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Abstract

Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of 

machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an 

integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an 

imbalanced label distribution. The widely-used training methods, such as maximum-likelihood 

and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we 

present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF 

by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased 

measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking 

framework, approximate it by a polynomial function and then apply a gradient-based procedure to 

optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other 

two training methods on 8-state secondary structure prediction and disorder prediction since their 

label distributions are highly imbalanced and also has similar performance as the other two 

training methods on solvent accessibility prediction, which has three equally-distributed labels. 

Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly 

outperform existing popular predictors of these three tasks. The data and software related to this 

paper are available at https://github.com/realbigws/DeepCNF_AUC.

1 Introduction

Deep Convolutional Neural Networks (DCNN), originated by Yann LeCun at 1998 [30] for 

document recognition, is being widely used in a plethora of machine learning (ML) tasks 

ranging from speech recognition [22], to computer vision [27], and to computational biology 

[9]. DCNN is good at capturing medium- and/or long-range structured information in a 

hierarchical manner. To handle structured data, [5] has integrated DCNN with fully 

connected Conditional Random Fields (CRF) for semantic image segmentation. Here we 

present Deep Convolutional Neural Fields (DeepCNF), which is an integration of DCNN 

and linear-chain CRF, to address the task of sequence labeling and apply it to three 
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important biology problems: solvent accessibility prediction (ACC), disorder prediction 

(DISO), and 8-state secondary structure prediction (SS8) [24,34].

A protein sequence can be viewed as a string of amino acids (also called residues in the 

protein context) and we want to predict a label for each residue. In this paper we consider 

three types of labels: solvent accessibility, disorder state and 8-state secondary structure. 

These three structure properties are very important to the understanding of protein structure 

and function. The solvent accessibility is important for protein folding [10], the order/

disorder state plays an important role in many biological processes [37], and protein 

secondary structure(SS) relates to local backbone conformation of a protein sequence [38]. 

The label distribution in these problems varies from almost uniform to highly imbalanced. 

For example, only ∼6 % of residues are shown to be disordered [19]. Some SS labels, such 

as 3–10 helix, beta-bridge, and pi-helix are extremely rare [46]. The widely-used training 

methods, such as maximum-likelihood [29] and maximum labelwise accuracy [16], perform 

well on data with balanced labels but not on highly-imbalanced data [8].

This paper presents a new maximum-AUC method to train DeepCNF for imbalanced 

sequence data. Specifically, we train DeepCNF by maximizing Area Under the ROC Curve 

(AUC), which is a good measure for class-imbalanced data [7]. Taking disorder prediction as 

an example, random guess can obtain ∼94 % per-residue accuracy, but its AUC is only ∼0.5. 

AUC is insensitive to changes in class distribution because the ROC curve specifies the 

relationship between false positive (FP) rate and true positive (TP) rate, which are 

independent of class distribution [7]. However, it is very challenging to directly optimize 

AUC. A few algorithms have been developed to maximize AUC on unstructured data 

[21,23,36], but to the best of our knowledge, there is no such an algorithm for imbalanced 

structured data (e.g., sequence data addressed here). To train DeepCNF by maximum-AUC, 

we formulate the AUC function in a ranking framework, approximate it by a polynomial 

Chebyshev function [3] and then use L-BFGS [31] to optimize it.

Our experimental results show that when the label distribution is almost uniform, there is no 

big difference between the three training methods. Otherwise, maximum-AUC results in 

better AUC and Mcc than the other two methods. Tested on several publicly available 

benchmark data, our AUC-trained DeepCNF model obtains the best performance on all the 

three protein sequence labeling tasks. In particular, at a similar specificity level, our method 

obtains better precision and sensitivity for those labels with a much smaller occurring 

frequency.

Contributions

1. A novel training algorithm that directly maximizes the empirical AUC to learn DeepCNF 

model from imbalanced structured data. 2. Studying three training methods, i.e. maximum-

likelihood, maximum label-wise accuracy, and maximum-AUC, for DeepCNF and testing 

them on three real-world protein sequence labeling problems, in which the label distribution 

varies from almost uniform to highly imbalanced. 3. Achieving the state-of-the-art 

performance on three important protein sequence labeling problems. 4. All benchmarks are 

public available, and the code is available online at https://github.com/realbigws/
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DeepCNF_AUC. A web server is also implemented and available at http://

raptorx.uchicago.edu/StructurePropertyPred/predict/ [43].

