

kNN of Q. Hashem et al. [19] identified the challenges in preserving user privacy for group 
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nearest neighbor queries and provided a comprehensive solution to this problem. Yi et al. 

[42] proposed solutions for secure kNN queries based on oblivious transfer paradigm. 

Recently, Elmehdwi et al. [11] proposed a secure kNN query protocol on data encrypted 

using Paillier cryptosystem that ensures data privacy and query privacy, as well as low (or 

no) computation overhead on client and data owner using two non-colluding cloud servers. 

Our work follows this setting and addresses skyline queries.

Other works studied kNN queries in the secure multi-party computation (SMC) setting [35] 

(data is distributed between two parties who want to cooperatively compute the answers 

without revealing to each other their private data), or private information retrieval (PIR) 

setting [33] (query is private while data is public), which are different from our settings.

Secure Multi-party Computation (SMC)

SMC was first proposed by Yao [40] for two-party setting and then extended by Goldreich et 

al. [16] to multi-party setting. SMC refers to the problem where a set of parties with private 

inputs wish to compute some joint function of their inputs. There are techniques such as 

garbled circuits [21] and secret sharing [2] that can be used for SMC. In this paper, all 

protocols assume a two-party setting, but different from the traditional SMC setting. 

Namely, we have  with encrypted input and  with the private key sk. The goal is for 

to obtain an encrypted result of a function on the input without disclosing the original input 

to either  or .

III. Preliminaries and Problem Definitions

In this section, we first illustrate some background knowledge on skyline computation and 

dynamic skyline query, and then describe the security model we use in this paper. For 

references, a summary of notations is given in Table II.

A. Skyline Definitions

Definition 1: (Skyline)—Given a dataset P = {p1, …, pn} in m-dimensional space. Let pa 

and pb be two different points in P, we say pa dominates pb, denoted by pa ≺ pb, if for all j, 
pa[j] ≤ pb[j], and for at least one j, pa[j] < pb[j], where pi[j] is the jth dimension of pi and 1 ≤ 

j ≤ m. The skyline points are those points that are not dominated by any other point in P.

Definition 2: (Dynamic Skyline Query) [10]—Given a dataset P = {p1, …, pn} and a 

query point q in m-dimensional space. Let pa and pb be two different points in P, we say pa 

dynamically dominates pb with regard to the query point q, denoted by pa ≺ pb, if for all j, |
pa[j] − q[j]| ≤ |pb[j] − q[j]| and for at least one j, |pa[j] − q[j]| < |pb[j] − q[j]|, where pi[j] is 

the jth dimension of pi and 1 ≤ j ≤ m. The skyline points are those points that are not 

dynamically dominated by any other point in P.

The traditional skyline definition is a special case of dynamic skyline query in which the 

query point is the origin. On the other hand, dynamic skyline query is equivalent to 

traditional skyline computation if we map the points to a new space with the query point q 
as the origin and the absolute distances to q as mapping functions. So the protocols we will 
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present in the paper also work for traditional skyline computation (without an explicit query 

point).

Example 1—Consider Table I and Figure 2 as a running example. Given data points p1 to 

p4 and query point q, the mapped data points are computed as ti[j] = |pi[j] − q[j]| + q[j]. We 

see that t1, t2 are the skyline in the mapped space, and p1, p2 are the skyline with respect to 

query q in the original space.

B. Skyline Computation

Skyline computation has been extensively studied as we discussed in Section 2. We illustrate 

an iterative skyline computation algorithm (Algorithm 1) which will be used as the basis of 

our secure skyline protocol. We note that this is not the most efficient algorithm to compute 

skyline for plaintext compared to the divide-and-conquer algorithm [25]. We construct our 

secure skyline protocol based on this algorithm for two reasons: 1) the divide-and-conquer 

approach is less suitable if not impossible for a secure implementation compared to the 

iterative approach, 2) the performance of the divide-and-conquer algorithm deteriorate with 

the “curse of dimensionality”.

Algorithm 1

Skyline Computation.

The general idea of Algorithm 1 is to first map the data points to the new space with the 

query point as origin (Lines 1–3). Given the new data points, it computes the sum of all 

attributes for each tuple S (ti) (Line 6) and chooses the tuple tmin with smallest S (ti) as a 

skyline because no other tuples can dominate it. It then deletes those tuples dominated by 

tmin. The algorithm repeats this process for the remaining tuples until an empty dataset T is 

reached.

Example 2—Given the mapped data points t1, …, t4, we begin by computing the attribute 

sum for each tuple as S (t1) = 16, S (t2) = 7, S (t3) = 9, and S (t4) = 19. We choose the tuple 

with smallest S (ti), i.e., t2, as a skyline tuple, delete t2 from dataset T and add p2 to the 

Liu et al. Page 6

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



skyline pool. We then delete tuples t3 and t4 from T because they are dominated by t2. Now, 

there is only t1 in T. We add p1 to the skyline pool. After deleting t1 from T, T is empty and 

the algorithm terminates. p1 and p2 in the skyline pool are returned as the query result.

