
Secure Skyline Queries on Cloud Platform

Jinfei Liu*, Juncheng Yang*, Li Xiong*, and Jian Pei†

*Department of Mathematics & Computer Science, Emory University

†School of Computing Science, Simon Fraser University

Abstract

Outsourcing data and computation to cloud server provides a cost-effective way to support large

scale data storage and query processing. However, due to security and privacy concerns, sensitive

data (e.g., medical records) need to be protected from the cloud server and other unauthorized

users. One approach is to outsource encrypted data to the cloud server and have the cloud server

perform query processing on the encrypted data only. It remains a challenging task to support

various queries over encrypted data in a secure and efficient way such that the cloud server does

not gain any knowledge about the data, query, and query result. In this paper, we study the

problem of secure skyline queries over encrypted data. The skyline query is particularly important

for multi-criteria decision making but also presents significant challenges due to its complex

computations. We propose a fully secure skyline query protocol on data encrypted using

semantically-secure encryption. As a key subroutine, we present a new secure dominance protocol,

which can be also used as a building block for other queries. Finally, we provide both serial and

parallelized implementations and empirically study the protocols in terms of efficiency and

scalability under different parameter settings, verifying the feasibility of our proposed solutions.

I. Introduction

As an emerging computing paradigm, cloud computing attracts increasing attention from

both research and industry communities. Outsourcing data and computation to cloud server

provides a cost-effective way to support large scale data storage and query processing.

However, due to security and privacy concerns, sensitive data needs be protected from the

cloud server as well as other unauthorized users.

A common approach to protect the confidentiality of outsourced data is to encrypt the data

(e.g., [14], [31]). To protect the confidentiality of the query from cloud server, authorized

clients also send encrypted queries to the cloud server. Figure 1 illustrates our problem

scenario of secure query processing over encrypted data in the cloud. The data owner

outsources their encrypted data to the cloud server. The cloud server processes encrypted

queries from the client on the encrypted data and returns the query result to the client.

During the query processing, the cloud server should not gain any knowledge about the data,

data patterns, query, and query result.

HHS Public Access
Author manuscript
Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

Published in final edited form as:
Proc Int Conf Data Eng. 2017 April ; 2017: 633–644. doi:10.1109/ICDE.2017.117.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fully homomorphic encryption schemes [14] ensure strong security while enabling arbitrary

computations on the encrypted data, however, the computation cost is prohibitive in practice.

Trusted hardware such as the latest Intel’s Software Guard Extensions (SGX) brings a

promising alternative, however still has limitations in its security guarantees [9]. Many

techniques (e.g., [17], [37]) have been proposed to support specific queries or computations

on encrypted data with varying degrees of security guarantee and efficiency (e.g., by weaker

encryptions). Focusing on similarity search, secure k-nearest neighbor (kNN) queries, which

return k most similar (closest) records given a query record, have been extensively studied

[11], [20], [39], [41].

In this paper, we focus on the problem of secure skyline queries on encrypted data, another

type of similarity search important for multi-criteria decision making. The skyline or Pareto
of a multi-dimensional dataset given a query point consists of the data points that are not

dominated by other points. A data point dominates another if it is closer to the query point in

at least one dimension and at least as close to the query point in every other dimension. The

skyline query is particularly useful for selecting similar (or best) records when a single

aggregated distance metric with all dimensions is hard to define. The assumption of kNN

queries is that the relative weights of the attributes are known in advance, so that a single

similarity metric can be computed between a pair of records aggregating the similarity

between all attribute pairs. However, this assumption does not always hold in practical

applications. In many scenarios, it is desirable to retrieve similar records considering all

possible relative weights of the attributes (e.g., considering only one attribute, or an arbitrary

combination of attributes), which is essentially the skyline or the “pareto-similar” records.

Motivating Example

Consider a hospital who wishes to outsource its electronic health records to the cloud and

the data is encrypted to ensure data confidentiality. Let P denote a sample heart disease

dataset with attributes ID, age, trestbps (resting blood pressure). We sampled four patient

records p1, …, p4 from the heart disease dataset of UCI machine learning repository [22] as

shown in Table I(a) and Figure 2. Consider a physician who is treating a heart disease patient

q = (41, 125) and wishes to retrieve similar patients in order to enhance and personalize the

treatment for patient q. While it is unclear how to define the attribute weights for kNN

queries (p1 is the nearest if only age is considered while p2, p3 are the nearest if only

trestbps is considered), skyline provides all pareto-similar records that are not dominated by

any other records. Given the query q, we can map the data points to a new space with q as

the origin and the distance to q as the mapping function. The mapped records ti[j] = |pi[j] −

q[j]| + q[j] on each dimension j are shown in Table I(b) and also in Figure 2. It is easy to see

that t1 and t2 are skyline in the mapped space, which means p1 and p2 are skyline with

respect to query q.

Our goal is for the cloud server to compute the skyline query given q on the encrypted data

without revealing the data, the query q, the final result set {p1, p2}, as well as any

intermediate result (e.g., t2 dominates t4) to the cloud. We note that skyline computation

(with query point at the origin) is a special case of skyline queries. Our protocol can be also

used for skyline computation.

Liu et al. Page 2

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Challenges

Designing a fully secure protocol for skyline queries over encrypted data presents significant

challenges due to the complex comparisons and computations. Let P denotes a set of n
tuples p1, …, pn with m attributes and q denotes input query tuple. In kNN queries, we only

need to compute the distances between each tuple pi and the query tuple q and then choose

the k tuples corresponding to the k smallest distances. In skyline queries, for each tuple pi,

we need to compare it with all other tuples to check dominance. For each comparison

between two tuples pa and pb, we need to compare all their m attributes and for comparison

of each attribute p[j], there are three different outputs, i.e., pa[j] < (=, >) pb[j]. Therefore,

there are 3m different outputs for each comparison between two tuples, based on which we

need to determine if one tuple dominates the other.

Such complex comparisons and computations require more complex protocol design in

order to carry out the computations on the encrypted data given an encryption scheme with

semantic security (instead of weaker order-preserving or other property-preserving

encryptions). In addition, the extensive intermediate result means more indirect information

about the data can be potentially revealed (e.g., which tuple dominates which other, whether

there are duplicate tuples or equivalent attribute values) even if the exact data is protected.

This makes it challenging to design a fully secure skyline query protocol in which the cloud

should not gain any knowledge about the data including indirect data patterns.

Contributions

We summarize our contributions as follows.

• We study the secure skyline problem on encrypted data with semantic security

for the first time. We assume the data is encrypted using the Paillier

cryptosystem which provides semantic security and is partially homomorphic.

• We propose a fully secure dominance protocol, which can be used as a building

block for skyline queries as well as other queries, e.g., reverse skyline queries

[10] and k-skyband queries [32].

• We present two secure skyline query protocols. The first one, served as a basic

and efficient solution, leaks some indirect data patterns to the cloud server. The

second one is fully secure and ensures that the cloud gains no knowledge about

the data including indirect patterns. The proposed protocols exploit the partial

(additive) homomorphism as well as novel permutation and perturbation

techniques to ensure the correct result is computed while guaranteeing privacy.

• We provide security and complexity analysis of the proposed protocols. We also

provide a complete implementation including both serial and parallelized

versions which can be deployed in practical settings. We empirically study the

efficiency and scalability of the implementations under different parameter

settings, verifying the feasibility of our proposed solutions.