1.1 Notations

Let L denote the sequence length, [L] denote the set {1, 2, …, L}. For a finite set S, let |S| 

denote its cardinality. Let X = (X1, X2, …, Xl), y = (y1, y2, …, yl) denote the input features 

and labels respectively for position i, i ∈ [L]. Denote Σ as the set of all possible labels, i.e., 

yi ∈ Σ, ∀i ∈ [L].

2 Related Work

Class imbalance issue is a long-standing notorious problem. Early works have addressed this 

issue through data-level methods, which change the empirical distribution of the training 

data to create a new balanced dataset [20]. These methods include (a) under-sampling the 

majority class; (b) over-sampling the minority class; or (c) combining both under-sampling 

and over-sampling [4,13,32].

As AUC is an unbiased measurement for class-imbalanced data, a variety of approaches 

have been proposed to directly optimize the AUC value. In particular, (a) Cortes et al. [7] 

optimized AUC by RankBoost algorithm; (b) Ferri et al. [15] trained a decision tree by using 

AUC as splitting criteria; (c) Herschtal and Raskutti [21] trained a neural network by 

optimizing AUC; and (d) Joachims [23] proposed a generalized Support Vector Machines 

(SVM) that optimizes AUC.

However, all these approaches could only be applied on unstructured models. Recently, 

Rosenfeld et al. [40] have proposed a learning algorithm for structured models with AUC 

loss. However, there are three fundamental differences of our method with theirs: (a) our 

method targets at a sequence labelling problem (of course a structured model) with an 

imbalance label assignment, while their model is proposed for a ranking problem. 

Specifically, sequence labeling requires the prediction of the label (might not necessarily be 

binary) at each position, while the focus of structured ranking is on prediction of binary 

vectors (y1; …; yn) where it is hard (or unnecessary) to exactly predict which yi have the 

value 1. Instead the goal of structured ranking is to rank the items 1, …, n such that elements 

with yi = 1 are ranked high [40]; (b) our method is based on CRF, while they used structured 

SVM; and (c) we also studied deep learning extension of our method, while they did not. In 

summary, to the best of our knowledge, our work is the first sequence labelling study that 

aims to optimize the AUC value directly under a deep learning framework.

3 Method

3.1 DeepCNF Architecture

As shown in Fig. 1, DeepCNF has two modules: (i) the Conditional Random Fields (CRF) 

module consisting of the top layer and the label layer, and (ii) the deep convolutional neural 

network (DCNN) module covering the input to the top layer. When only one hidden layer is 

used, DeepCNF becomes Conditional Neural Fields (CNF), a probabilistic graphical model 

described in [39].
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Given X = (X1, …, XL) and y = (y1, …, yL), DeepCNF calculates the conditional probability 

of y on the input X with parameter θ as follows,

(1)

where fθ(y, X, i) is the binary potential function specifying correlation among adjacent 

labels at position i, gθ(y, X, i) is the unary potential function modeling relationship between 

yi and input features for position i, and Z(X) is the partition function. Formally, fθ(·) and 

gθ(·) are defined as follows:

where a and b represent two specific labels for prediction, δ(·) is an indicator function, 

Aa,h(X, i, W) is a deep neural network function for the h-th neuron at position i of the top 

layer for label a, and W, U and T are the model parameters to be trained. Specifically, W is 

the parameter for the neural network, U is the parameter connecting the top layer to the label 

layer, and T is for label correlation. The two potential functions can be merged into a single 

binary potential function fθ(y, X, i) = fθ(yi−1, yi, X, i) = Σa,b,hTa,b,hAa,b,h(X, i, W)δ(yi−1 = 

a)δ(yi = b). Note that these deep neural network functions for different labels could be 

shared to Ah(X, i, W). To control model complexity and avoid over-fitting, we add a L2-

norm penalty term as the regularization factor.

Figure 1 shows two adjacent layers of DCNN. Let Mk be the number of neurons for a single 

position at the k-th layer. Let Xi(h) be the h-th feature at the input layer for residue i and 

 denote the output value of the h-th neuron of position i at layer k. When k = 1, Hk is 

actually the input feature X. Otherwise, Hk is a matrix of dimension L × Mk. Let 2Nk + 1 be 

the window size at the k-th layer. Mathematically,  is defined as follows:

Meanwhile, π(·) is the activation function, either the sigmoid (i.e. 1/(1 + exp(−x))) or the 

tanh (i.e. (1–exp(−2x))/(1+exp(−2x))) function.  is a 2D weight matrix 

for the connections between the neurons of position i + n at layer k and the neurons of 

position i at layer k + 1.  is shared by all the positions in the same layer, so it is 

position-independent. Here h′ and h index two neurons at the k-th and (k + 1)-th layers, 
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respectively. See Appendix about how to calculate the gradient of DCNN by back 

propagation.