C. Problem Setting

We now describe our problem setting for secure skyline queries over encrypted data. 

Consider a data owner (e.g., hospital, CDC) with a dataset P. Before outsourcing the data, 

the data owner encrypts each attribute of each record pi[j] using a semantically secure 

public-key cryptosystem (we employ the Pailliar cryptosystem [31] as explained later in the 

section). We use pk and sk to denote the public key and private key, respectively. Data owner 

sends Epk(pi[j]) for i = 1, …, n and j = 1, …, m to cloud server .

Consider an authorized client (e.g., physician) who wishes to query the skyline tuples 

corresponding to query tuple q = (q[1], …, q[m]). In order to protect the sensitive query 

tuple, the client uses the same public key pk to encrypt the query tuple and sends Epk(q) = 

(Epk(q[1]), …, Epk(q[m])) to cloud server .

Our goal is to enable the cloud server to compute and return the skyline to the client without 

learning any information about the data and the query. In addition to guaranteeing the 

correctness of the result and the efficiency of the computation, the computation should 

require no or minimal interaction from the client or the data owner for practicality. To 

achieve this, we assume there is an additional non-colluding cloud server, , which will 

hold the private key sk shared by the data owner and assist with the computation. This way, 

the data owner does not need to participate in any computation. The client also does not 

need to participate in any computation except combining the partial result from  and . 

An overview of the protocol setting is shown in Figure 3.

D. Security Model

Adversary Model—We adopt the semi-honest adversary model in our study. In any multi-

party computation setting, a semi-honest party correctly follows the protocol specification, 

yet attempts to learn additional information by analyzing the transcript of messages received 

during the execution. By semi-honest model, this work implicitly assumes that the two cloud 

servers do not collude.

There are two main reasons to adopt the semi-honest adversary model in our study. First, 

developing protocols under the semi-honest setting is an important first step towards 

constructing protocols with stronger security guarantees [21]. Using zero-knowledge proofs 

[13], these protocols can be transformed into secure protocols under the malicious model. 

Second, the semi-honest model is realistic in current cloud market.  and  are assumed to 

be two cloud servers, which are legitimate, well-known companies (e.g., Amazon, Google, 

and Microsoft). A collusion between them is highly unlikely. Therefore, following the work 

done in [11], [27], [43], we also adopt the semi-honest adversary model for this paper.
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Desired Privacy Properties—Our security goal is to protect the data and the query as 

well as the query result from the cloud servers. We summarize the desired privacy properties 

below. After the execution of the entire protocol, the following should be achieved.

• Data Privacy. Cloud servers  and  know nothing about the exact data except 

the size pattern, the client knows nothing about the dataset except the skyline 

query result.

• Data Pattern Privacy. Cloud servers  and  know nothing about the data 

patterns (indirect data knowledge) due to intermediate result, e.g., which tuple 

dominates which other tuple.

• Query Privacy. Data owner, cloud servers  and  know nothing about the 

query tuple q.

• Result Privacy. Cloud servers  and  know nothing about the query result, 

e.g., which tuples are in the skyline result.

Security Definition in the Semi-honest Model—Considering the privacy properties 

above, we adopt the formal security definition from the multi-party computation setting 

under the semi-honest model [15]. Intuitively, a protocol is secure if whatever can be 

computed by a party participating in the protocol can be computed based on its input and 

output only. This is formalized according to the simulation paradigm. Loosely speaking, we 

require that a party’s view in a protocol execution to be simulative given only its input and 

output. This then implies that the parties learn nothing from the protocol execution. We omit 

the definition due to the limited space, for the detailed and strict definition, please see [15].

Theorem 1

Composition Theorem [15]: If a protocol consists of subprotocols, the protocol is secure as 

long as the subprotocols are secure and all the intermediate results are random or pseudo-

random.

In this work, the proposed secure skyline protocols are constructed based on a sequential 

composition of subprotocols. To formally prove the security under the semi-honest model, 

according to the composition theorem given in Theorem 1, one needs to show that the 

simulated view of each subprotocol was computationally indistinguishable from the actual 

execution view and the protocol produces random or pseudo-random shares as intermediate 

results.

E. Paillier Cryptosystem

We use the Paillier cryptosystem [31] as the encryption scheme in this paper and briefly 

describe Paillier’s additive homomorphic properties which will be used in our protocols.

• Homomorphic addition of plaintexts:

• Homomorphic multiplication of plaintexts:
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IV. Basic Security Subprotocols

In this section, we present a set of secure subprotocols for computing basic functions on 

encrypted data that will be used to construct our secure skyline query protocol. All protocols 

assume a two-party setting, namely,  with encrypted input and  with the private key sk 
as shown in Figure 3. The goal is for  to obtain an encrypted result of a function on the 

input without disclosing the original input to either  or . We note that this is different 

from the traditional two-party secure computation setting with techniques such as garbled 

circuits [21] where each party holds a private input and they wish to compute a function of 

the inputs. For each function, we describe the input and output, present our proposed 

protocol or provide a reference if existing solutions are available. Due to limited space, we 

omit the security proof which can be derived by the simulation and composition theorem in 

a straightforward way.