Liu et al. Page 3

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Organization

The rest of the paper is organized as follows. Section II presents the related work. Section III

introduces background definitions as well as our problem setting. The security subprotocols

for general functions that will be used in our secure skyline protocol are introduced in

Section IV. The key subroutine of secure skyline protocols, secure dominance protocol, is

shown in Section V. The complete secure skyline protocols are presented in Section VI. We

report the experimental results and findings in Section VII. Section VIII concludes the paper.

II. Related Work

Skyline

The skyline computation problem was first studied in computational geometry field [3], [25]

where they focused on worst-case time complexity. [23], [29] proposed output-sensitive

algorithms achieving O(nlogk) in worst-case where k is the number of skyline points which

is far less than n in general.

Since the introduction of the skyline operator by Börzsönyi et al. [4], skyline has been

extensively studied in the database field. Kossmann et al. [24] studied the progressive

algorithm for skyline queries. Different variants of the skyline problem have been studied

(e.g., subspace skyline [7], uncertain skyline [34] [30], group-based skyline [28], [26]).

Secure query processing on encrypted data

Fully homomorphic encryption schemes [14] enable arbitrary computations on encrypted

data. Even though it is shown that [14] we can build such encryption schemes with

polynomial time, they remain far from practical even with the state of the art

implementations [18].

Many techniques (e.g., [17], [37]) have been proposed to support specific queries or

computations on encrypted data with varying degrees of security guarantee and efficiency

(e.g., by weaker encryptions). We are not aware of any formal work on secure skyline

queries over encrypted data with semantic security. Bothe et al. [5] and their demo version

[6] illustrated an approach about skyline queries on so-called “encrypted” data without any

formal security guarantee. Another work [8] studied the verification of skyline query result

returned by an untrusted cloud server.

The closely related work is secure kNN queries [11], [19], [20], [33], [35], [39], [41], [42]

which we discuss in more detail here. Wong et al. [39] proposed a new encryption scheme

called asymmetric scalar-product-preserving encryption. In their work, data and query are

encrypted using slightly different encryption schemes and all clients know the private key.

Hu et al. [20] proposed a method based on provably secure privacy homomorphism

encryption scheme. However, both schemes are vulnerable to the chosen-plaintext attacks as

illustrated by Yao et al. [41]. Yao et al. [41] proposed a new method based on secure Voronoi

diagram. Instead of asking the cloud server to retrieve the exact kNN result, their method

retrieve a relevant encrypted partition E(R) for E(Q) such that R is guaranteed to contain the

kNN of Q. Hashem et al. [19] identified the challenges in preserving user privacy for group

Liu et al. Page 4

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

nearest neighbor queries and provided a comprehensive solution to this problem. Yi et al.

[42] proposed solutions for secure kNN queries based on oblivious transfer paradigm.

Recently, Elmehdwi et al. [11] proposed a secure kNN query protocol on data encrypted

using Paillier cryptosystem that ensures data privacy and query privacy, as well as low (or

no) computation overhead on client and data owner using two non-colluding cloud servers.

Our work follows this setting and addresses skyline queries.

Other works studied kNN queries in the secure multi-party computation (SMC) setting [35]

(data is distributed between two parties who want to cooperatively compute the answers

without revealing to each other their private data), or private information retrieval (PIR)

setting [33] (query is private while data is public), which are different from our settings.

Secure Multi-party Computation (SMC)

SMC was first proposed by Yao [40] for two-party setting and then extended by Goldreich et

al. [16] to multi-party setting. SMC refers to the problem where a set of parties with private

inputs wish to compute some joint function of their inputs. There are techniques such as

garbled circuits [21] and secret sharing [2] that can be used for SMC. In this paper, all

protocols assume a two-party setting, but different from the traditional SMC setting.

Namely, we have with encrypted input and with the private key sk. The goal is for

to obtain an encrypted result of a function on the input without disclosing the original input

to either or .

III. Preliminaries and Problem Definitions

In this section, we first illustrate some background knowledge on skyline computation and

dynamic skyline query, and then describe the security model we use in this paper. For

references, a summary of notations is given in Table II.

A. Skyline Definitions

Definition 1: (Skyline)—Given a dataset P = {p1, …, pn} in m-dimensional space. Let pa

and pb be two different points in P, we say pa dominates pb, denoted by pa ≺ pb, if for all j,
pa[j] ≤ pb[j], and for at least one j, pa[j] < pb[j], where pi[j] is the jth dimension of pi and 1 ≤

j ≤ m. The skyline points are those points that are not dominated by any other point in P.

Definition 2: (Dynamic Skyline Query) [10]—Given a dataset P = {p1, …, pn} and a

query point q in m-dimensional space. Let pa and pb be two different points in P, we say pa

dynamically dominates pb with regard to the query point q, denoted by pa ≺ pb, if for all j, |
pa[j] − q[j]| ≤ |pb[j] − q[j]| and for at least one j, |pa[j] − q[j]| < |pb[j] − q[j]|, where pi[j] is

the jth dimension of pi and 1 ≤ j ≤ m. The skyline points are those points that are not

dynamically dominated by any other point in P.

The traditional skyline definition is a special case of dynamic skyline query in which the

query point is the origin. On the other hand, dynamic skyline query is equivalent to

traditional skyline computation if we map the points to a new space with the query point q
as the origin and the absolute distances to q as mapping functions. So the protocols we will

Liu et al. Page 5

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

present in the paper also work for traditional skyline computation (without an explicit query

point).

Example 1—Consider Table I and Figure 2 as a running example. Given data points p1 to

p4 and query point q, the mapped data points are computed as ti[j] = |pi[j] − q[j]| + q[j]. We

see that t1, t2 are the skyline in the mapped space, and p1, p2 are the skyline with respect to

query q in the original space.

B. Skyline Computation

Skyline computation has been extensively studied as we discussed in Section 2. We illustrate

an iterative skyline computation algorithm (Algorithm 1) which will be used as the basis of

our secure skyline protocol. We note that this is not the most efficient algorithm to compute

skyline for plaintext compared to the divide-and-conquer algorithm [25]. We construct our

secure skyline protocol based on this algorithm for two reasons: 1) the divide-and-conquer

approach is less suitable if not impossible for a secure implementation compared to the

iterative approach, 2) the performance of the divide-and-conquer algorithm deteriorate with

the “curse of dimensionality”.

Algorithm 1

Skyline Computation.

The general idea of Algorithm 1 is to first map the data points to the new space with the

query point as origin (Lines 1–3). Given the new data points, it computes the sum of all

attributes for each tuple S (ti) (Line 6) and chooses the tuple tmin with smallest S (ti) as a

skyline because no other tuples can dominate it. It then deletes those tuples dominated by

tmin. The algorithm repeats this process for the remaining tuples until an empty dataset T is

reached.

Example 2—Given the mapped data points t1, …, t4, we begin by computing the attribute

sum for each tuple as S (t1) = 16, S (t2) = 7, S (t3) = 9, and S (t4) = 19. We choose the tuple

with smallest S (ti), i.e., t2, as a skyline tuple, delete t2 from dataset T and add p2 to the

Liu et al. Page 6

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

skyline pool. We then delete tuples t3 and t4 from T because they are dominated by t2. Now,

there is only t1 in T. We add p1 to the skyline pool. After deleting t1 from T, T is empty and

the algorithm terminates. p1 and p2 in the skyline pool are returned as the query result.

