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Abstract

Big Datasets are endemic, but are often notoriously difficult to analyse because of their size, 

heterogeneity and quality. The purpose of this paper is to open a discourse on the potential for 

modern decision theoretic optimal experimental design methods, which by their very nature have 

traditionally been applied prospectively, to improve the analysis of Big Data through retrospective 

designed sampling in order to answer particular questions of interest. By appealing to a range of 

examples, it is suggested that this perspective on Big Data modelling and analysis has the potential 

for wide generality and advantageous inferential and computational properties. We highlight 

current hurdles and open research questions surrounding efficient computational optimisation in 

using retrospective designs, and in part this paper is a call to the optimisation and experimental 

design communities to work together in the field of Big Data analysis.
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1 Introduction

In this ‘Big Data’ age, massive volumes of data are collected from a variety of sources at an 

accelerating pace. Traditional measurements and observations are now complemented by a 

wide range of digital data obtained from images, audio recordings and other sensors, and 

electronic data that are often available as real-time data streams. These are further informed 

Europe PMC Funders Group
Author Manuscript
Stat Sci. Author manuscript; available in PMC 2017 September 05.

Published in final edited form as:
Stat Sci. 2017 August ; 32(3): 385–404. doi:10.1214/16-STS604.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



by domain-specific data sources such as multi-source time series in finance, spatio-temporal 

monitors in the neurosciences and geosciences, internet and social media in marketing and 

human systems, and ‘omic’ information in biological studies.

Many of these data sets have the potential to provide solutions to important problems in 

health, science, sociology, engineering, business, information technology, and government. 

However, the size, complexity and quality of these data sets often makes them difficult to 

process and analyse using standard statistical methods or equipment. It is computationally 

prohibitive to store and manipulate these large data sets on a single desktop computer and 

one may instead require parallel or distributed computing techniques that involve the use of 

hundreds or thousands of processors. Similarly, the analysis of these data often exceeds the 

capacity of standard computational and statistical software platforms, demanding new 

technological or methodological solutions. This motivates the development of tailored 

statistical methods that not only address the inferential question of interest, but also account 

for the inherent characteristics of the data, address potential biases and data gaps, and 

appropriately adjust for the methods used to deal with the storage and analysis of the data.

A number of break-through approaches have emerged to address these challenges in 

managing, modelling and analysing Big Data. With respect to data management, the most 

popular current approaches employ a form of ‘divide-and-conquer’ or ‘divide-and-

recombine’ (e.g., Xi et al. (2010); Guhaa et al. (2012)) in which subsets of the data are 

analysed in parallel by different processors and the results are then combined. Similar 

approaches have also been promoted, such as ‘consensus Monte Carlo’ (Scott, Blocker and 

Bonassi, 2013) and ‘bag of little bootstraps’ (Kleiner et al., 2014), while others have studied 

the properties of Markov chain Monte Carlo (MCMC) subsampling algorithms (Bardenet, 

Doucet and Holmes, 2014, 2015).

With respect to modelling, the focus has turned from traditional statistical models to more 

scalable techniques that can more successfully accommodate the large sample sizes and high 

dimensionality. Some popular classes of scalable methods are based on dimension reduction 

such as principal components analysis (PCA) and its variants (Kettaneha, Berglund and 

Wold, 2005; Elgamal and Hefeeda, 2015), clustering (Bouveyrona and Brunet-Saumard, 

2014), variable selection via independence screening (Fan and Lv, 2008; Fan, Feng and Rui 

Song, 2011) and least angle regression (Efron et al., 2004). Other methods have been 

developed for specific types of data, such as sequential updating for streaming data 

(Schifano et al., 2015) or sketching (Liberty, 2013). Many popular statistical software 

packages such as R are also starting to include libraries of models for Big Data (Wang et al., 

2015). The development of these methods represents an active point of intersection in both 

the statistical and machine learning communities (Leskovec, Rajaraman and Ullman, 2014) 

under the umbrella of Data Science.

Finally, the library of computational algorithms for the analysis of Big Data has also been 

multi-focused. Because of the size of the data, traditional estimation methods have been 

overshadowed by optimisation algorithms such as gradient descent and stochastic 

approximations (Liang et al., 2013; Toulis, Airoldi and Renni, 2014) and a wide variety of 

extensions and alternatives (Fan, Han and Liu, 2014; Cichosz, 2015; Suykens, Signoretto 
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and Argyriou, 2015). Many algorithms also exploit sparsity in high-dimensional data to 

improve speed, efficiency and scalability of algorithms; see, for example, Hastie, Tibshirani 

and Friedman (2009).

Summaries of these technological, methodological and computational approaches can be 

found in a number of excellent reviews (e.g., Fan, Han and Liu (2014); Wang et al. (2015)). 

Reviews of discipline-specific methods for analysing Big Data are also emerging (e.g., Yoo, 

Ramirez and Juan Liuzzi (2014); Gandomi and Haider (2015); Oswald and Putka (2015)). 

Despite the highlighted advantages, almost all of these authors concur that substantial 

challenges still remain. For example, Fan, Han and Liu (2014) identify three ongoing 

challenges: dealing adequately with accumulation of errors (noise) and spurious patterns in 

high-dimensional data; continuing to improve computational and algorithmic efficiency and 

stability; and accommodating heterogeneity, experimental variations and statistical biases 

associated with combining data from different sources using different technologies. Indeed, 

given the acceleration of size and diversity of data, it could be argued that these will remain 

as stumbling blocks for the foreseeable future.

In this paper, we explore an alternative approach that has the potential to circumvent or 

overcome many of these issues. Our approach is targeted toward applications of regression 

models with large N number of observations and small to moderate p predictors, so called 

‘tall data’ situations (see also Bardenet, Doucet and Holmes (2015) and Xi et al. (2010)). We 

suggest that, depending on the aim of the analysis, one could adopt an optimal experimental 

design perspective whereby instead of (or as well as) analysing all of the data, a 

retrospective sample set is drawn in accordance with a sampling plan or experimental 

design, based on an identified statistical question and corresponding utility function. The 

analyses and inferences are then based on this designed sample. This allows the analyst to 

consider an ideal experiment or sample to answer the question of interest and then ‘lay’ that 

experiment over the data. Thus the Big Data management challenge becomes one of being 

able to extract the required design points; the modelling problem reduces to a designed 

analysis with reduced noise and less potential for spurious correlations and patterns relative 

to a randomly selected sub-sample of the same size.

There are several Big Data inferential goals for which this approach might be applicable. 