Secure Multiplication (SM)

Assume a cloud server  with encrypted input Epk(a) and Epk(b), and a cloud server  with 

the private key sk, where a, b are two numbers not known to  and . The Secure 

Multiplication (SM) protocol [11] (based on the additively homomorphic property of 

Paillier) securely computes encrypted result of multiplication of a, b, Epk(a×b), such that 

only  knows Epk(a×b) such that only  knows Epk(a×b), and no information related to a, 

b is revealed to  or .

Secure Bit Decomposition (SBD)

Assume a cloud server  with encrypted input Epk(a) and a cloud server  with the private 

key sk, where a is a number not known to  and . The Secure Bit Decomposition (SBD) 

protocol [36] securely computes encrypted individual bits of the binary representation of a, 

denoted as , where l is the number of bits,  and 

denote the most and least significant bits of a, respectively. At the end of the protocol, the 

output 〚a〛 is known only to  and no information related to a is revealed to  or .

A. Secure Boolean Operations

Secure OR (SOR)—Assume a cloud sever  with encrypted input Epk(â) and , and 

a cloud server  with the private key sk, where â and  are two bits not known to  and . 

The Secure OR (SOR) protocol [11] securely computes encrypted result of the bit-wise OR 

of the two bits, , such that only  knows  and no information related to 

â and  is revealed to  or .

Secure AND (SAND)—Assume a cloud server  with encrypted input Epk(â) and , 

and a cloud server  with the private key sk, where â and  are two bits not known to  and 

. The goal of the SAND protocol is to securely compute encrypted result of the bit-wise 
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AND of the two bits, , such that only  knows  and no information 

related to â and  is revealed to  or . We can simply use the secure multiplication (SM) 

protocol on the two bits.

Secure NOT (SNOT)—Assume a cloud server  with encrypted input Epk(â) and a cloud 

server  with the private key sk, where â is a bit not known to , . The goal of the SNOT 

protocol is to securely compute the encrypted complement bit of â, Epk(¬â), such that only 

 knows Epk(¬â) and no information related to â is revealed to  or . Secure NOT 

protocol can be easily implemented by Epk(1 − â) = Epk(1)Epk(â)N−1.

B. Secure Minimum and Secure Comparison

Secure minimum protocol and secure comparison protocol have been extensively studied in 

cryptography community [1], [12], [38] and database community [11], [43]. Secure 

comparison protocol can be easily adapted to secure minimum protocol, and vice versa. For 

example, if we set Epk(out) as the result of secure comparison Epk(Bool(a ≤ b)) known by 

cloud server  (it will be Epk(1) when a ≤ b and Epk(0) when a > b),  can get Epk(min(a, 

b)) by computing Epk(a ∗ out + b ∗ ¬out).

We analyzed the existing protocols and observed that both secure minimum (SMIN) 

algorithms [11], [43] from database community for selecting a minimum have a security 

weakness, i.e.,  can determine whether the two numbers are equal to each other. We point 

out the security weakness as follows.

Disclosure of Binary based SMIN—Given two numbers in binary representations, the 

idea of the Binary representation based SMIN protocol (BSMIN)1 [11] is for  to randomly 

choose a boolean functionality F (by flipping a coin), where F is either a > b or b > a, and 

then securely compute F with , such that the output of F is oblivious to both  and . 

Based on the output and chosen F,  computes min(a, b) locally using homomorphic 

properties. More specifically, given the binary representation of the two numbers, for each 

bit,  computes an encrypted boolean output Wi of the two bits based on F (e.g., if F is a > 

b, Wi = Epk(1), if  and Epk(0) otherwise) and an encrypted randomized 

difference between  and . This way, the order and difference of the two numbers 

are not disclosed to . However, when a = b, whatever F is, we have Wi = Epk(0) for all 

bits. We can show that through the intermediate result (the encrypted randomized difference 

between  and , Γi = Epk(ri) for 1 ≤ i ≤ l, the bit-wise XOR of  and , Gi = 

Epk(0) for 1 ≤i ≤ l),  can determine a equals to b.

Disclosure of Perturbation based SMIN—The Perturbation based SMIN protocol 

(PSMIN) [43] assumes  has Epk(a) and Epk(b).  generates a set of v random values 

uniformly from a certain range {r1, …, rv|r1 < ri, i ≥2}.  then sends a set of 2+v − 1 

encrypted values {Epk(a+r1), Epk(b+r1), Epk(x2+ r2), …, Epk(xv + rv)} to , where xi, i ≥ 2 

1The SMIN protocol for n values can be constructed by employing BSMIN for two values at a time in a hierarchical fashion as 
suggested in [11] or simply a linear fashion.
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are randomly chosen from a, b. The idea is that the smallest number, after being perturbed 

by r1 (which is smaller than ri, i ≥ 2), will remain the smallest. The perturbation hides the 

order of the numbers to . Although not mentioned by the original paper, we point out 

also needs to shuffle the encrypted values before sending them to , otherwise the 

differences between the values will be disclosed to  after decryption. After decrypting 

those 2+v−1 values,  takes the minimal min and sends Epk(min) to .  computes 

Epk(min − r1) as result. The security weakness of PSMIN is due to the fact that if two 

numbers are equal, their perturbed values remain equal. Since  sends {Epk(a + r1), Epk(b
+r1), Epk(x2 + r2), …, Epk(xv +rv)} to ,  can learn two numbers are equal based on a + r1 

and b + r1.