C. Problem Setting

We now describe our problem setting for secure skyline queries over encrypted data.

Consider a data owner (e.g., hospital, CDC) with a dataset P. Before outsourcing the data,

the data owner encrypts each attribute of each record pi[j] using a semantically secure

public-key cryptosystem (we employ the Pailliar cryptosystem [31] as explained later in the

section). We use pk and sk to denote the public key and private key, respectively. Data owner

sends Epk(pi[j]) for i = 1, …, n and j = 1, …, m to cloud server .

Consider an authorized client (e.g., physician) who wishes to query the skyline tuples

corresponding to query tuple q = (q[1], …, q[m]). In order to protect the sensitive query

tuple, the client uses the same public key pk to encrypt the query tuple and sends Epk(q) =

(Epk(q[1]), …, Epk(q[m])) to cloud server .

Our goal is to enable the cloud server to compute and return the skyline to the client without

learning any information about the data and the query. In addition to guaranteeing the

correctness of the result and the efficiency of the computation, the computation should

require no or minimal interaction from the client or the data owner for practicality. To

achieve this, we assume there is an additional non-colluding cloud server, , which will

hold the private key sk shared by the data owner and assist with the computation. This way,

the data owner does not need to participate in any computation. The client also does not

need to participate in any computation except combining the partial result from and .

An overview of the protocol setting is shown in Figure 3.

D. Security Model

Adversary Model—We adopt the semi-honest adversary model in our study. In any multi-

party computation setting, a semi-honest party correctly follows the protocol specification,

yet attempts to learn additional information by analyzing the transcript of messages received

during the execution. By semi-honest model, this work implicitly assumes that the two cloud

servers do not collude.

There are two main reasons to adopt the semi-honest adversary model in our study. First,

developing protocols under the semi-honest setting is an important first step towards

constructing protocols with stronger security guarantees [21]. Using zero-knowledge proofs

[13], these protocols can be transformed into secure protocols under the malicious model.

Second, the semi-honest model is realistic in current cloud market. and are assumed to

be two cloud servers, which are legitimate, well-known companies (e.g., Amazon, Google,

and Microsoft). A collusion between them is highly unlikely. Therefore, following the work

done in [11], [27], [43], we also adopt the semi-honest adversary model for this paper.

Liu et al. Page 7

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Desired Privacy Properties—Our security goal is to protect the data and the query as

well as the query result from the cloud servers. We summarize the desired privacy properties

below. After the execution of the entire protocol, the following should be achieved.

• Data Privacy. Cloud servers and know nothing about the exact data except

the size pattern, the client knows nothing about the dataset except the skyline

query result.

• Data Pattern Privacy. Cloud servers and know nothing about the data

patterns (indirect data knowledge) due to intermediate result, e.g., which tuple

dominates which other tuple.

• Query Privacy. Data owner, cloud servers and know nothing about the

query tuple q.

• Result Privacy. Cloud servers and know nothing about the query result,

e.g., which tuples are in the skyline result.

Security Definition in the Semi-honest Model—Considering the privacy properties

above, we adopt the formal security definition from the multi-party computation setting

under the semi-honest model [15]. Intuitively, a protocol is secure if whatever can be

computed by a party participating in the protocol can be computed based on its input and

output only. This is formalized according to the simulation paradigm. Loosely speaking, we

require that a party’s view in a protocol execution to be simulative given only its input and

output. This then implies that the parties learn nothing from the protocol execution. We omit

the definition due to the limited space, for the detailed and strict definition, please see [15].

Theorem 1

Composition Theorem [15]: If a protocol consists of subprotocols, the protocol is secure as

long as the subprotocols are secure and all the intermediate results are random or pseudo-

random.

In this work, the proposed secure skyline protocols are constructed based on a sequential

composition of subprotocols. To formally prove the security under the semi-honest model,

according to the composition theorem given in Theorem 1, one needs to show that the

simulated view of each subprotocol was computationally indistinguishable from the actual

execution view and the protocol produces random or pseudo-random shares as intermediate

results.

E. Paillier Cryptosystem

We use the Paillier cryptosystem [31] as the encryption scheme in this paper and briefly

describe Paillier’s additive homomorphic properties which will be used in our protocols.

• Homomorphic addition of plaintexts:

• Homomorphic multiplication of plaintexts:

Liu et al. Page 8

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

IV. Basic Security Subprotocols

In this section, we present a set of secure subprotocols for computing basic functions on

encrypted data that will be used to construct our secure skyline query protocol. All protocols

assume a two-party setting, namely, with encrypted input and with the private key sk
as shown in Figure 3. The goal is for to obtain an encrypted result of a function on the

input without disclosing the original input to either or . We note that this is different

from the traditional two-party secure computation setting with techniques such as garbled

circuits [21] where each party holds a private input and they wish to compute a function of

the inputs. For each function, we describe the input and output, present our proposed

protocol or provide a reference if existing solutions are available. Due to limited space, we

omit the security proof which can be derived by the simulation and composition theorem in

a straightforward way.

Secure Multiplication (SM)

Assume a cloud server with encrypted input Epk(a) and Epk(b), and a cloud server with

the private key sk, where a, b are two numbers not known to and . The Secure

Multiplication (SM) protocol [11] (based on the additively homomorphic property of

Paillier) securely computes encrypted result of multiplication of a, b, Epk(a×b), such that

only knows Epk(a×b) such that only knows Epk(a×b), and no information related to a,

b is revealed to or .

Secure Bit Decomposition (SBD)

Assume a cloud server with encrypted input Epk(a) and a cloud server with the private

key sk, where a is a number not known to and . The Secure Bit Decomposition (SBD)

protocol [36] securely computes encrypted individual bits of the binary representation of a,

denoted as , where l is the number of bits, and

denote the most and least significant bits of a, respectively. At the end of the protocol, the

output 〚a〛 is known only to and no information related to a is revealed to or .

A. Secure Boolean Operations

Secure OR (SOR)—Assume a cloud sever with encrypted input Epk(â) and , and

a cloud server with the private key sk, where â and are two bits not known to and .

The Secure OR (SOR) protocol [11] securely computes encrypted result of the bit-wise OR

of the two bits, , such that only knows and no information related to

â and is revealed to or .

Secure AND (SAND)—Assume a cloud server with encrypted input Epk(â) and ,

and a cloud server with the private key sk, where â and are two bits not known to and

. The goal of the SAND protocol is to securely compute encrypted result of the bit-wise

Liu et al. Page 9

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

AND of the two bits, , such that only knows and no information

related to â and is revealed to or . We can simply use the secure multiplication (SM)

protocol on the two bits.

Secure NOT (SNOT)—Assume a cloud server with encrypted input Epk(â) and a cloud

server with the private key sk, where â is a bit not known to , . The goal of the SNOT

protocol is to securely compute the encrypted complement bit of â, Epk(¬â), such that only

 knows Epk(¬â) and no information related to â is revealed to or . Secure NOT

protocol can be easily implemented by Epk(1 − â) = Epk(1)Epk(â)N−1.