Goals for which design principles and corresponding utility functions are well established 

include estimation and testing of parameters and distributions, prediction, identification of 

relationships between variables, and variable selection. Other aims include identification of 

subgroups and their characteristics, dimension reduction and model testing.

The suggested approach can also be considered as a targeted way of undertaking sampling in 

divide-and-conquer algorithms or for “sequential learning” in which a given design is 

applied to incoming data or new data sets until the question of interest is answered with 

sufficient precision or a pre-determined criterion is reached. It can also be used for 

evaluating the quality of the data, including potential biases and data gaps, since these will 

become apparent if the required optimal or near-optimal design points cannot be extracted 

from the data.
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Finally, it is worth emphasising that this approach is a first exploration into the potential for 

retrospective experimental design for improved Big Data analysis. Many open research 

questions and challenges exist, not least of which the is need for new computational 

optimisation methods coupled to design criteria that can deliver a targeted sample set in a 

time compatible with that of a randomised sampling strategy.

2 Brief Overview of Experimental Design

In this section we provide a brief introduction to the principles of optimal experimental 

design that are relevant to our approach, referring the interested reader to Appendix A for a 

more extensive background overview.

The design of experiments is an example of decision analysis where the decision is to select 

the optimal experimental settings, d, under the control of the investigator in some design 

space of options, d ∈ D. This is to maximise the expected return as quantified through a 

known utility function, U (d, θ, y), that depends on some, possibly unknown, state of the 

world θ ∈ Θ and on a potential future dataset y ∈ Y that may be observed when design d is 

applied. For example, in a regression analysis with continuous response Y , measurement 

covariates X, and where the study objective is to learn about the parameters θ of a mean 

regression function, E[Y] = f(X; θ); then the design space might be points in X with, d ∈ D 

⊆ X, and the utility function might be based on the variance of an unbiased estimator 

 that targets the true unknown θ.

Following the Savage axioms (Savage, 1972) the coherent way to proceed is to select the 

design that maximises the expected utility,

(1)

In classical experimental design, the utility is often a scalar function of the Fisher 

information matrix, which already considers the expectation with respect to the future data y, 

and in this case we can write the utility as U (d, θ) and the integral over y is no longer 

required. Further, if the model parameter θ is assumed known then the problem reduces to 

an optimization task over the design space. When θ is unknown the expected utility can be 

considered with respect to the distribution of θ, p(θ), which is a probability measure that 

quantifies the decision maker’s current state of uncertainty on the unknown value of θ. This 

is often referred to as a pseudo-Bayesian design, as the prior information p(θ) is discarded 

upon the collection of the actual data.

In a fully Bayesian experimental design, the utility function is often some functional of the 

posterior distribution, p(θ|y, d). For example, a common parameter estimation utility is U (d, 
y, θ) = log p(θ|y, d) − log p(θ), which is the Shannon information gain. Integrating with 

respect to θ produces the Kullback-Leibler divergence between the prior and the posterior, U 
(d, y) = KLD(p(θ)||p(θ|y, d)). If the KLD can be computed/approximated directly, the 

integral over θ is not required. In this case the expected utility is formed by integrating over 
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the prior predictive distribution, p(y|d). Integrals are typically approximated by Monte Carlo 

methods (see, for example, Drovandi and Tran (2016)).

Of relevance to what follows, in some experimental design situations one may not be able to 

sample at specific design points or regions, so that D is restricted, in which case “design 

windows” or “sampling windows” may be required. These consist of a range of near optimal 

designs and represent regions of planned sub-optimality. Examples of the use of sampling 

windows include the design of population pharmacokinetic studies (e.g., Ogungbenro and 

Aarons (2007); Duffull et al. (2012)), which consisted of specific sampling time intervals.

3 Experimental Design in the Context of Big Data

As motivation we consider a general regression set up where the response data Y ∈ YN 

consists of N observations and the ith response Yi ∈ Y ⊆ ℝm is the realisation of an m 
dimensional random variable. Covariate or predictor information is provided in the matrix X 
∈ XN where the ith row is Xi ∈ X ⊆ ℝp where p is the number of predictors. We assume that 

N is very large and that p is small relative to N. Our objective is to avoid the analysis of the 

Big Data of size N by selecting a subset of the data of size nd using the principles of optimal 

experimental design where the goal of the analysis is pre-defined. Below we outline a 

sequential design approach that can achieve this in a sub-optimal but computationally 

feasible manner and then point to some possible extensions.

3.1 The Algorithm

At a high level, the experimental design principles described in Section 2 can be applied 

directly to a Big Dataset in order to obtain a sub-sample. Here we consider a generic 

procedure inspired by sequential experimental design in order to obtain a close-to-optimal 

sub-sample of the data with respect to a pre-defined goal of the analysis. This is shown in 

Algorithm 1. There are two main motivations for our sequential approach: (1) iteratively 

gain information so that in subsequent iterations more informative data can be extracted, and 

(2) an optimal design problem only needs to be solved for a single observation at each 

iteration. In the algorithm d ∈ D ⊆ X represents some or all values of the covariates for a 

hypothetical single observation. We denote as x ∈ X values for the covariates for a single 

observation that is actually present in the dataset. Let xs ∈ D be the covariate values for a 

single observation in the dataset that correspond to the same covariates in d. We denote the 

observed response corresponding to x as y, re-defining the notation y used in Section 2. We 

now denote the potential future observation collected at design d as yd.

The objective is to first solve a design optimisation problem with the utility function 

incorporating the goal of the analysis (e.g. parameter estimation), which produces an optimal 

d*. It is important to note that this design optimisation problem is informed by the data 

currently in the subsample in the form of a point estimate  or a ‘prior’ distribution p(θ), 

which is a posterior conditional on the data sampled thus far. Given that d* is unlikely to be 

exactly present in the data, as a pragmatic approach we propose to find the x in the 

remaining dataset that has not been sampled that minimises the distance ||xs − d*|| between 

the relevant covariate values of each observation and the optimal design d*. Finally, take the 

corresponding y and update the information we have about the parameter θ.
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Algorithm 1 Proposed algorithm to subset Big Data using experimental 
design methodology

1: Use a training sample of size nt to obtain  or to form a prior distribution 

p(θ). Set nc = nt.

2: while nc ≤ nd (where nc is the current sample size, and nd is the desired 

sample size) or when the goal of the analysis is not met do

3:    Solve the optimisation problem d* = arg maxd∈D E{U (d, θ, yd)}. Note that 

U (d, θ, yd) may not depend on θ and/or yd depending on the utility function 

selected.