3.2 Objective Functions

Let T be the number of training sequences and Lt denote the length of sequence t. We study 

three different training methods: maximum-likelihood, maximum labelwise accuracy, and 

proposed maximum-AUC.

Maximum-Likelihood—The log-likelihood is a widely-used objective function for 

training CRF [29]. Mathematically, the log-likelihood is defined as follows:

where Pθ(y|X) is defined in Eq. (1).

Maximum Labelwise Accuracy—Gross et al. [16] proposed an objective function that 

could directly maximize the labelwise accuracy defined as

where  denotes the real label at position i,  is the predicted probability of the real 

label at position i. It could be represented by the marginal probability

where .

To obtain a smooth approximation to this objective function, [16] replaces the indicator 

function with a sigmoid function Qλ(x) = 1/(1 + exp(−λx)) where the parameter λ is set to 

15 by default. Then it becomes the following form:

where  denote the label other than  that has the maximum posterior probability at 

position i.
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Maximum-AUC—The AUC of a predictor function Pθ on label τ is defined as:

(2)

where P(·) is the probability over all pairs of positive and negative examples, Dτ is a set of 

positive examples with true label τ, and D!τ is a set of negative examples with true label not 

being τ. Note that the union of Dτ and D!τ contains all the training sequence positions, i.e., 

 where  is an indicator function. If the true label of the i-th position from 

sequence t equals to τ, then  is equal to 1; otherwise 0. Again,  could be 

represented by the marginal probability  from the training sequence t. Since it is 

hard to calculate the derivatives of Eq. (2), we use the following Wilcoxon-Mann-Whitney 

statistic [18], which is an unbiased estimator of AUC(Pθ, τ):

(3)

Finally, by summing over labels, the overall AUC objective function is ΣτAUCWMW(Pθ, τ).

For a large dataset, the computational cost of AUC by Eq. (3) is high. Recently, Calders and 

Jaroszewicz [3] proposed a polynomial approximation of AUC which can be computed in 

linear time. The key idea is to approximate the indicator function δ(x > 0), where x 

represents  by a polynomial Chebyshev approximation. That is, we 

approximate δ(x > 0) by Σμ∈[d]cμxμ where d is the degree and cμ the coefficient of the 

polynomial [3]. Let n1 = |Dτ| and n0 = |D!τ|. Using the polynomial Chebyshev 

approximation, we can approximate Eq. (3) as follows:

where  and . 

Note that we have  and a similar structure for ν(Pl, 

D!τ).

4 Results

In this section presents our experimental results of the AUC-trained DeepCNF models on 

three protein sequencing problems, which are summarize as follows:
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ACC

We used DSSP [26] to calculate the absolute accessible surface area for each residue in a 

protein and then normalize it by the maximum solvent accessibility to obtain the relative 

solvent accessibility (RSA) [6]. Solvent accessibility of one residue is classified into 3 

labels: buried (B) for RSA from 0 to 10), intermediate (I) for RSA from 10 to 40 and 

exposed (E) for RSA from 40 to 100. The ratio of these three labels is around 1:1:1 [33].

DISO

Following the definition in [35], we label a residue as disordered (label 1) if it is in a 

segment of more than three residues missing atomic coordinates in the X-ray structure. 

Otherwise it is labeled as ordered (label 0). The distribution of these two labels (ordered vs. 

disordered) is 94:6 [45].

SS8

The 8-state protein secondary structure is calculated by DSSP [26]. In particular, DSSP 

assigns 3 types for helix (G for 310 helix, H for alpha-helix, and I for pi-helix), 2 types for 

strand (E for beta-strand and B for beta-bridge), and 3 types for coil (T for beta-turn, S for 

high curvature loop, and L for irregular) [44]. The distribution of these 8 labels 

(H,E,L,T,S,G,B,I) is 34:21:20:11:9:4:1:0 [43].

4.1 Dataset

To use a set of non-redundant protein sequences for training and test, we pick one 

representative sequence from each protein superfamily defined in CATH [42] or SCOP [1]. 

The test proteins are in different superfamilies than the training proteins, so we can reduce 

the bias incurred by the sequence profile similarity between the training and test proteins. 

The publicly available JPRED [11] dataset (http://www.compbio.dundee.ac.uk/jpred4/

about.shtml) satisfies such a condition, which has 1338 training and 149 test proteins, 

respectively, each belonging to a different superfamily. We train the DeepCNF model using 

the JPRED training set and conduct 7-fold cross validation to determine the model hyper-

parameters for each training method.