B. Secure Minimum and Secure Comparison

Secure minimum protocol and secure comparison protocol have been extensively studied in

cryptography community [1], [12], [38] and database community [11], [43]. Secure

comparison protocol can be easily adapted to secure minimum protocol, and vice versa. For

example, if we set Epk(out) as the result of secure comparison Epk(Bool(a ≤ b)) known by

cloud server (it will be Epk(1) when a ≤ b and Epk(0) when a > b), can get Epk(min(a,

b)) by computing Epk(a ∗ out + b ∗ ¬out).

We analyzed the existing protocols and observed that both secure minimum (SMIN)

algorithms [11], [43] from database community for selecting a minimum have a security

weakness, i.e., can determine whether the two numbers are equal to each other. We point

out the security weakness as follows.

Disclosure of Binary based SMIN—Given two numbers in binary representations, the

idea of the Binary representation based SMIN protocol (BSMIN)1 [11] is for to randomly

choose a boolean functionality F (by flipping a coin), where F is either a > b or b > a, and

then securely compute F with , such that the output of F is oblivious to both and .

Based on the output and chosen F, computes min(a, b) locally using homomorphic

properties. More specifically, given the binary representation of the two numbers, for each

bit, computes an encrypted boolean output Wi of the two bits based on F (e.g., if F is a >

b, Wi = Epk(1), if and Epk(0) otherwise) and an encrypted randomized

difference between and . This way, the order and difference of the two numbers

are not disclosed to . However, when a = b, whatever F is, we have Wi = Epk(0) for all

bits. We can show that through the intermediate result (the encrypted randomized difference

between and , Γi = Epk(ri) for 1 ≤ i ≤ l, the bit-wise XOR of and , Gi =

Epk(0) for 1 ≤i ≤ l), can determine a equals to b.

Disclosure of Perturbation based SMIN—The Perturbation based SMIN protocol

(PSMIN) [43] assumes has Epk(a) and Epk(b). generates a set of v random values

uniformly from a certain range {r1, …, rv|r1 < ri, i ≥2}. then sends a set of 2+v − 1

encrypted values {Epk(a+r1), Epk(b+r1), Epk(x2+ r2), …, Epk(xv + rv)} to , where xi, i ≥ 2

1The SMIN protocol for n values can be constructed by employing BSMIN for two values at a time in a hierarchical fashion as
suggested in [11] or simply a linear fashion.

Liu et al. Page 10

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

are randomly chosen from a, b. The idea is that the smallest number, after being perturbed

by r1 (which is smaller than ri, i ≥ 2), will remain the smallest. The perturbation hides the

order of the numbers to . Although not mentioned by the original paper, we point out

also needs to shuffle the encrypted values before sending them to , otherwise the

differences between the values will be disclosed to after decryption. After decrypting

those 2+v−1 values, takes the minimal min and sends Epk(min) to . computes

Epk(min − r1) as result. The security weakness of PSMIN is due to the fact that if two

numbers are equal, their perturbed values remain equal. Since sends {Epk(a + r1), Epk(b
+r1), Epk(x2 + r2), …, Epk(xv +rv)} to , can learn two numbers are equal based on a + r1

and b + r1.

Therefore, we adapted the secure minimum/comparison protocols [38] from cryptography

community in this paper. The basic idea of those protocols is that for any two l bit numbers a
and b, the most significant bit (zl) of z = 2l + a − b indicates the relationship between a and

b, i.e., zl = 0 ⇔ a < b. We list the secure minimum/comparison protocols we used in this

paper below.

Secure Less Than or Equal (SLEQ)—Assume a cloud server with encrypted input

Epk(a) and Epk(b), and a cloud server with the private key sk, where a and b are two

numbers not known to and . The goal of the SLEQ protocol is to securely compute the

encrypted boolean output Epk(Bool(a ≤ b)), such that only knows Epk(Bool(a ≤ b)) and no

information related to a and b is revealed to or .

Secure Equal (SEQ)—Assume a cloud server 1 with encrypted input Epk(a) and Epk(b),

and a cloud server with the private key sk, where a and b are two numbers not known to

 and . The goal of the SEQ protocol is to securely compute the encrypted boolean

output Epk(Bool(a == b)), such that only knows Epk(Bool(a == b)) and no information

related to Bool(a == b) is revealed to or .

Secure Less (SLESS)—Assume a cloud server with encrypted input Epk(a) and

Epk(b), and a cloud server with the private key sk, where a and b are two numbers not

known to and . The goal of the SLESS protocol is to securely compute the encrypted

boolean output Epk(Bool(a < b)), such that only knows Epk(Bool(a < b)) and no

information related to Bool(a < b) is revealed to or . This can be simply implemented

by conjunction from the output of SEQ and SLEQ.

Secure Minimum (SMIN)—Assume a cloud server with encrypted input Epk(a) and

Epk(b), and a cloud server with the private key sk, where a and b are two numbers not

known to both parties. The goal of the SMIN protocol is to securely compute encrypted

minimum value of a and b, Epk(min(a, b)), such that only knows Epk(min(a, b)) and no

information related to a and b is revealed to or . Benefiting from the probabilistic

property of Paillier, the ciphertext of min(a, b), i.e., Epk(min(a, b)) is different from the

ciphertext of a, b, i.e., Epk(a), Epk(b). Therefore, does not know which of a or b is min(a,

b). In general, assume has n encrypted values, the goal of SMIN protocol is to securely

compute encrypted minimum of the n values.

Liu et al. Page 11

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

V. Secure Dominance Protocol

The key to compute skyline is to compute dominance relationship between two tuples.

Assume a cloud server with encrypted tuples a = (a[1], …, a[m]), b = (b[1], …, b[m])

and a cloud server with the private key sk, where a and b are not known to both parties.

The goal of the secure dominance (SDOM) protocol is to securely compute Epk(Bool(a ≺
b)) such that only knows Epk(1) if a ≺ b, otherwise, Epk(0).

Algorithm 2

Secure Dominance Protocol.

Protocol Design

Given any two tuples a = (a[1], …, a[m]) and b = (b[1], …, b[m]), recall the definition of

skyline, we say a ≺ b if for all j, a[j] ≤ b[j] and for at least one j, a[j] < b[j] (1 ≤ j ≤ m). If

for all j, a[j] ≤ b[j], we have either a = b or a ≺ b. We refer to this case as a ⪯ b. The basic

idea of secure dominance protocol is to first determine whether a ⪯ b, and then determine

whether a = b.

The detailed protocol is shown in Algorithm 2. For each attribute, and cooperatively

use the secure less than or equal (SLEQ) protocol to compute Epk(Bool(a[j] ≤ b[j])). And

then and cooperatively use SAND to compute Φ = δ1∧, …, ∧δm. If Φ = Epk(1), it

means a ⪯ b, otherwise, a ≰ b. We note that, the dominance relationship information Φ is

known only to in ciphertext. Therefore, both and do not know any information

about whether a ⪯ b.

Next, we need to determine if a ≠ b. Only if a ≠ b, then a ≺ b. One naive way is to employ

SEQ protocol for each pair of attribute and then take the conjunction of the output. We

propose a more efficient way which is to check whether S (a) < S (b), where S (a) is the

attribute sum of tuple a. If S (a) < S (b), then it is impossible that a = b. As the algorithm

shows, computes the sum of all attributes α = Epk(a[1]+…+a[m]) and β = Epk(b[1]+…

+b[m]) based on the additive homomorphic property. Then and cooperatively use

SLESS protocol to compute σ = Epk(Bool(α < β)). Finally, and cooperatively use

Liu et al. Page 12

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAND protocol to compute the final dominance relationship Ψ = σ ∧ Φ which is only

known to in ciphertext. Ψ = Epk(1) means a ≺ b, otherwise, a ⊀ b.