Therefore, we adapted the secure minimum/comparison protocols [38] from cryptography 

community in this paper. The basic idea of those protocols is that for any two l bit numbers a 
and b, the most significant bit (zl) of z = 2l + a − b indicates the relationship between a and 

b, i.e., zl = 0 ⇔ a < b. We list the secure minimum/comparison protocols we used in this 

paper below.

Secure Less Than or Equal (SLEQ)—Assume a cloud server  with encrypted input 

Epk(a) and Epk(b), and a cloud server  with the private key sk, where a and b are two 

numbers not known to  and . The goal of the SLEQ protocol is to securely compute the 

encrypted boolean output Epk(Bool(a ≤ b)), such that only  knows Epk(Bool(a ≤ b)) and no 

information related to a and b is revealed to  or .

Secure Equal (SEQ)—Assume a cloud server 1 with encrypted input Epk(a) and Epk(b), 

and a cloud server  with the private key sk, where a and b are two numbers not known to 

 and . The goal of the SEQ protocol is to securely compute the encrypted boolean 

output Epk(Bool(a == b)), such that only  knows Epk(Bool(a == b)) and no information 

related to Bool(a == b) is revealed to  or .

Secure Less (SLESS)—Assume a cloud server  with encrypted input Epk(a) and 

Epk(b), and a cloud server  with the private key sk, where a and b are two numbers not 

known to  and . The goal of the SLESS protocol is to securely compute the encrypted 

boolean output Epk(Bool(a < b)), such that only  knows Epk(Bool(a < b)) and no 

information related to Bool(a < b) is revealed to  or . This can be simply implemented 

by conjunction from the output of SEQ and SLEQ.

Secure Minimum (SMIN)—Assume a cloud server  with encrypted input Epk(a) and 

Epk(b), and a cloud server  with the private key sk, where a and b are two numbers not 

known to both parties. The goal of the SMIN protocol is to securely compute encrypted 

minimum value of a and b, Epk(min(a, b)), such that only  knows Epk(min(a, b)) and no 

information related to a and b is revealed to  or . Benefiting from the probabilistic 

property of Paillier, the ciphertext of min(a, b), i.e., Epk(min(a, b)) is different from the 

ciphertext of a, b, i.e., Epk(a), Epk(b). Therefore,  does not know which of a or b is min(a, 

b). In general, assume  has n encrypted values, the goal of SMIN protocol is to securely 

compute encrypted minimum of the n values.
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V. Secure Dominance Protocol

The key to compute skyline is to compute dominance relationship between two tuples. 

Assume a cloud server  with encrypted tuples a = (a[1], …, a[m]), b = (b[1], …, b[m]) 

and a cloud server  with the private key sk, where a and b are not known to both parties. 

The goal of the secure dominance (SDOM) protocol is to securely compute Epk(Bool(a ≺ 
b)) such that only  knows Epk(1) if a ≺ b, otherwise, Epk(0).

Algorithm 2

Secure Dominance Protocol.

Protocol Design

Given any two tuples a = (a[1], …, a[m]) and b = (b[1], …, b[m]), recall the definition of 

skyline, we say a ≺ b if for all j, a[j] ≤ b[j] and for at least one j, a[j] < b[j] (1 ≤ j ≤ m). If 

for all j, a[j] ≤ b[j], we have either a = b or a ≺ b. We refer to this case as a ⪯ b. The basic 

idea of secure dominance protocol is to first determine whether a ⪯ b, and then determine 

whether a = b.

The detailed protocol is shown in Algorithm 2. For each attribute,  and  cooperatively 

use the secure less than or equal (SLEQ) protocol to compute Epk(Bool(a[j] ≤ b[j])). And 

then  and  cooperatively use SAND to compute Φ = δ1∧, …, ∧δm. If Φ = Epk(1), it 

means a ⪯ b, otherwise, a ≰ b. We note that, the dominance relationship information Φ is 

known only to  in ciphertext. Therefore, both  and  do not know any information 

about whether a ⪯ b.