4:    Find x in the remaining dataset that has not already been sampled such that 

||xs − d*|| is minimised. Take the corresponding observation y. This step may 

be performed multiple times to subsample a batch of data of size m, 

. Increase the size of the subsample, nc = nc + m.

5:    Add  into the data subset and re-estimate  or update the prior 

p(θ) using all available data in the subset. Remove the data  from 

the original dataset.

6: end while

It is interesting to note that when selecting a sub-sample of size nd from the Big Data of size 

N, the optimal search would involve a comparison across all of the  potential designs, 

which is computationally prohibitive. Hence we propose to solve an approximate, but 

computable design problem, by first searching over all designs d in D, and then subsequently 

searching in the Big Dataset for the best matching collection of samples x minimising the 

distance to the approximating design solution d*. If at each step of our sequential design 

process the utility function U (d, θ, y) and model p(θ, y, x) are “smooth” in the design space 

d, meaning that for a small change in the design we can expect a small change in the 

expected utility, then for Big Data we can expect to lose little information from using this 

computable approximation.

3.2 Algorithm Discussion

For classical analysis problems, the training sample is an important component of the 

algorithm, since it affects the reliability of the parameter estimates. The training sample size 

nt is likely to depend on the quality of the data available and the complexity of the data 

analysis that is to be performed. In the context of a Bayesian analysis, the training sample is 

used to form a prior distribution. The more data used in the training sample, the more 

precisely parameter estimates (classical) or parameters (Bayesian) can be determined, which 

helps to facilitate more optimal choices of data to take from the original dataset during 

subsequent iterations. However, the training sample is not optimally extracted from the data 

and therefore one may want to limit its size. We suggest that the training data can be selected 

on the basis of a design with generally “good” properties, e.g. balance, orthogonality etc.
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Line 3 of Algorithm 1 is the most challenging. If the number of design variables (covariates) 

is small enough then a simple discrete grid search might suffice to obtain a near-optimal 

design. For more complex design spaces, it may be necessary to perform some numerical 

optimisation procedure. Some approaches that been used in the design literature are the 

exchange algorithm (e.g., Fedorov (1972)), numerical quadrature (e.g., Long et al. (2013)), 

MCMC simulation (e.g., Müller (1999)), or sequential Monte Carlo methods (e.g., Kück, de 

Freitas and Doucet (2006); Amzal et al. (2006)). This step of the algorithm may be 

computationally intensive and is currently the largest stumbling block for the general 

applicability of our approach. However, we demonstrate in several case studies in Section 5 

that our approach is applicable in a number of non-trivial settings. Nonetheless, there is 

interest in developing new approaches to accelerate this step, which is an on-going research 

direction in the experimental design literature.

To reduce the number of design optimisations that need to be performed we may extract 

from the Big Data a cluster of m data points where the xs is closest to d* (Line 4 in 

Algorithm 1). The optimal value of m trading off problem specific computational cost versus 

information loss, although we do not explore this further. In other applications using 

standard design criteria, such as D-optimality, means that the optimal design may be simple 

to determine (e.g., Pukelsheim (1993); Tan and Berger (1999); Ryan, Drovandi and Pettitt 

(2015)).

In the examples we consider later, we find that the Euclidean distance for the norm ||xs − d*|| 

on standardised covariates works reasonably well. It should be noted that the user is free to 

choose an appropriate norm for their data.

To reduce the computational burden to implement Line 4 in Algorithm 1, the data set may 

need to be split up amongst multiple CPUs using a framework such as Hadoop. The 

minimisation problem (Line 4) can be performed on each of the CPUs, and then a 

minimisation can be performed over the results of all of the CPUs. This is similar to the 

“split-and-conquer” approach (e.g., Xi et al. (2010)). Rather than finding an optimal design 

that consists of fixed points, as in Line 3 of Algorithm 1, we could instead find sampling 

windows, since the optimal design points d* may not be present in the data set, and so we 

may require regions of near optimal designs. Moreover, in Line 2, one could instead run the 

algorithm until the utility function reached a certain pre-specified value (e.g. a certain level 

of precision).

A similar design algorithm is considered in follow-up studies, where only a small proportion 

of subjects are measured on the second occasion to reduce costs (Karvanen, Kulathinal and 

Gasbarra, 2009; Reinikainen, Karvanen and Tolonen, 2014). In these studies, the objective is 

to determine the best n out of N individuals to consider for the next follow-up. This difficult 

computational problem is solved by Karvanen, Kulathinal and Gasbarra (2009) and 

Reinikainen, Karvanen and Tolonen (2014) in a greedy manner by sequentially adding 

participants for the next follow-up that lead to the largest improvement in expected 

information gain until n subjects are selected. Our approach is different to this. Firstly, it is 

not feasible in our context to scan through the entire Big Data to find the next observation 

that leads to the largest improvement in expected or observed utility. Instead we solve an 
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optimal design problem first, and then we simply need to find the design in the Big Data that 

is close to this optimal design. Secondly, our design approach uses the information from 

each selected data point to make better decisions about which design (and observation) to 

include next. In contrast, the applications of Karvanen, Kulathinal and Gasbarra (2009) and 

Reinikainen, Karvanen and Tolonen (2014) are static design problems (parameter values are 

not updated) that are solved in an approximate sequential manner. Thirdly, our approach 

allows for the detection of potential holes in the data. Finally, our framework is more general 

as it is inclusive of both classical and Bayesian frameworks, whereas Karvanen, Kulathinal 

and Gasbarra (2009) and Reinikainen, Karvanen and Tolonen (2014) only consider classical 

designs.

3.3 Computational Overheads

The key challenge in the practical application of our approach is being able to implement 

algorithms, such as Algorithm 1, in a computational time such that the extra effort of 

obtaining design points does not outweigh the information benefits. That is, if nd is the 

maximum sample size available through the designed approach given the constraints in 

compute infrastructure and runtime, and ns is the corresponding sample size from using 

random subset selection. For our approach to be worthwhile we require that the expected 

utility of the designed approach learned from nd samples is higher than the expected utility 

using ns random samples, where typically ns > nd. Clearly this will be study dependent but, 

given the potential benefits shown below, it also motivates the need for new computational 

optimisation strategies targeted to general design criteria for Big Data analysis.