Security Analysis

Based on the composition theorem (Theorem 1), the security of secure dominance protocol

relies on the security of SLEQ, SLESS, and SAND, which have been shown in existing

works.

Complexity Analysis

To determine a ⪯ b, Algorithm 2 requires O(m) encryptions and decryptions. Then to

determine if a = b, Algorithm 2 requires O(1) encryptions and decryptions. Therefore, our

secure dominance protocol requires O(m) encryptions and decryptions in total.

VI. Secure Skyline Protocol

In this section, we first propose a basic secure skyline protocol and show why such a simple

solution is not secure. Then we propose a fully secure skyline protocol. Both protocols are

constructed by using the security primitives discussed in Section IV and the secure

dominance protocol in Section V.

As mentioned in Algorithm 1, given a skyline query q, it is equivalent to compute the

skyline in a transformed space with the query point q as the origin and the absolute distances

to q as mapping functions. Hence we first show a preprocessing step in Algorithm 3 which

maps the dataset to the new space. Since the skyline only depends on the order of the

attribute values, we use (pi[j] − q[j])2 which is easier to compute than |pi[j] − q[j]| as the

mapping function2. After Algorithm 3, has the encrypted dataset Epk(P) and Epk(T),

has the private key sk. The goal is to securely compute the skyline by and without

participation of data owner and the client.

2We use |pi[j] − q[j]| in our running example for simplicity.

Liu et al. Page 13

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 3

Preprocessing.

A. Basic Protocol

We first illustrate a straw-man protocol which is straightforward but not fully secure (as

shown in Algorithm 4). The idea is to implement each of the steps in Algorithm 1 using the

primitive secure protocols. first determines the terminal condition, if there is no tuple

exists in dataset Epk(T), the protocol ends, otherwise, the protocol proceeds as follows.

Compute minimum attribute sum— first computes the sum of Epk(ti[j]) for 1 ≤ j ≤

m, denoted as Epk(S (ti)), for each tuple ti. Then and uses SMIN protocol such that

obtains Epk(S (tmin)).

Select the skyline with minimum attribute sum—The challenge now is we need to

select the tuple Epk(tmin) with the smallest Epk(S (ti)) as a skyline tuple. In order to do this, a

naive way is for to compute Epk(S (ti) − S (tmin)) for all tuples and then send them to .

 can decrypt them and determine which one is equal to 0 and return the index to .

then adds the tuple Epk(pmin) to skyline pool.

Eliminate dominated tuples—Once the skyline tuple is selected, and

cooperatively use SDOM protocol to determine the dominance relationship between

Epk(tmin) and other tuples. In order to delete those tuples that are dominated by Epk(tmin), a

naive way is for to send the encrypted dominance output to , who can decrypt it and

send back the indexes of the tuples who are dominated to . can delete those tuples

dominated by Epk(tmin) and the tuple Epk(tmin) from Epk(T). The algorithm continues until

there is no tuples left.

Return skyline results to client—Once has the encrypted skyline result, it can

directly send them to the client if the client has the private key. However, in our setting, the

client does not have the private key for better security. Lines 25 to 39 in Algorithm 4

Liu et al. Page 14

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

illustrate how the client obliviously obtains the final skyline query result with the help of

and at the same time, and know nothing about the final result. Given the skyline

tuples Epk(p1), …, Epk(pk) in skyline pool, where k is the number of skyline. The idea is for

 to add a random noise ri[j] to each pi[j] in ciphertext and then sends the encrypted

randomized values αi[j] to . also sends the noise ri[j] to client. At the same time,

decrypts the randomized values αi[j] and sends the result to client. Client receives the

random noise ri[j] from and randomized values of the skyline points αi[j] from , and

removes the noise by computing for i = 1, …, k and j = 1, …, m as the

final result.

B. Fully Secure Skyline Protocol

The basic protocol clearly reveals several information to and as follows,

• When selecting the skyline tuple with minimum attribute sum, and know

which tuples are skyline points, which violates result privacy requirement.

• When eliminating dominated tuples, and know the dominance relationship

among tuples with respect to the query tuple q, which violates our data pattern

privacy requirement.

To address these leakage, we propose a fully secure protocol in Algorithm 5. The step to

compute minimum attribute sum and return the results to the client are the same as the basic

protocol. We focus on the following steps that are designed to address the disclosure risks of

the basic protocol.

Select skyline with minimum attribute sum—Once obtains the encrypted

minimum attribute sum Epk(S(tmin)), the challenge is how to select the tuple Epk(tmin) with

the minimum sum Epk(S(tmin)) as a skyline tuple such that and know nothing about

which tuple is selected. We present a protocol as shown in Algorithm 6.

Liu et al. Page 15

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 4

Basic Secure Skyline Protocol.

We first need to determine which S (ti) is equal to S (tmin). Note that this can not be

achieved by the SMIN protocol which only selects the minimum value. Here we propose an

efficient way, exploiting the fact that it is okay for to know there is one equal case (since

we are selecting one skyline tuple) as long as it does not know which one. first computes

Liu et al. Page 16

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

, and then sends a permuted list β = π(α′) to based on a

random permutation sequence π. The permutation hides which sum is equal to the minimum

from while the uniformly random noise ri masks the difference between each sum and the

minimum sum. Note that is uniformly random in except when S(ti) − S(tmin) = 0, in

which case . decrypts βi, if it is 0, it means tuple i has smallest Epk(S(ti)). Therefore,

 sends Epk(1) to , otherwise, sends Epk(0).

Algorithm 5

Fully Secure Skyline Protocol.

Liu et al. Page 17

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

After receiving the encrypted permuted bit vector U as the equality result, applies a

reverse permutation, and obtains an encrypted bit vector V, where one tuple has bit 1

suggesting it has the minimum sum. In order to obtain the attribute values of this tuple,

and employ SM protocol to compute encrypted product of the bit vector and the attribute

values, Epk(ti[j]′) and Epk(pi[j]′). Since all other tuples except the one with the minimum

sum will be 0, we can sum all Epk(ti[j]′) and Epk(pi[j]′) on each attribute and can obtain

the attribute values corresponding to the skyline tuple.

Order preserving perturbation—We can show that Algorithm 6 is secure and correctly

selects the skyline tuple if there is only one minimum. A potential issue is that multiple

tuples may have the same minimum sum. If this happens, not only is this information

revealed to , but also the skyline tuple cannot be selected (computed) correctly, since the

bit vector contains more than one 1 bit. To address this, we employ order-preserving

perturbation which adds a set of mutually different bit sequence to a set of values such that:

1) if the original values have equal cases, the perturbed values are guaranteed not equal to

each other, and 2) if the original values are not equal to each other, their order is preserved.

The perturbed values are then used as the input for Algorithm 6.

Liu et al. Page 18

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Algorithm 6

Find One Skyline.

Concretely, given n numbers in their binary representations, we add a ⌈logn⌉-bit sequence to

the end of each Epk(S (ti)), each represents a unique bit sequence in the range of [0, n − 1].