Next, we need to determine if a ≠ b. Only if a ≠ b, then a ≺ b. One naive way is to employ 

SEQ protocol for each pair of attribute and then take the conjunction of the output. We 

propose a more efficient way which is to check whether S (a) < S (b), where S (a) is the 

attribute sum of tuple a. If S (a) < S (b), then it is impossible that a = b. As the algorithm 

shows,  computes the sum of all attributes α = Epk(a[1]+…+a[m]) and β = Epk(b[1]+…

+b[m]) based on the additive homomorphic property. Then  and  cooperatively use 

SLESS protocol to compute σ = Epk(Bool(α < β)). Finally,  and  cooperatively use 
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SAND protocol to compute the final dominance relationship Ψ = σ ∧ Φ which is only 

known to  in ciphertext. Ψ = Epk(1) means a ≺ b, otherwise, a ⊀ b.

Security Analysis

Based on the composition theorem (Theorem 1), the security of secure dominance protocol 

relies on the security of SLEQ, SLESS, and SAND, which have been shown in existing 

works.

Complexity Analysis

To determine a ⪯ b, Algorithm 2 requires O(m) encryptions and decryptions. Then to 

determine if a = b, Algorithm 2 requires O(1) encryptions and decryptions. Therefore, our 

secure dominance protocol requires O(m) encryptions and decryptions in total.

VI. Secure Skyline Protocol

In this section, we first propose a basic secure skyline protocol and show why such a simple 

solution is not secure. Then we propose a fully secure skyline protocol. Both protocols are 

constructed by using the security primitives discussed in Section IV and the secure 

dominance protocol in Section V.

As mentioned in Algorithm 1, given a skyline query q, it is equivalent to compute the 

skyline in a transformed space with the query point q as the origin and the absolute distances 

to q as mapping functions. Hence we first show a preprocessing step in Algorithm 3 which 

maps the dataset to the new space. Since the skyline only depends on the order of the 

attribute values, we use (pi[j] − q[j])2 which is easier to compute than |pi[j] − q[j]| as the 

mapping function2. After Algorithm 3,  has the encrypted dataset Epk(P) and Epk(T), 

has the private key sk. The goal is to securely compute the skyline by  and  without 

participation of data owner and the client.

2We use |pi[j] − q[j]| in our running example for simplicity.
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Algorithm 3

Preprocessing.

A. Basic Protocol

We first illustrate a straw-man protocol which is straightforward but not fully secure (as 

shown in Algorithm 4). The idea is to implement each of the steps in Algorithm 1 using the 

primitive secure protocols.  first determines the terminal condition, if there is no tuple 

exists in dataset Epk(T), the protocol ends, otherwise, the protocol proceeds as follows.

Compute minimum attribute sum—  first computes the sum of Epk(ti[j]) for 1 ≤ j ≤ 

m, denoted as Epk(S (ti)), for each tuple ti. Then  and  uses SMIN protocol such that 

obtains Epk(S (tmin)).

Select the skyline with minimum attribute sum—The challenge now is we need to 

select the tuple Epk(tmin) with the smallest Epk(S (ti)) as a skyline tuple. In order to do this, a 

naive way is for  to compute Epk(S (ti) − S (tmin)) for all tuples and then send them to . 

 can decrypt them and determine which one is equal to 0 and return the index to . 

then adds the tuple Epk(pmin) to skyline pool.

Eliminate dominated tuples—Once the skyline tuple is selected,  and 

cooperatively use SDOM protocol to determine the dominance relationship between 

Epk(tmin) and other tuples. In order to delete those tuples that are dominated by Epk(tmin), a 

naive way is for  to send the encrypted dominance output to , who can decrypt it and 

send back the indexes of the tuples who are dominated to .  can delete those tuples 

dominated by Epk(tmin) and the tuple Epk(tmin) from Epk(T). The algorithm continues until 

there is no tuples left.

Return skyline results to client—Once  has the encrypted skyline result, it can 

directly send them to the client if the client has the private key. However, in our setting, the 

client does not have the private key for better security. Lines 25 to 39 in Algorithm 4 
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illustrate how the client obliviously obtains the final skyline query result with the help of 

and  at the same time,  and  know nothing about the final result. Given the skyline 

tuples Epk(p1), …, Epk(pk) in skyline pool, where k is the number of skyline. The idea is for 

 to add a random noise ri[j] to each pi[j] in ciphertext and then sends the encrypted 

randomized values αi[j] to .  also sends the noise ri[j] to client. At the same time, 

decrypts the randomized values αi[j] and sends the result  to client. Client receives the 

random noise ri[j] from  and randomized values of the skyline points αi[j] from , and 

removes the noise by computing  for i = 1, …, k and j = 1, …, m as the 

final result.

B. Fully Secure Skyline Protocol

The basic protocol clearly reveals several information to  and  as follows,

• When selecting the skyline tuple with minimum attribute sum,  and  know 

which tuples are skyline points, which violates result privacy requirement.

• When eliminating dominated tuples,  and  know the dominance relationship 

among tuples with respect to the query tuple q, which violates our data pattern 

privacy requirement.

To address these leakage, we propose a fully secure protocol in Algorithm 5. The step to 

compute minimum attribute sum and return the results to the client are the same as the basic 

protocol. We focus on the following steps that are designed to address the disclosure risks of 

the basic protocol.