4 Simulation Study

Here we apply our methods to data that is simulated from a logistic regression model that 

contains two covariates, x1 and x2. The following logistic model is used to describe the 

binary response variable Yi ∼ Binary(πi) where logit(πi) = θ0 + θ1x1,i + θ2x2,i. We assume 

that the true parameter values are (θ0, θ1, θ2) = (−1, 0.3, 0.1) and that the sample size for the 

full data set is N = 10000. Although N is small for Big Data it will serve to illustrate and 

motivate the essential features of our approach. We simulate the covariate values of x1 and 

x2 for each observation from a multivariate normal distribution with a mean vector of zeros 

and three different options for the covariance matrix:

1.

, no dependence between covariates;

2.

, positive correlation between covariates;

3.

, negative correlation between covariates.

Here we are interested in finding the ‘best’ nd = 1000 observations from the full data set to 

most precisely estimate the model parameters (θ0, θ1, θ2). We demonstrate the use of both 

classical and Bayesian sequential design methods to subset the data.
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The design variable for line 3 of Algorithm 1 is given by potential values for the two 

covariates for a single observation, d = (x1, x2).

4.1 Classical Approach

For line 1 of Algorithm 1 we select nt = 20 training samples randomly from the full data and 

determine the MLE of the parameter, . We denote the data present in the subset currently as 

s, which consists of response and covariate values. The utility function we use for line 3 is 

given by

where  is the observed information matrix based on data collected so far and 

 is the expected information matrix if we apply the design d for the next observation. 

For the optimal design procedure in line 3 of Algorithm 1 we use a grid search over the 

design region [−5, 5] × [−5, 5]. The grid consists of evenly-spaced points that are separated 

by an increment of 0.1.

Once the optimal design d* is estimated from line 3 we use the Euclidean distance in line 4 

to determine the next observation to take from the remaining Big Data. Following this, the 

parameter estimate  is updated using maximum likelihood in line 5. Then the process is 

repeated. Conditional on the training sample, the overall subsetting procedure is 

deterministic so we only perform the procedure once and obtain a single subset of size 1000. 

We denote the subsetted data generated from our design procedure as .

For comparison purposes we generated 10000 subsets of size 1000 randomly, with each 

subset denoted by  for r = 1, …, 10000. The final estimates for (θ0, θ1, θ2) based on 

are given in Table 1. Table 1 also displays  where for notational simplicity the 

MLE  is always based on the dataset present as the first argument of the observed 

information matrix. The largest observed information obtained out of the 10000 randomly 

sampled data subsets is displayed in the final column of Table 1. Each row of Table 1 

corresponds to the different correlation structures that were investigated for the simulated 

covariate data. Table 2 contains the estimates for (θ0, θ1, θ2) (and their associated variance-

covariance matrix) based on the full data under each of the covariance structures for the 

covariate data.

From Table 1 it can be seen that the estimates of (θ0, θ1, θ2) that were based on the subsets 

of data that were obtained via the principled design approach are quite close to the true 

parameter values, as well as the values that were obtained using the full data set (displayed 

in Table 2). Only a small amount of precision for the parameter estimates was lost by using 

the subset of data rather than the full dataset (Tables 1 and 2). This indicates that our method 

is fairly accurate in this example for subsetting the data so that our model parameters can be 

estimated precisely. One run of the optimal design process had a similar computational time 

to running 10000 random subsets (approximately 40 seconds). However, the determinants of 
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the observed information from the subsets of data that were obtained via our design 

approach were higher than the determinant of the observed information obtained from 10000 

randomly selected data subsets of the same sample size (Table 1). This highlights the 

potential of our designed approach.

However, the extra time used to determine the designed subset could be used to analyse a 

larger random sample. We investigated different sample sizes for the subsets that were 

selected randomly from the full data set and ran 10000 replicates for each sample size. The 

results are displayed in Figure 1. For the simulation studies where the data were generated 

using a covariate structure with no correlation, or with positive correlation, the randomly 

selected data subset size had to be roughly doubled to obtain a higher utility (overall) than 

for the designed approach. For the simulation study where the data were generated using 

negative correlation between the covariates, the subset size of 1500 showed higher utility 

than the designed approach. We provide more discussion on the negative correlation case 

later.

Figure 2 shows the x values that minimise the Euclidean distance to the optimal designs at 

each iteration/time point based on the observed information thus far (and were thus extracted 

into the subset) against the optimal designs at that iteration. Ideally, these points should be 

equal and would lie along the 45 degree line in Figure 2. From Figure 2, it appears that there 

are two support points for both x1 and x2, one at either end of the design region. Since the 

covariates were drawn from a normal distribution, there are not many design values in the 

data that occur on the boundaries of the design region, and so less than optimal values will 

have to be chosen for the data subset and the data will be less informative than if the full 

dataset contained more values on the boundaries of the design region. When the covariates 

are correlated with one another, there are even less design values on the “corners” or 

boundaries of the design region and so the full dataset will be generally less informative. We 

discuss this further in the Bayesian section below.

4.2 Bayesian Approach

For the Bayesian approach we use an SMC algorithm, similar to that used by Drovandi, 

McGree and Pettitt (2013), to sequentially generate samples from the posterior as more data 

are added into the subsample. We place independent normal priors on the parameters each 

with a mean of 0 and a standard deviation of 5; we do not use any training data in line 1 of 

Algorithm 1. For the utility function required in line 3 we use:

where ;s represents the data currently in the subset and y ∈ {0, 1} is a possible outcome for 

the next observation. The expected utility is given by
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The quantities inside the summation are estimated using the posterior samples maintained 

through SMC and additional importance sampling to accommodate the possible outcomes 

for the next observation (see Drovandi, McGree and Pettitt (2013) for more details). The 

optimisation procedure used in line 3 is the same as that used for the classical approach 

above. For line 4 we again use the Euclidean distance to obtain the next observation to add 

to the subset in line 5. This process is repeated until 1000 observations are obtained. The 

final posterior mean estimates from one run of our sequential design approach for (θ0, θ1, 
θ2) are given in Table 3, along with the estimates based on the full data set.

For one run of our algorithm, the optimal designs and the corresponding covariate values 

actually extracted from the data are shown in Figure 3 for the three different correlation 

structures. Most of the optimal design values appear in the ‘corners’ of the design search 

space. When there is no correlation between the predictors, it is easier to find covariate 

values that are close to the optimal design values (top row of Figure 3). When there is 

correlation (middle and bottom rows of Figure 3), the corners of the design space are not as 

well covered by the data. We found that this was a particular issue when there was negative 

correlation. It can be seen from the bottom row of Figure 3 that the optimal design requested 

by the algorithm was often in the top right corner but there was no data there to satisfy this 

request. Thus there is a chance that the actual data selected may not have a relatively high 

utility value. In this respect, below we demonstrate that the optimal design approach can 

perform worse than a simple random sample. We plan to develop methods to address this 

issue in future research. In the least, plots as in Figure 3 can be used as an exploratory tool to 

determine how close the data subsample is to the ideal design for the chosen research 

objectives.