We also evaluate the predictive performance of our DeepCNF models on the CASP10 [28] 

and CASP11 [25] test targets (merged to a single CASP dataset) and the recent CAMEO 

[17] hard test targets. To remove redundancy, we filter the CASP and CAMEO datasets by 

removing those targets sharing >25 % sequence identity with the JPRED training set. This 

result in 126 CASP and 147 CAMEO test targets, respectively. See Appendix for their test 

results.

4.2 Evaluation Criteria

We u s e Qx to measure the accuracy of sequence labeling where x is the number of different 

labels for a prediction task. Qx is defined as the percentage of residues for which the 

predicted labels are correct. In particular, we use Q3 accuracy for ACC prediction, Q8 

accuracy for SS8 prediction and Q2 accuracy for disorder prediction.
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From TP (true positives), TN (true negatives), FP (false positives) and FN (false negatives), 

we may also calculate sensitivity (sens), specificity (spec), precision (prec) and Matthews 

correlation coefficient (Mcc) as  and 

, respectively. We also use AUC as a measure. 

Mcc and AUC are generally regarded as balanced measures which can be used on class-

imbalanced data. Mcc ranges from −1 to +1, with +1 representing a perfect prediction, 0 

random prediction and −1 total disagreement between prediction and ground truth. AUC has 

a minimum value 0 and the best value 1.0. When there are more 2 different labels in a 

labeling problem, we may also use mean M̄cc (denoted as M̄cc) and mean AUC (denoted as 

AŪC), which are averaged over all the different labels.

4.3 Performance Comparison on Objective Functions

The architecture of the DCNN in DeepCNF model is mainly determined by the following 3 

factors (see Fig. 1): (i) the number of hidden layers; (ii) the number of different neurons at 

each layer; and (iii) the window size at each layer. We compared three different methods for 

training the DeepCNF model: maximum likelihood, maximum labelwise accuracy, and 

maximum AUC for the prediction of three-label solvent accessibility (ACC), two-label 

order/disorder (DISO), and eight-label secondary structure element (SS8), respectively.

We conduct 7-fold cross-validation for each possible DCNN architecture, each training 

method, and each labeling problem using the JPRED dataset. To simplify the analysis, we 

use the same number of neurons and the same windows size for all hidden layers. By default 

we use 5 hidden layers, each with 50 different hidden neurons and windows size 11.

Overall, as shown in Figs. 2, 3 to 4, Our DeepCNF model reaches peak performance when it 

has 4 to 5 hidden layers, 50 to 100 different hidden neurons at each layer, and windows size 

11. Further increasing the number of layers, the number of different hidden neurons, and the 

windows size does not result in significant improvement in Qx accuracy, mean Mcc and 

AUC, regardless of the training method.

For ACC prediction, as shown in Fig. 2, since the three labels are equally distributed, no 

matter what training methods are used, the best Q3 accuracy, the best mean Mcc and the best 

mean AUC are 0.69, 0.45, 0.82, respectively; For DISO prediction, since the two labels are 

highly imbalanced, as shown in Fig. 3, although all three training methods have similar Q2 

accuracy 0.94, maximum-AUC obtains mean Mcc and AUC at 0.51 and 0.89, respectively, 

greatly outperforming the other two; For SS8 prediction, as shown in Fig. 4, since there are 

three rare labels (i.e., G for 3–10 helix, B for beta-bridge, and I for pi-helix), maximum-

AUC has the overall mean Mcc at 0.44 and mean AUC at 0.86, respectively, much better 

than maximum labelwise accuracy, which has mean Mcc at 0.41 and mean AUC less than 

0.8, respectively.

4.4 Performance Comparison with State-of-the-art

Programs to Compare—Since our method is ab initio, we do not compare it with 

consensus-based or template-based methods. Instead, we compare our method with the 
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following ab initio predictors: (i) for ACC prediction, we compare to SPINE-X [14] and 

ACCpro5-ab [34]. SPINE-X uses neural networks (NN) while ACCpro5-ab uses 

bidirectional recurrent neural network (RNN); (ii) for DISO prediction, we compare to 

DNdisorder [12] and DisoPred3-ab [24]. DNdisorder uses deep belief network (DBN) while 

DisoPred3-ab uses support vector machine (SVM) and NN for prediction; (iii) for SS8 

prediction, we compare our method with SSpro5-ab [34] and RaptorX-SS8 [46]. SSpro5-ab 

is based on RNN while RaptorX-SS8 uses conditional neural field (CNF) [39]. We cannot 

evaluate Zhous method [48] since it is not publicly available.