Select skyline with minimum attribute sum—Once  obtains the encrypted 

minimum attribute sum Epk(S(tmin)), the challenge is how to select the tuple Epk(tmin) with 

the minimum sum Epk(S(tmin)) as a skyline tuple such that  and  know nothing about 

which tuple is selected. We present a protocol as shown in Algorithm 6.
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Algorithm 4

Basic Secure Skyline Protocol.

We first need to determine which S (ti) is equal to S (tmin). Note that this can not be 

achieved by the SMIN protocol which only selects the minimum value. Here we propose an 

efficient way, exploiting the fact that it is okay for  to know there is one equal case (since 

we are selecting one skyline tuple) as long as it does not know which one.  first computes 
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, and then sends a permuted list β = π(α′) to  based on a 

random permutation sequence π. The permutation hides which sum is equal to the minimum 

from  while the uniformly random noise ri masks the difference between each sum and the 

minimum sum. Note that  is uniformly random in  except when S(ti) − S(tmin) = 0, in 

which case .  decrypts βi, if it is 0, it means tuple i has smallest Epk(S(ti)). Therefore, 

 sends Epk(1) to , otherwise, sends Epk(0).

Algorithm 5

Fully Secure Skyline Protocol.
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After receiving the encrypted permuted bit vector U as the equality result,  applies a 

reverse permutation, and obtains an encrypted bit vector V, where one tuple has bit 1 

suggesting it has the minimum sum. In order to obtain the attribute values of this tuple, 

and  employ SM protocol to compute encrypted product of the bit vector and the attribute 

values, Epk(ti[j]′) and Epk(pi[j]′). Since all other tuples except the one with the minimum 

sum will be 0, we can sum all Epk(ti[j]′) and Epk(pi[j]′) on each attribute and  can obtain 

the attribute values corresponding to the skyline tuple.

Order preserving perturbation—We can show that Algorithm 6 is secure and correctly 

selects the skyline tuple if there is only one minimum. A potential issue is that multiple 

tuples may have the same minimum sum. If this happens, not only is this information 

revealed to , but also the skyline tuple cannot be selected (computed) correctly, since the 

bit vector contains more than one 1 bit. To address this, we employ order-preserving 

perturbation which adds a set of mutually different bit sequence to a set of values such that: 

1) if the original values have equal cases, the perturbed values are guaranteed not equal to 

each other, and 2) if the original values are not equal to each other, their order is preserved. 

The perturbed values are then used as the input for Algorithm 6.
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Algorithm 6

Find One Skyline.

Concretely, given n numbers in their binary representations, we add a ⌈logn⌉-bit sequence to 

the end of each Epk(S (ti)), each represents a unique bit sequence in the range of [0, n − 1]. 

This way, the perturbed values are guaranteed to be different from each other while their 

order is preserved since the added bits are the least significant bits. Line 10 of Algorithm 5 

shows this step. We note that we can multiply each sum Epk(S (ti)) by n and uniquely add a 

value from [0, n − 1] to each Epk(S (ti)), hence guarantee they are not equal to each other. 

This will be more efficient than adding a bit sequence, however, since we will need to 

perform the bit decomposition later in the protocol to allow bit operators, we run 

decomposition by the SBD protocol for l bits in the beginning of the protocol rather than l + 

⌈log n⌉ bits later.

Eliminate dominated tuples—Once the skyline tuple is selected, it can be added to the 

skyline pool and then used to eliminate dominated tuples. In order to do this,  and 

cooperatively use SDOM protocol to determine the dominance relationship between 

Epk(tmin) and other tuples. The challenge is then how to eliminate the dominated tuples 
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without  and  knowing which tuples are being dominated and eliminated. Our idea is 

that instead of eliminating the dominated tuples, we “flag” them by securely setting their 

attribute values to the maximum domain value. This way, they will not be selected as skyline 

tuples in the remaining iterations. Concretely, we can set the binary representation of their 

attribute sum to all 1s so that it represents the domain maximum. Since we added ⌈log n⌉ 
bits to 〚Epk(S (ti))〛, the new 〚Epk(S (ti))〛 has l + ⌈log n⌉ bits. Therefore, the maximum 

value MAX = 2l+ ⌈log n⌉ − 1. To obliviously set the attributes of only dominated tuples to 

MAX, based on the encrypted dominance output Vi of the dominance protocol,  and 

cooperatively employ SOR of the dominance boolean output and the bits of the S (ti). This 

way, if the tuple is dominated, it will be set to MAX. Otherwise, it will remain the same. If 

Epk(S (tmin)) = Epk(MAX), it means all the tuples are processed, i.e., flagged either as a 

skyline or a dominated tuple, the protocol ends.

Example 3: We illustrate the entire protocol through the running example shown in Table 

III. Please note that all column values are in encrypted form except columns π and β′. Given 

the mapped data points ti,  first computes the attribute sum Epk(S (ti)) shown in the third 

column. We set l = 5,  gets the binary representation of the attribute sum 〚Epk(S (ti))〛. 