This way, the perturbed values are guaranteed to be different from each other while their

order is preserved since the added bits are the least significant bits. Line 10 of Algorithm 5

shows this step. We note that we can multiply each sum Epk(S (ti)) by n and uniquely add a

value from [0, n − 1] to each Epk(S (ti)), hence guarantee they are not equal to each other.

This will be more efficient than adding a bit sequence, however, since we will need to

perform the bit decomposition later in the protocol to allow bit operators, we run

decomposition by the SBD protocol for l bits in the beginning of the protocol rather than l +

⌈log n⌉ bits later.

Eliminate dominated tuples—Once the skyline tuple is selected, it can be added to the

skyline pool and then used to eliminate dominated tuples. In order to do this, and

cooperatively use SDOM protocol to determine the dominance relationship between

Epk(tmin) and other tuples. The challenge is then how to eliminate the dominated tuples

Liu et al. Page 19

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

without and knowing which tuples are being dominated and eliminated. Our idea is

that instead of eliminating the dominated tuples, we “flag” them by securely setting their

attribute values to the maximum domain value. This way, they will not be selected as skyline

tuples in the remaining iterations. Concretely, we can set the binary representation of their

attribute sum to all 1s so that it represents the domain maximum. Since we added ⌈log n⌉
bits to 〚Epk(S (ti))〛, the new 〚Epk(S (ti))〛 has l + ⌈log n⌉ bits. Therefore, the maximum

value MAX = 2l+ ⌈log n⌉ − 1. To obliviously set the attributes of only dominated tuples to

MAX, based on the encrypted dominance output Vi of the dominance protocol, and

cooperatively employ SOR of the dominance boolean output and the bits of the S (ti). This

way, if the tuple is dominated, it will be set to MAX. Otherwise, it will remain the same. If

Epk(S (tmin)) = Epk(MAX), it means all the tuples are processed, i.e., flagged either as a

skyline or a dominated tuple, the protocol ends.

Example 3: We illustrate the entire protocol through the running example shown in Table

III. Please note that all column values are in encrypted form except columns π and β′. Given

the mapped data points ti, first computes the attribute sum Epk(S (ti)) shown in the third

column. We set l = 5, gets the binary representation of the attribute sum 〚Epk(S (ti))〛.

Because n = 4, obliviously adds the order-preserving perturbation ⌈log 4⌉ = 2 bits to the

end of 〚Epk(S (ti))〛 respectively to get the new Epk(S (ti)) (shown in the sixth column).

Then gets Epk(S (tmin)) = Epk(30) by employing SMIN.

The protocol then turns to the subroutine Algorithm 6 to select the first skyline based on the

minimum attribute sum. computes αi = Epk(S (ti) − S (tmin)). Assume the random noise

vector r = 〈3, 9, 31, 2〉 and the permutation sequence π = 〈2, 1, 4, 3〉, sends the encrypted

permuted and randomized difference vector β to . After decrypting β, gets β′ and then

sends U to . computes V by applying a reverse permutation. By employing SM with V,

 computes (Epk(ti[1]′), Epk(ti[2]′)) and (Epk(pi[1]′), Epk(pi[2]′)). After summing all

column values, adds Epk(psky) = (Epk(39), Epk(120)) to skyline pool and uses Epk(tsky) =

(Epk(2), Epk(5)) to eliminate dominated tuples.

The protocol now turns back to the main routine in Algorithm 5 to eliminate dominated

tuples. and use SOR with V to make Epk(S (tmin)) = Epk (127) and Epk(S (ti)) = Epk(S
(ti)) for i ≠ min. Now, only Epk(S (tmin)) = Epk(S (t2)) has changed to Epk(127) which is

“flagged” as MAX. We emphasize that does not know this value has changed because the

ciphertext of all tuples has changed. Next, and find the dominance relationship

between Epk(tsky) and Epk(ti) by SDOM protocol. obtains the dominance vector V. Using

same method, flags Epk(S (t3)) and Epk(S (t4)) to Epk(127). The protocol continues until

all are set to MAX.

Security Analysis—Based on Theorem 1, the protocol is secure if the subprotocols are

secure and the intermediate results are random or pseudo-random. We focus on the

intermediate result here. From ’s view, the intermediate result includes U. Because U is

ciphertext and does not have the secret key, can simulate U based on its input and

output. From ’s view, the intermediate result includes β. β contains one Epk(0) and m − 1

ciphertext of any positive value. After the permutation π of , cannot determine where is

Liu et al. Page 20

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the Epk(0). Therefore, can simulate β based on its input and output. Hence the protocol is

secure.

Computational Complexity Analysis—The subroutine Algorithm 6 requires O(n)

decryptions in Line 9, O(nm) encryptions and decryptions in Lines 20 and 21. Thus,

Algorithm 6 requires O(nm) encryptions and decryptions. In Algorithm 5, Line 7 requires

O(nl) encryptions and decryptions. Line 10 requires O(n ⌈log n⌉) encryptions. Line 12

requires O((l + ⌈log n⌉)n) encryptions and decryptions. Line 26 requires O(l+ ⌈log n⌉)
encryptions and decryptions. Line 32 O(nm) encryptions and decryptions. Thus, this part

requires O((l + ⌈log n⌉)n + nm) encryptions and decryptions. Because this part runs k times,

the fully secure skyline protocol requires O(k(l + ⌈log n⌉)n + knm) encryptions and

decryptions in total.

VII. Experiments

In this section, we evaluate the performance and scalability of our protocols under different

parameter settings. For comparison purposes, we implemented and evaluated both protocols:

the Basic Secure Skyline Protocol (BSSP) in Section VI-A, and the Fully Secure Skyline

Protocol (FSSP) in Section VI-B.

A. Experiment Setup

We implemented all algorithms in C and ran experiments on a machine with Intel Core

i7-6700K 4.0GHz running Ubuntu 16.01. We also implemented a parallel version of the

protocols and tested on a cluster of machines with Intel Core i7-2600 3.40GHz running

CentOS 6, which we will describe in Section VII-C.

In our experiment setup, both and are running on the same workstation, but since we

implemented the communication using sockets, it can be easily run on two machines without

modification which we have tested. Moreover, the query points used in our setup are

randomly chosen. The reported computation time unless otherwise noted is the total

computation time of the and .

Datasets—We used both synthetic datasets and a real NBA dataset in our experiments. To

study the scalability of our methods, we generated independent (INDE), correlated (CORR),

and anti-correlated (ANTI) datasets following the seminal work [4]. We also built a dataset

that contains 2384 NBA players who are league leaders of playoffs3. Each player has five

attributes that measure the player’s performance: Points (PTS), Rebounds (REB), Assists

(AST), Steals (STL), and Blocks (BLK).

B. Performance Results

In this subsection, we evaluate our protocols by varying the number of tuples (n), the

number of dimensions (m), and the key size (K) on datasets of various distributions.

3The data was extracted from http://stats.nba.com/leaders/alltime/?ls=iref:nba:gnav on 04/15/2015

Liu et al. Page 21

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://stats.nba.com/leaders/alltime/?ls=iref:nba:gnav

Impact of number of tuples n—Figures 4(a)(b)(c)(d) show the time cost of different n
on CORR, INDE, ANTI, and NBA datasets, respectively. We observe that for all datasets,

the time cost increases approximately linearly with the number of tuples n, which is

consistent with our complexity analysis. While BSSP is very efficient, FSSP does incur

more computational overhead for full security. Comparing different datasets, the time cost is

in slightly increasing order for CORR, INDE, and ANTI, due to the increasing number of

skyline points of the datasets. The time for NBA dataset is low due to its small number of

tuples.