Overall Evaluation—Here we only compare our AUC-trained DeepCNF model (trained 

by the JPRED data) to the other state-of-the-art methods on the CASP and CAMEO 

datasets. As shown in Tables 1, 2 to 3, our AUC-trained DeepCNF model outperforms 

thPlease refer to appendix for a more detailed review for those problems and existing state-

of-the art algorithms.e other predictors on all the three sequence labeling problems, in terms 

of the Qx accuracy, Mcc and AUC. When the label distribution is highly imbalanced, our 

method greatly exceeds the others in terms of Mcc and AUC. Specifically, for DISO 

prediction on the CASP data, our method achieves 0.55 Mcc and 0.89 AUC, respectively, 

greatly outperforming DNdisorder (0.37 Mcc and 0.81 AUC) and DisoPred3 ab (0.47 Mcc 

and 0.84 AUC). For SS8 prediction on the CAMEO data, our method obtains 0.42 Mcc and 

0.83 AUC, respectively, much better than SSpro5 ab (0.37 Mcc and 0.78 AUC) and 

RaptorX-SS8 (0.38 Mcc and 0.79 AUC).

Sensitivity, Specificity, and Precision—Tables 4 and 5 list the sensitivity, specificity, 

and precision on each label obtained by our method and the other competing methods 

evaluated on the merged CASP and CAMEO data. Overall, at a high specificity level, our 

method obtains compatible or better precision and sensitivity for each label, especially for 

those rare labels such as G, I, B, S, T for SS8, and disorder state for DISO. Taking SS8 

prediction as an example, for pi-helix (I), our method has sensitivity and precision 0.18 and 

0.33 respectively, while the second best method obtains 0.03 and 0.12, respectively. For 

beta-bridge (B), our method obtains sensitivity and precision 0.13 and 0.42, respectively, 

while the second best method obtains 0.07 and 0.34, respectively (Table 6).

5 Discussions

We have presented a novel training algorithm that directly maximizes the empirical AUC to 

learn DeepCNF model (DCNN+CRF) from imbalanced structured data. We also studied the 

behavior of three training methods: maximum-likelihood, maximum labelwise accuracy, and 

maximum-AUC, on three real-world protein sequence labeling problems, in which the label 

distribution varies from equally distributed to highly imbalanced. Evaluated by AUC and 

Mcc, our maximum-AUC training method achieves the state-of-the-art performance in 

predicting solvent accessibility, disordered regions, and 8-state secondary structure.

Instead of using a linear-chain CRF, we may model a protein by Markov Random Fields 

(MRF) to capture long-range residue interactions [47]. As suggested in [41], the predicted 

residue-residue contact information could further contribute to disorder prediction under the 

MRF model. In addition to the three protein sequence labeling problems tested in this work, 
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our maximum-AUC training algorithm could be applied to many sequence labeling 

problems with imbalanced label distributions [20]. For example, in post-translation 

modification (PTM) site prediction, the phosphorylation and methylation sites occur much 

less frequently than normal residues [2].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of a DeepCNF. Here i is the position index and Xi the associated input features, 

Hk represents the k-th hidden layer, and y is the output label. All the layers from the first to 

the K-th (i.e., top layer) form a DCNN with parameter Wk, k ∈ [K], where K is number of 

hidden layers. The K-th layer and the label layer form a CRF, in which the parameter U 
specifies the relationship between the output of the K-th layer and the label layer and T is 

the parameter for adjacent label correlation. Windows size is set to 3 only for illustration.
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Fig. 2. 
Q3 accuracy, mean Mcc and AUC of solvent accessibility (ACC) prediction with respect to 

the DCNN architecture: (left) the number of neurons, (middle) window size, and (right) the 

number of hidden layers. Training methods: maximum likelihood (black), maximum 

labelwise accuracy (red) and maximum AUC (green). (Color figure online)
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Fig. 3. 
Q2 accuracy, mean Mcc and AUC of disorder (DISO) prediction with respect to the DCNN 

architecture: (left) the number of neurons, (middle) window size, and (right) the number of 

hidden layers. Training methods: maximum likelihood (black), maximum labelwise 

accuracy (red) and maximum AUC (green). (Color figure online)
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Fig. 4. 
Q8 accuracy, mean Mcc and AUC of 8-state secondary structure (SS8) prediction with 

respect to the DCNN architecture: (left) the number of neurons, (middle) window size, and 

(right) the number of hidden layers. Training methods: maximum likelihood (black), 

maximum labelwise accuracy (red) and maximum AUC (green). (Color figure online)
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