Because n = 4,  obliviously adds the order-preserving perturbation ⌈log 4⌉ = 2 bits to the 

end of 〚Epk(S (ti))〛 respectively to get the new Epk(S (ti)) (shown in the sixth column). 

Then  gets Epk(S (tmin)) = Epk(30) by employing SMIN.

The protocol then turns to the subroutine Algorithm 6 to select the first skyline based on the 

minimum attribute sum.  computes αi = Epk(S (ti) − S (tmin)). Assume the random noise 

vector r = 〈3, 9, 31, 2〉 and the permutation sequence π = 〈2, 1, 4, 3〉,  sends the encrypted 

permuted and randomized difference vector β to . After decrypting β,  gets β′ and then 

sends U to .  computes V by applying a reverse permutation. By employing SM with V, 

 computes (Epk(ti[1]′), Epk(ti[2]′)) and (Epk(pi[1]′), Epk(pi[2]′)). After summing all 

column values,  adds Epk(psky) = (Epk(39), Epk(120)) to skyline pool and uses Epk(tsky) = 

(Epk(2), Epk(5)) to eliminate dominated tuples.

The protocol now turns back to the main routine in Algorithm 5 to eliminate dominated 

tuples.  and  use SOR with V to make Epk(S (tmin)) = Epk (127) and Epk(S (ti)) = Epk(S 
(ti)) for i ≠ min. Now, only Epk(S (tmin)) = Epk(S (t2)) has changed to Epk(127) which is 

“flagged” as MAX. We emphasize that  does not know this value has changed because the 

ciphertext of all tuples has changed. Next,  and  find the dominance relationship 

between Epk(tsky) and Epk(ti) by SDOM protocol.  obtains the dominance vector V. Using 

same method,  flags Epk(S (t3)) and Epk(S (t4)) to Epk(127). The protocol continues until 

all are set to MAX.

Security Analysis—Based on Theorem 1, the protocol is secure if the subprotocols are 

secure and the intermediate results are random or pseudo-random. We focus on the 

intermediate result here. From ’s view, the intermediate result includes U. Because U is 

ciphertext and  does not have the secret key,  can simulate U based on its input and 

output. From ’s view, the intermediate result includes β. β contains one Epk(0) and m − 1 

ciphertext of any positive value. After the permutation π of ,  cannot determine where is 
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the Epk(0). Therefore,  can simulate β based on its input and output. Hence the protocol is 

secure.

Computational Complexity Analysis—The subroutine Algorithm 6 requires O(n) 

decryptions in Line 9, O(nm) encryptions and decryptions in Lines 20 and 21. Thus, 

Algorithm 6 requires O(nm) encryptions and decryptions. In Algorithm 5, Line 7 requires 

O(nl) encryptions and decryptions. Line 10 requires O(n ⌈log n⌉) encryptions. Line 12 

requires O((l + ⌈log n⌉)n) encryptions and decryptions. Line 26 requires O(l+ ⌈log n⌉) 
encryptions and decryptions. Line 32 O(nm) encryptions and decryptions. Thus, this part 

requires O((l + ⌈log n⌉)n + nm) encryptions and decryptions. Because this part runs k times, 

the fully secure skyline protocol requires O(k(l + ⌈log n⌉)n + knm) encryptions and 

decryptions in total.

VII. Experiments

In this section, we evaluate the performance and scalability of our protocols under different 

parameter settings. For comparison purposes, we implemented and evaluated both protocols: 

the Basic Secure Skyline Protocol (BSSP) in Section VI-A, and the Fully Secure Skyline 

Protocol (FSSP) in Section VI-B.

A. Experiment Setup

We implemented all algorithms in C and ran experiments on a machine with Intel Core 

i7-6700K 4.0GHz running Ubuntu 16.01. We also implemented a parallel version of the 

protocols and tested on a cluster of machines with Intel Core i7-2600 3.40GHz running 

CentOS 6, which we will describe in Section VII-C.

In our experiment setup, both  and  are running on the same workstation, but since we 

implemented the communication using sockets, it can be easily run on two machines without 

modification which we have tested. Moreover, the query points used in our setup are 

randomly chosen. The reported computation time unless otherwise noted is the total 

computation time of the  and .

Datasets—We used both synthetic datasets and a real NBA dataset in our experiments. To 

study the scalability of our methods, we generated independent (INDE), correlated (CORR), 

and anti-correlated (ANTI) datasets following the seminal work [4]. We also built a dataset 

that contains 2384 NBA players who are league leaders of playoffs3. Each player has five 

attributes that measure the player’s performance: Points (PTS), Rebounds (REB), Assists 

(AST), Steals (STL), and Blocks (BLK).

B. Performance Results

In this subsection, we evaluate our protocols by varying the number of tuples (n), the 

number of dimensions (m), and the key size (K) on datasets of various distributions.