The subset obtained from our method is affected by the Monte Carlo variability of the SMC 

approximation to the posteriors and also the Monte Carlo variability from the importance 

sampling procedure to determine the optimal designs. Thus we repeated our process 1000 

times independently. To determine how well our data subsets perform, we compared it to 

randomly selected datasets of size 1000 from the original dataset. We obtained 1000 such 

datasets. For each of these randomly chosen datasets we estimated the posterior distribution 

via SMC, which was then used to estimate the utility function. The distribution of the utility 

values obtained from our subsets is compared with that of the random datasets in Figure 4. It 

can be seen that our data subset outperforms the randomly selected designs as it generally 

produces a higher utility value then the randomly chosen datasets, except for the negative 

correlation structure (see earlier discussion). One run of the optimal design process took 

approximately 22 seconds, whereas investigating 1000 random subsets took approximately 

25 minutes. Therefore we were generally able to obtain a data subset of a particular size that 

produced higher observed utility in a shorter amount of time.

To determine the sample size savings for the designed approach (compared to random 

subsets of data), we varied the size of the subsets that were selected randomly from the full 

data set and repeated this process 100 times. The results are displayed in Figure 5. It was 

found that the random sample data subset would have to be increased to a size of 1500-2000 

to obtain an overall higher utility than for the designed approach, except for the negative 

correlation structure.
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Overall, in this simulation study, analysing a larger random subset would be more efficient 

than analysing the smaller designed subset. However, this example still demonstrates the 

potential of the designed approach.

5 Case Studies

The two case studies described here showcase our principled design approach applied to real 

data. Algorithm 1 is used together with a number of computational algorithms. For the 

purposes of cohesion and comparison, the first study employs a logistic regression model to 

predict risk of mortgage default, whereas the second study employs a more challenging 

mixed effects model. The cases differ with respect to the study aims; variable selection and 

precise regression parameter estimation. Comparisons are also made with results obtained 

from analysing the full (Big) data.

To further illustrate our design approach to subsetting Big Data, two additional case studies 

are provided in Appendices B and C, respectively. The case study in Appendix B is similar 

in spirit to case study 1 and involves the estimation of regression coefficients of covariates 

that might influence on-time flight arrivals. The case study in Appendix C highlights that 

experimental design principles may be useful in some applications for subsetting Big Data 

without needing to resort to optimal design methods such as those presented in Algorithm 1. 

This case study involves applying static experimental design principles for performing an 

ANOVA on a dataset of colorectal cancer patients in Queensland, Australia.

5.1 Case Study 1 - Mortgage default

In this case study, we consider the simulated mortgage defaults data set found here: http://

packages.revolutionanalytics.com/datasets/. The scenario is that data have been collected 

every year for 10 years on mortgage holders, and contains the following variables:

• default: a 0/1 binary variable indicating whether or not the mortgage holder 

defaulted on the loan (response variable);

• creditScore: a credit rating (x1);

• yearsEmploy: the number of years the mortgage holder has been employed at 

their current job (x2);

• ccDebt: the amount of credit card debt (x3);

• houseAge: the age (in years) of the house (x4); and

• year: the year the data were collected.

The proposed model for the binary outcome is the logistic regression model, with the above 

covariates as main effects (credit rating, years employed, credit card debt and house age) 

potentially significantly influencing the probability of defaulting. To determine which 

covariates are useful for prediction, we focus on the default data for the year 2000 which 

contains 1,000,000 records. We initially allowed all covariates to appear in the model, and 

obtained prior information about the parameters by extracting a random selection of nt = 5, 
000 data/design points from the full dataset in an initial learning phase.
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From this initial learning phase, it is useful to develop prior distributions about the model(s) 

appropriate for data analysis and the corresponding parameter values based on the extracted 

data. The primary motivation for this is the avoidance of the computational burden 

associated with continually considering a potentially large dataset within a (full) Bayesian 

analysis. To facilitate this, maximum likelihood estimates (MLEs) of parameters (and 

standard errors) were found for all potential models. Prior information about the parameters 

was then constructed by assuming all parameters follow a normal distribution with the mean 

being the MLE and the standard deviation being the standard error of the MLE.

The next step was to ‘value add’ to the information gained from the initial learning phase 

through our sequential design process. To do this, we implemented the SMC algorithm of 

Drovandi, McGree and Pettitt (2013) to approximate the sequence of target distributions 

which will be observed as data are extracted from the full data set (see Section 4.2). For line 

3 of Algorithm 1 we used a similar estimation utility to the simulation study in Section 4.2 

to select designs which should yield precise estimates of the model parameters, and this 

utility was approximated via importance sampling. The optimisation procedure we apply in 

line 3 is again a simple grid search by considering potential design points based on all 

combinations of the following covariate levels (formed by inspecting the full data set):

Covariate Scaled levels

creditscore −4,−3,−2,−1, 0, 1, 2, 3, 4

yearsemploy  −2,−1, 0, 1, 2, 3, 4

ccDebt  −2,−1, 0, 1, 2, 3, 4

houseAge   −2,−1, 0, 1, 2

This results in the consideration of 2,205 potential design points at each iteration of the 

sequential design process. For line 4 we find the data point in the remaining Big Data with a 

design closest to the optimal design in terms of Euclidean distance.

As we are interested in determining which variables are useful for prediction, each time the 

prior information was updated to reflect the information gained from a new data point, a 

95% credible interval was formed for all regression coefficients in the model. If any credible 

interval was contained within (–tol, tol), then this parameter/variable was dropped from the 

model. The reduced model was then re-fit using SMC based on the appropriate prior 

information on the parameters (from the initial learning phase) and all sequentially extracted 

data. This process iterated until 1,000 data points had been extracted in this sequential 

design process. To investigate this methodology, we considered four different values for tol 
(0.25, 0.5, 0.75 and 1).

Table 4 shows the covariates that remained in the model after an additional 1,000 data points 

had been observed for tol = 0.25, 0.50, 0.75 and 1.00. The results suggest that if we are only 

interested in large effect sizes (> 1.0), then credit card debit appears to be the only useful 

covariate. In contrast, if effects larger than 0.25 are deemed important then all variables 

remain in the model. Most notably, these results agree with the results from fitting the full 
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main effects model based on the full data set, see Table 5. This model was fitted with a prior 

distribution based on 5,000 randomly drawn data points (as in the above described initial 

learning phase), and sequentially updating these priors using a single data point at a time 

until all data had been included. The covariate information found here should be useful to 

lenders, as it seems to indicate that individual information is more informative than property 

characteristics for determining if someone will default on their mortgage.