Impact of number of dimensions m—Figures 5(a)(b)(c)(d) show the time cost of

different m on CORR, INDE, ANTI, and NBA datasets, respectively. For all datasets, the

time cost increases approximately linearly with the number of dimensions m. FSSP also

shows more computational overhead than BSSP. The different datasets show a similar

comparison as in Figure 4. The time for NBA dataset is lower than the CORR dataset which

suggests that the NBA data is strongly correlated.

Impact of encryption key size K—Figures 6(a)(b)(c)(d) show the time cost with

different key size used in the Paillier cryptosystem on CORR, INDE, ANTI, and NBA

datasets, respectively. A stronger security indeed comes at the price of computation

overhead, i.e., the time cost increases significantly, almost exponential, when K grows.

Communication overhead—We also measured the overall time which includes

computation time reported earlier and the communication time between the two server

processes. Figure 7 shows the computation and communication time of different n on INDE

dataset of FSSP. We observe that computation time only takes about one third of the total

time in this setting.

C. Performance Improvements through Parallel Implementation

In order to reduce the skyline query processing time, we demonstrate that our algorithm can

be parallelized, using a hierarchical divide-and-conquer paradigm with POSIX threads. First

we divide our dataset into v subdatasets (v refers to the number of threads) and assign one to

each thread. Each thread computes and returns the skyline in the subdataset when it finishes.

When the main thread receives skyline result from two or more threads, it merges them into

one new subdataset and sends it to an idle thread, this process iterates until finally there is

only one set of skyline, which is the final result. We refer to this implementation local

parallelism using multi-threading.

To further demonstrate the scalability of our algorithm, we also implemented a distributed

version, which employs manager-worker model. The manager plays the role of distributing

data to workers, while workers (multi-threading) compute skylines in any given working set

and return them to the manager, which works similarly as the multi-threading parallelism.

The only difference here is that the manager could implement sophisticated load balancing

algorithm to fully utilize computation resources (not implemented in our current prototype).

In the experiment setup, we used workstations of the same configurations as described

earlier. In multi-threading parallelism, we run and on the same machine with

Liu et al. Page 22

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

running 8 threads. As for distributed version, we tested it with 2, 4, 8, 16, 32, 64 worker

machines.

Figures 8 (a)(b) show the time cost of parallelized FSSP of the multi-threading and

distributed version, respectively. Figure 8(a) indicates that multi-threading version (with 8

threads) is about 6 times faster than the serial version. Figure 8(b) shows the time cost with

varying number of worker machines and varying number of tuples. We observe that our

distributed version is very effective in reducing computation time when scaling to large

datasets. And it shows a sub-linear time increase with respect to the number of worker

machines.

VIII. Conclusions

In this paper, we presented a fully secure skyline protocol on encrypted data using two non-

colluding cloud servers under the semi-honest model. It ensures semantic security in that the

cloud servers knows nothing about the data including indirect data patterns, query, as well as

the query result. In addition, the client and data owner do not need to participate in the

computation. We also presented a secure dominance protocol which can be used by skyline

queries as well as other queries. Finally, we presented our implementation of the protocol

and demonstrated the feasibility and efficiency of the solution. As for future work, we plan

to optimize the communication time complexity to further improve the performance of the

protocol.

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments. This research is supported in
part by the Patient-Centered Outcomes Research Institute (PCORI) under award ME-1310-07058, the National
Institute of Health (NIH) under award R01GM114612, and an NSERC Discovery grant.

References

1. Baldimtsi F, Ohrimenko O. Sorting and searching behind the curtain. FC 2015. 2015:127–146.

2. Beimel, A. International Conference on Coding and Cryptology. Springer; 2011. Secret-sharing
schemes: a survey; p. 11-46.

3. Bentley JL. Multidimensional divide-and-conquer. Commun ACM. 1980; 23(4):214–229.

4. Börzsöonyi S, Kossmann D, Stocker K. The skyline operator. ICDE. 2001

5. Bothe S, Cuzzocrea A, Karras P, Vlachou A. Skyline query processing over encrypted data: An
attribute-order-preserving-free approach. PSBD@CIKM. 2014:37–43.

6. Bothe S, Karras P, Vlachou A. eskyline: Processing skyline queries over encrypted data. PVLDB.
2013

7. Chan CY, Jagadish HV, Tan KL, Tung AKH, Zhang Z. Finding k-dominant skylines in high
dimensional space. SIGMOD Conference. 2006:503–514.

8. Chen W, Liu M, Zhang R, Zhang Y, Liu S. Secure outsourced skyline query processing via untrusted
cloud service providers. INFOCOM. 2016

9. Costan, V., Devadas, S. Intel sgx explained. Technical report, Cryptology ePrint Archive, Report
2016/086. 2016. http://eprint.iacr.org

10. Dellis E, Seeger B. Efficient computation of reverse skyline queries. VLDB. 2007:291–302.

11. Elmehdwi Y, Samanthula BK, Jiang W. Secure k-nearest neighbor query over encrypted data in
outsourced environments. ICDE. 2014

Liu et al. Page 23

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://eprint.iacr.org

12. Erkin Z, Franz M, Guajardo J, Katzenbeisser S, Lagendijk I, Toft T. Privacy-preserving face
recognition. PETS. 2009:235–253.

13. Feige U, Fiat A, Shamir A. Zero-knowledge proofs of identity. J Cryptology. 1988; 1(2):77–94.

14. Gentry C. Fully homomorphic encryption using ideal lattices. STOC. 2009

15. Goldreich, O. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press; 2004.

16. Goldreich O, Micali S, Wigderson A. How to play any mental game or A completeness theorem for
protocols with honest majority. ACM Symposium on Theory of Computing. 1987:218–229.

17. Hacigümüs H, Iyer BR, Li C, Mehrotra S. Executing SQL over encrypted data in the database-
service-provider model. SIGMOD 2002. 2002:216–227.

18. Halevi S, Shoup V. Bootstrapping for helib. EUROCRYPT 2015. 2015:641–670.

19. Hashem T, Kulik L, Zhang R. Privacy preserving group nearest neighbor queries. EDBT. 2010

20. Hu H, Xu J, Ren C, Choi B. Processing private queries over untrusted data cloud through privacy
homomorphism. ICDE. 2011

21. Huang Y, Evans D, Katz J, Malka L. Faster secure two-party computation using garbled circuits.
USENIX 2011. 2011

22. Janosi, A., Steinbrunn, W., Pfisterer, M., Detrano, R. Heart disease dataset. The UCI Archive.
1998. https://archive.ics.uci.edu/ml/datasets/heart+disease

23. Kirkpatrick DG, Seidel R. Output-size sensitive algorithms for finding maximal vectors.
Symposium on Computational Geometry. 1985:89–96.

24. Kossmann D, Ramsak F, Rost S. Shooting stars in the sky: An online algorithm for skyline queries.
VLDB 2002. 2002

25. Kung HT, Luccio F, Preparata FP. On finding the maxima of a set of vectors. JACM. 1975

26. Li C, Zhang N, Hassan N, Rajasekaran S, Das G. On skyline groups. CIKM. 2012:2119–2123.

27. Liu A, Zheng K, Li L, Liu G, Zhao L, Zhou X. Efficient secure similarity computation on
encrypted trajectory data. ICDE. 2015:66–77.