3The data was extracted from http://stats.nba.com/leaders/alltime/?ls=iref:nba:gnav on 04/15/2015
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Impact of number of tuples n—Figures 4(a)(b)(c)(d) show the time cost of different n 
on CORR, INDE, ANTI, and NBA datasets, respectively. We observe that for all datasets, 

the time cost increases approximately linearly with the number of tuples n, which is 

consistent with our complexity analysis. While BSSP is very efficient, FSSP does incur 

more computational overhead for full security. Comparing different datasets, the time cost is 

in slightly increasing order for CORR, INDE, and ANTI, due to the increasing number of 

skyline points of the datasets. The time for NBA dataset is low due to its small number of 

tuples.

Impact of number of dimensions m—Figures 5(a)(b)(c)(d) show the time cost of 

different m on CORR, INDE, ANTI, and NBA datasets, respectively. For all datasets, the 

time cost increases approximately linearly with the number of dimensions m. FSSP also 

shows more computational overhead than BSSP. The different datasets show a similar 

comparison as in Figure 4. The time for NBA dataset is lower than the CORR dataset which 

suggests that the NBA data is strongly correlated.

Impact of encryption key size K—Figures 6(a)(b)(c)(d) show the time cost with 

different key size used in the Paillier cryptosystem on CORR, INDE, ANTI, and NBA 

datasets, respectively. A stronger security indeed comes at the price of computation 

overhead, i.e., the time cost increases significantly, almost exponential, when K grows.

Communication overhead—We also measured the overall time which includes 

computation time reported earlier and the communication time between the two server 

processes. Figure 7 shows the computation and communication time of different n on INDE 

dataset of FSSP. We observe that computation time only takes about one third of the total 

time in this setting.

C. Performance Improvements through Parallel Implementation

In order to reduce the skyline query processing time, we demonstrate that our algorithm can 

be parallelized, using a hierarchical divide-and-conquer paradigm with POSIX threads. First 

we divide our dataset into v subdatasets (v refers to the number of threads) and assign one to 

each thread. Each thread computes and returns the skyline in the subdataset when it finishes. 

When the main thread receives skyline result from two or more threads, it merges them into 

one new subdataset and sends it to an idle thread, this process iterates until finally there is 

only one set of skyline, which is the final result. We refer to this implementation local 

parallelism using multi-threading.

To further demonstrate the scalability of our algorithm, we also implemented a distributed 

version, which employs manager-worker model. The manager plays the role of distributing 

data to workers, while workers (multi-threading) compute skylines in any given working set 

and return them to the manager, which works similarly as the multi-threading parallelism. 

The only difference here is that the manager could implement sophisticated load balancing 

algorithm to fully utilize computation resources (not implemented in our current prototype).

In the experiment setup, we used workstations of the same configurations as described 

earlier. In multi-threading parallelism, we run  and  on the same machine with 
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running 8 threads. As for distributed version, we tested it with 2, 4, 8, 16, 32, 64 worker 

machines.

Figures 8 (a)(b) show the time cost of parallelized FSSP of the multi-threading and 

distributed version, respectively. Figure 8(a) indicates that multi-threading version (with 8 

threads) is about 6 times faster than the serial version. Figure 8(b) shows the time cost with 

varying number of worker machines and varying number of tuples. We observe that our 

distributed version is very effective in reducing computation time when scaling to large 

datasets. And it shows a sub-linear time increase with respect to the number of worker 

machines.

VIII. Conclusions

In this paper, we presented a fully secure skyline protocol on encrypted data using two non-

colluding cloud servers under the semi-honest model. It ensures semantic security in that the 

cloud servers knows nothing about the data including indirect data patterns, query, as well as 

the query result. In addition, the client and data owner do not need to participate in the 

computation. We also presented a secure dominance protocol which can be used by skyline 

queries as well as other queries. Finally, we presented our implementation of the protocol 

and demonstrated the feasibility and efficiency of the solution. As for future work, we plan 

to optimize the communication time complexity to further improve the performance of the 

protocol.
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Fig. 1. 
Secure similarity queries.
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Fig. 2. 
Dynamic skyline query.
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Fig. 3. 
Overview of protocol setting.
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Fig. 4. 
The impact of n (m=2, K=512).
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Fig. 5. 
The impact of m (n=1000, K=512).
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Fig. 6. 
The impact of K (n=1000, m=2).
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Fig. 7. 
Computation and communication time cost of different n (m=2, K=512).
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Fig. 8. 
Parallel implementations (m=2, K=512).
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TABLE I

Sample of heart disease dataset.

(a) Original data.

ID age trestbps

p1 40 140

p2 39 120

p3 45 130

p4 37 140

(b) Mapped Data.

ID age trestbps

t1 42 140

t2 43 130

t3 45 130

t4 45 140

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 35

TABLE II

The summary of notations.

Notation Definition

P dataset of n points/tuples/records

pi[j] the jth attribute of pi

q query tuple of client

n number of points in P

m number of dimensions

k number of skyline

l number of bits

K key size

pk/sk public/private key

〚a〛 encrypted vector of the individual bits of a

â binary bit

the ith bit of binary number a
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