At each iteration of the sequential design process, the Bayesian optimal design and the 

corresponding extracted design was recorded. A comparison of the two is shown in Figure 6, 

by covariate (for tol = 0.25). Ideally, one would like to observe a one-to-one relationship 

between the two designs. Unfortunately, this was not observed in this study. For example, 

from Figure 6(c) which corresponds to credit card debt, values of around $11,000 and 

$13,000 were found as optimal, but the values extracted from the Big Data set varied 

between $5,000 and $13,000. This suggests that there is potentially a lack of mortgage 

default data on those with large credit card debts. Intuitively, this might make sense as such 

individuals may generally not have their loan approved.

For each of the four different values of tol, it took approximately 40 minutes to run the 

learning phase and sequential design process. To explore the computational gains/losses 

involved in implementing this designed approach, a comparison with randomly selected 

subsets of the same size was undertaken. The comparison was conducted such that priors 

from the initial learning phase were formed in the same manner as the designed approach 

but, for the sequential design process, instead of searching for an optimal design, a design 

was randomly selected from the data set. The analysis of such subsetted data in general took 

approximately 2 minutes, which means that around 20 randomly selected data sets could be 

analysed in the time it took to implement a designed approach. When these 20 random 

designs were run, only x1 was removed from any model (across all values of tol). Indeed, 

this only occurred when tol = 0.75 or 1. In these cases, x1 was removed from the model 1/20 

and 20/20 times, respectively. Such results show that no random design provided more 

information about the parameter values as that of the designed approach. Thus, despite the 

designed approach having relatively high computational requirements, the benefits are seen 

in analysing highly informative data, and thus efficiently addressing analysis aims.

In summary, in this mortgage case study, through analysing a small fraction of the full data 

set, we were able to determine, with confidence, which covariates appear important for 

prediction, and also identify potential ‘holes’ in the full data set in regards to our analysis 

aim.

5.2 Case Study 2

To illustrate the method with a more complex statistical model, we consider an analysis 

performed on accelerometer data (see, for example, Trost et al. (2011)). Here 212 

participants performed a series of 12 different activities at four different time points, 

approximately one year apart. The age range of the data was 5 to 18 years old. The purpose 

of the analysis was to assess the performance of 4 different so-called ‘cut-points’, which are 

used to predict the type of activity performed based on the output of the accelerometer. The 

response variable is whether or not the cut-point correctly classifies the activity. Each 
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individual at each time point performed all 12 activities and all 4 cut-points are applied 

(observations with missing classification responses were discarded). There are roughly 

35000 observations in the dataset. Although this sample size is not as large as in the previous 

case study, we show that it is sufficient to demonstrate our proposed approach.

A logistic regression mixed effects model was fitted to the data that included age as a 

continuous covariate (linear in the logit of the probability of correct classification), and the 

type of activity (12 levels) and the cut-point (4 levels) as factor variables. The model also 

included all two-way interactions, which resulted in a total of 63 fixed effects parameters. A 

normal random intercept was included for each participant. For completeness, we assume 

that the observed classification for the ith observation for subject t is Yti ~ Binary(πti) with

where  (with ϕ being the between subject variance), i = 1, …, 

st where st is the number of observations taken on subject t, ageti is the age in years,  is a 

dummy variable defining which cut-point is applied,  is a dummy variable defining 

which trial is applied and the β parameters are the fixed effects. The intercept parameter β0 

relates to an age of 0 years, cut-point 1 and trial 1.

Here we assume that interest is in estimating the age effect on correct classification (both 

main and interaction effects, consisting of 15 fixed effects parameters). Thus for our utility 

in line 3 of Algorithm 1 we considered the negative log of the determinant of the posterior 

covariance matrix for these 15 parameters, and aimed to maximise this utility. For line 1 we 

took a pilot dataset consisting of nt ≈ 500 observations where a full replicate was taken from 

different individuals at ages 6 to 18 years with an increment of two years. Then we 

performed our sequential design strategy to continually accrue data until at least 3000 

observations were obtained. Thus we attempted to obtain a close-to-optimal sub-sample of 

size nd ≈ 3000 to precisely estimate the age related parameters. The optimisation procedure 

for line 3 is a simple grid search over the age covariate (between 6 and 18 with 2 year 

increments) to guide the next selection of data. For line 4 we took all the data from the 

individual with the closest age (in terms of Euclidean distance) to the optimal design 

selected (48 observations when a full replicate is available). Note that we did not force data 

to be collected from different individuals than what has already been collected in the sub-

sample. The optimal design was near the boundaries of the age range, so that naturally the 

sub-sampled data were usually taken from different individuals. However, a different design 

strategy could be adopted where data is taken from an individual who is not already present 

in the sub-sample with the closest age to the optimal design. Ryan, Drovandi and Pettitt 

(2015) considered Bayesian design for mixed effects models and found that it is not obvious 
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whether to sample a few individuals heavily or sample many individuals sparsely, 

highlighting the importance of optimal Bayesian design in the context of mixed effects 

models. Furthermore, the amount of computation required to analyse the extracted data may 

depend not only on the size of the subset but on how many distinct individuals are sampled. 

We have not factored this in to our subsetting procedure, but it may be possible to do so.

We required a fast method to approximate the posterior distribution and hence the utility 

function. Here we used the integrated nested Laplace approximation (INLA, Rue, Martino 

and Chopin (2009)) with the default priors in the R-INLA package (www.r-inla.org). Note 

that high accuracy of the posterior distribution is not required, it is only necessary that the 

method produces the appropriate ranking of potential designs. To estimate the expected 

utility at some proposed age, we took only a single sample from the current INLA posterior 

distribution and simulated a full replicate for a new individual at that age and estimated the 

new posterior distribution based on all the data in the sub-sample so far and the simulated 

data. This is performed for each proposed age, and the age that produced the highest utility 

was selected. We found that it was sufficient to use a single simulation to obtain a close-to-

optimal design. A more precise determination of the optimal design could be obtained by 

considering more posterior predictions. The only stochastic part of the algorithm is the fact 

that we only draw a single posterior simulation. To investigate the variability in the observed 

utility of the subsetted data determined from the optimal design, we repeated our process 20 

times.