28. Liu J, Xiong L, Pei J, Luo J, Zhang H. Finding pareto optimal groups: Group-based skyline.
PVLDB. 2015; 8(13):2086–2097.

29. Liu J, Xiong L, Xu X. Faster output-sensitive skyline computation algorithm. Inf Process Lett.
2014

30. Liu J, Zhang H, Xiong L, Li H, Luo J. Finding probabilistic k-skyline sets on uncertain data.
CIKM. 2015:1511–1520.

31. Paillier P. Public-key cryptosystems based on composite degree residuosity classes. Advances in
Cryptology - EUROCRYPT ’99. 1999:223–238.

32. Papadias D, Tao Y, Fu G, Seeger B. Progressive skyline computation in database systems. ACM
Trans Database Syst. 2005; 30(1):41–82.

33. Papadopoulos S, Bakiras S, Papadias D. Nearest neighbor search with strong location privacy.
PVLDB. 2010

34. Pei J, Jiang B, Lin X, Yuan Y. Probabilistic skylines on uncertain data. VLDB. 2007:15–26.

35. Qi Y, Atallah MJ. Efficient privacy-preserving k-nearest neighbor search. ICDCS. 2008

36. Samanthula BK, Hu C, Jiang W. An efficient and probabilistic secure bit-decomposition. ASIA
CCS. 2013:541–546.

37. Song DX, Wagner D, Perrig A. Practical techniques for searches on encrypted data. IEEE
Symposium on Security and Privacy. 2000

38. Veugen T, Blom F, de Hoogh SJA, Erkin Z. Secure comparison protocols in the semi-honest model.
J Sel Topics Signal Processing. 2015; 9(7):1217–1228.

39. Wong WK, Cheung DW, Kao B, Mamoulis N. Secure knn computation on encrypted databases.
SIGMOD. 2009

40. Yao AC. Protocols for secure computations (extended abstract). FOCS. 1982:160–164.

41. Yao B, Li F, Xiao X. Secure nearest neighbor revisited. ICDE. 2013

42. Yi X, Paulet R, Bertino E, Varadharajan V. Practical k nearest neighbor queries with location
privacy. ICDE. 2014

Liu et al. Page 24

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://archive.ics.uci.edu/ml/datasets/heart+disease

43. Zhu H, Meng X, Kollios G. Privacy preserving similarity evaluation of time series data. EDBT.
2014:499–510.

Liu et al. Page 25

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Secure similarity queries.

Liu et al. Page 26

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Dynamic skyline query.

Liu et al. Page 27

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Overview of protocol setting.

Liu et al. Page 28

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
The impact of n (m=2, K=512).

Liu et al. Page 29

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
The impact of m (n=1000, K=512).

Liu et al. Page 30

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
The impact of K (n=1000, m=2).

Liu et al. Page 31

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Computation and communication time cost of different n (m=2, K=512).

Liu et al. Page 32

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Parallel implementations (m=2, K=512).

Liu et al. Page 33

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 34

TABLE I

Sample of heart disease dataset.

(a) Original data.

ID age trestbps

p1 40 140

p2 39 120

p3 45 130

p4 37 140

(b) Mapped Data.

ID age trestbps

t1 42 140

t2 43 130

t3 45 130

t4 45 140

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 35

TABLE II

The summary of notations.

Notation Definition

P dataset of n points/tuples/records

pi[j] the jth attribute of pi

q query tuple of client

n number of points in P

m number of dimensions

k number of skyline

l number of bits

K key size

pk/sk public/private key

〚a〛 encrypted vector of the individual bits of a

â binary bit

the ith bit of binary number a

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 36

TA
B

L
E

 II
I

E
xa

m
pl

e
of

 A
lg

or
ith

m
 8

.

t i
(t

i[1
],

 t
i[2

])
S(

t i)
〚

S(
t i)

〛
pe

rt
.

S(
t i)

S(
t i)

 −
 S

(t
m

in
)

r
π

β′
U

V
(t

i[1
]′

, t
i[2

]′
)

(p
i[1

]′
, p

i[2
]′

)
S(

t i)
V

S(
t i)

t 1
(1

, 1
5)

16
1,

 0
, 0

, 0
, 0

1,
 1

67
67

 –
 3

0
3

2
0

1
0

(0
, 0

)
(0

, 0
)

67
0

67

t 2
(2

, 5
)

7
0,

 0
, 1

, 1
, 1

1,
 0

30
30

 –
 3

0
9

1
11

1
0

1
(2

, 5
)

(3
9,

 1
20

)
12

7
0

12
7

t 3
(4

, 5
)

9
0,

 1
, 0

, 0
, 1

0,
 1

37
37

 –
 3

0
31

4
92

0
0

(0
, 0

)
(0

, 0
)

37
1

12
7

t 4
(4

, 1
5)

19
1,

 0
, 0

, 1
, 1

0,
 0

76
76

 –
 3

0
2

3
21

7
0

0
(0

, 0
)

(0
, 0

)
76

1
12

7

Proc Int Conf Data Eng. Author manuscript; available in PMC 2017 September 05.

	Abstract
	I. Introduction
	Motivating Example
	Challenges
	Contributions
	Organization

	II. Related Work
	Skyline
	Secure query processing on encrypted data
	Secure Multi-party Computation (SMC)

	III. Preliminaries and Problem Definitions
	A. Skyline Definitions
	Definition 1: (Skyline)
	Definition 2: (Dynamic Skyline Query) [10]
	Example 1

	B. Skyline Computation

	Algorithm 1
	C. Problem Setting
	D. Security Model
	Adversary Model
	Desired Privacy Properties
	Security Definition in the Semi-honest Model
	Theorem 1
	Composition Theorem [15]

	E. Paillier Cryptosystem

	IV. Basic Security Subprotocols
	Secure Multiplication (SM)
	Secure Bit Decomposition (SBD)
	A. Secure Boolean Operations
	Secure OR (SOR)
	Secure AND (SAND)
	Secure NOT (SNOT)

	B. Secure Minimum and Secure Comparison
	Disclosure of Binary based SMIN
	Disclosure of Perturbation based SMIN
	Secure Less Than or Equal (SLEQ)
	Secure Equal (SEQ)
	Secure Less (SLESS)
	Secure Minimum (SMIN)

	V. Secure Dominance Protocol
	Algorithm 2
	Protocol Design
	Security Analysis
	Complexity Analysis

	VI. Secure Skyline Protocol
	Algorithm 3
	A. Basic Protocol
	Compute minimum attribute sum
	Select the skyline with minimum attribute sum
	Eliminate dominated tuples
	Return skyline results to client

	B. Fully Secure Skyline Protocol
	Select skyline with minimum attribute sum

	Algorithm 4
	Algorithm 5
	Algorithm 6
	VII. Experiments
	A. Experiment Setup
	Datasets

	B. Performance Results
	Impact of number of tuples n
	Impact of number of dimensions m
	Impact of encryption key size K
	Communication overhead

	C. Performance Improvements through Parallel Implementation

	VIII. Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	TABLE I
	TABLE II
	TABLE III