Figure 7 shows the estimated utility for each proposed age at different stages of the 

algorithm for 1 of the 20 runs. It is evident that it is not difficult to estimate the optimal age 

to select, even with a single posterior simulation. We compared our sub-sample with two 

other more standard designs. The first (design 1) takes a completely random sample without 

replacement of the data with the same size as our optimally designed sub-sample. The 

second design (design 2) randomly samples without replacement from the unique 

combinations of individuals and age (with all the data taken at that combination) until a 

sample size not less than the size of the optimally designed sub-sample is taken. Designs 1 

and 2 are repeated 1000 times. The boxplots of the estimated utilities for these two design 

schemes together with that obtained from the optimal design procedure are shown in Figure 

8(a). It is evident that the optimally designed sub-sample approach leads to a much higher 

utility than those taken from designs 1 and 2. One run of the optimal design process took 

roughly 1 hour while investigating 1000 random subsets took roughly 3 hours. Thus we were 

able to obtain a data subset with higher observed utility in a much shorter amount of time.

The actual ages selected by the algorithm over the iterations for one of the runs is shown in 

Figure 8(b). It is evident that the optimal ages to sample are generally at the age boundaries.

6 Discussion

This paper has explored the concept of a designed approach to analysing Big Data in order 

to answer specific aims. The proposed approach exploits established ideas in statistical 

decision theory and experimental design. The decision-theoretic framework facilitates 

formal articulation of the purpose of the analysis, desired decisions and associated utility 
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functions. This forms the basis for designing an optimal or near-optimal sample of data that 

can be extracted from the Big Dataset in order to make the required decisions. Under this 

regime, there may be no need to analyse all of the Big Data. This has potential benefits with 

respect to data manipulation, modelling and computation. The extracted sample of data can 

be analysed according to the design, avoiding the need to accommodate complex features of 

the Big Data such as variable data quality, aggregated datasets with different collection 

methods and so on. The model can be extended in a more deliberate and structured manner 

to accommodate remaining biases such as non-representativeness or measurement error, and 

the design can be replicated to facilitate critical evaluation of issues such as model 

robustness and “concept drift”.

Consideration of the issue of model fit serves to illustrate the potential versatility of the 

designed approach to Big Data analysis. A natural by-product of the analysis of Big Data is 

very little statistical uncertainty for many models. However, this rarely reflects reality: in 

practice, we know that the model can be wrong in many ways. Through the designed 

approach, the aim of assessing model robustness can be incorporated into the design, in 

particular into the utility function, and a corresponding optimal sample can be extracted that 

will facilitate this investigation. For example, the experimental design can incorporate the 

intention to apply posterior predictive checks, or include a designed hold-out sample set 

drawn from the Big Data to evaluate goodness-of-fit via a posterior predictive check. Indeed, 

the utility function can be used as a vehicle to express a very wide range of statistical 

ambitions. There are implications for robustness in that the initial design of the training data 

set is predicated on the statistical model, and all models are wrong. Our suggestion here is to 

proceed in the spirit of Box (1980) in that the analysis should take place as an iterative 

process of criticism and estimation. The design subsetting procedure takes place as if the 

model were true, but following this model criticism should be used to help identify artefacts 

and systematic discrepancies of model fit with the aim to improve the robustness of 

inference. Such model criticism may of course lead to the consideration of more complex 

models in the design step. Unfortunately, optimal design has typically been restricted to low 

to moderate dimensional problems for linear models (Myers, Montgomery and Anderson-

Cook, 2009), GLMs (Woods et al., 2006) and nonlinear mixed effects models (Mentré, 

Mallet and Baccar, 1997). Thus, in order for optimal design to adequately facilitate a wide 

range of analyses across Big Data sets which are invariably complicated, messy, 

heterogeneous, heteroscedastic with a large number of different types of variables and 

fraught with missing data, it seems there is a need for further developments in this area.

This designed approach may also be used not as a substitute for the Big Data analysis but as 

a complementary evaluation. Thus the question of interest can be investigated in multiple 

ways and although the same data are being used for both analyses, the insights and 

inferences drawn from the two approaches can potentially provide a deeper understanding of 

the problem; see Appendix D for further discussion.

We have presented throughout the paper various advantages to the designed approach for 

subset selection that are not computational. An additional advantage is that the design 

generated could be re-used or harnessed for future/other datasets collected under similar 

conditions.
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There are many ways in which the approach described above can be extended. In addition to 

expansions to accommodate more complex experimental aims, the designs and models can 

be extended to accommodate features of the obtained data. We discuss three examples: 

adjustment for inadequacies in the dataset from which the samples are extracted, extensions 

to allow for aggregation of information from different sources, and the inclusion of 

replication.

The mismatch between the Big Data and the target population is widely acknowledged as a 

concern in many disciplines (Wang et al., 2015). Other widely acknowledged inadequacies 

include measurement error in variables of interest and missing data. If characteristics of 

these attributes are known in advance, they can be included in the design. There is a large 

classical literature on adjusting for non-coverage and selection bias in sampling design, for 

example through the use of sampling weights (Kish and Hess, 1950; Lessler and Kalsbeek, 

1992; Levy and Lemeshow, 1999), design-adjusted regression and its variants (Chambers, 

1988) and propensity scores (Dagostino, 1998; Austin, 2011). Analogous weighting methods 

have been developed to account for missing data and measurement error (Brick and 

Montaquila, 2009). A growing literature is also available for Bayesian approaches to 

weighting (Si, Pillai and Gelman, 2015; Gelman, 2007; Oleson et al., 2007). Further, 

although the experimental design approach described here mitigates the endemic problem of 

data quality to some extent by extracting only those observations corresponding (at least 

approximately) to the design points and ignoring the remaining (possibly poorer quality) 

data, issues such as bias, nonrepresentativeness, missingness and so on may persist. In this 

case, a variety of methods can be adopted for adjusting the data (Chen et al., 2011), the 

likelihood (Wolpert and Mengersen, 2014), the model (Espiro-Hernandez, Gustafson and 

Burstyn, 2011), the prior (Lehmann and Goodman, 2000) or the utility (Fouskakis, 

Ntzoufras and Draper, 2009), and the experimental design can be modified accordingly.

An alternative to adjusting the design is to augment the corresponding statistical model used 

to analyse the extracted data. In a Bayesian framework, this can be implemented through 

specification of informative priors in a Bayesian hierarchical or joint model (Wolpert and 

Mengersen, 2004; Richardson and Gilks, 1993; Mason et al., 2012; Muff et al., 2015).

In a Big Data context, aggregation of data from different sources can be cumbersome due to 

the different characteristics of the datasets and the very large precisions of the obtained 

parameter estimates. A designed approach can provide at least partial solutions to these 

issues. For example, the experimental design can be augmented to sample efficiently from 

each data source, taking into account the characteristics associated with the source and the 

overall aim of the analysis. The corresponding statistical model can then be extended 

hierarchically to allow for the aggregation (McCarron et al., 2011). One could also conceive 

this problem as a meta-analysis, in which each data source is sampled and analysed 

according to an independently derived design and the results are combined via a random 

effects model or similar (Pitchforth and Mengersen, 2012; Schmid and Mengersen, 2013).

The designed approach can also be augmented to allow for potential deficiencies in the 

statistical model. For example, if the data are ‘big enough’, then replicate samples can be 

extracted from the data using the same design strategy. The methodology for replication can 
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be adapted in a straightforward manner from classical design principles (Nawarathna and 

Choudhary, 2015). These replicates can be employed for a variety of purposes, such as more 

accurate estimation and analysis of sources of variation or heterogeneity in the data, 

identification of potential unmodelled covariates or confounders, assessment of random 

effects, or evaluation of the robustness of the model itself. They can also be extracted 

according to a hyper-design to allow for evaluation of issues such as concept drift, whereby 

the response variable changes over time (or space) in ways that are not accounted for in the 

statistical model; see Gama et al. (2014) for a recent survey of this issue.

Finally, we stress once more that the benefits of the designed approach must be weighed up 

against the computational overheads and potentially reduced sample size in comparison to 

say a random subsampling strategy. We see this as motivation for the study of new 

computational optimisation methods that can exploit modern computer architectures to 

deliver designed samples for Big Data analysis.
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Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Boxplots of the log utility (determinant of the observed information matrix) for 10000 

randomly drawn data subsets of various sample sizes (x-axis) to compare against the utility 

function value of the designed approach (for a data subset size of 1000; displayed as a cross 

in each boxplot), for each of the correlation structures of the covariates: (a) no correlation 

between x1 and x2, (b) positive correlation between x1 and x2, (c) negative correlation 

between x1 and x2.
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Fig 2. 
Chosen designs for x1 and x2 vs optimal designs for x1 and x2 where the correlation 

structures for the covariates are: (a) and (b) no correlation between x1 and x2; (c) and (d) 

positive correlation between x1 and x2; (e) and (f) negative correlation between x1 and x2. 

The 45 degree line indicates where the selected data points for the subset are equal to the 

optimal design.
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Fig 3. 
Left hand column shows the optimal designs (with slight jittering) selected for one run of 

Algorithm 1 for the Bayesian logistic regression example. The right hand column shows the 

corresponding covariate values that were actually selected from the data. Results are shown 

for different covariance structures of X in the original (full) data: (top row) no correlation, 

(middle row) positive correlation, and (bottom row) negative correlation.
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Fig 4. 
Boxplots of the observed utility values obtained for 1000 runs of a random design and the 

optimal sequential design for the Bayesian logistic regression example for the different 

covariance structures of X in the original (full) data.
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Fig 5. 
Boxplots of the observed utility values obtained for 100 runs of randomly drawn data 

subsets of various size (x-axis) and the optimal sequential design for the simulation study for 

the different covariance structures of X in the original (full) data: (a) no correlation, (b) 

positive correlation, and (c) negative correlation.
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Fig 6. 
Extracted versus optimal design points for the mortgage default case study for tol = 0.25 for 

(a) credit score, (b) years employed, (c) credit card debit and (d) house age.
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Fig 7. 
Estimated (log) utility values for each proposed design (age) at iteration 10 (a), 20 (b), 30 (c) 

and 40 (d) of the optimal design sub-sampling algorithm for the cut-point dataset.
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Fig 8. 
Results from the sub-sampling optimal design process for the cut-point dataset. (a) 

Comparison of observed utilities of sub-samples obtained from designs 1 and 2 with the 

observed utilities of the sub-samples obtained from the optimal design process. (b) Ages 

selected from the dataset during the optimal design sub-sampling process.

Drovandi et al. Page 30

Stat Sci. Author manuscript; available in PMC 2017 September 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Drovandi et al. Page 31

Table 1

Estimated θ values (where θ = (θ0, θ1, θ2)) and the observed information value for the subsample of size nd = 

1000 obtained using the principled design approach . The last two columns contain the median 

(IQR) and maximum utility function values that were obtained from 10000 randomly drawn subsamples of 

data, each of size nd = 1000

Covariance Structure θ based on 𝒟s
d |𝒪(Ds

d, θ)| median( |𝒪(𝒟s
ri, θ) |i = 1

10000 ) (IQR) max( |𝒪(𝒟s
ri, θ) |i = 1

10000 )

No correlation (−1.03, 0.34, 0.11) 2.8 × 108 5.3(4.9, 5.8) × 107 9.0 × 107

Positive correlation (−1.01, 0.32, 0.08) 1.4 × 108 3.9(3.6, 4.2) × 107 6.0 × 107

Negative correlation (−0.94, 0.41, 0.17) 8.0 × 107 4.1(3.8, 4.5) × 107 6.6 × 107
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Table 2

Estimated θ values (where θ = (θ0, θ1, θ2)) and their covariance using the full data sets that were simulated 

under different covariance structures of X.

Covariance Structure of X θ Estimated covariance of θ

No correlation (−0.98, 0.28, 0.08) 5.4 × 10−4 −6.5 × 10−5 −2.1 × 10−5

−6.5 × 10−5 1.9 × 10−4 8.5 × 10−6

−2.1 × 10−5 8.5 × 10−6 1.8 × 10−4

Positive correlation (−1.02, 0.30, 0.08) 5.6 × 10−4 −7.3 × 10−5 −1.9 × 10−5

−7.3 × 10−5 2.6 × 10−4 −1.2 × 10−4

−1.9 × 10−5 −1.2 × 10−4 2.4 × 10−4

Negative correlation (−1.00, 0.29, 0.08) 5.4 × 10−4 −6.4 × 10−5 −1.9 × 10−5

−6.4 × 10−5 2.4 × 10−4 1.1 × 10−4

−1.9 × 10−5 1.1 × 10−4 2.3 × 10−4
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Table 3

Posterior estimates of θ (where θ = (θ0, θ1, θ2)) and the observed utility using the data subset obtained via the 

designed approach and using the full data sets that were simulated under different covariance structures of X.

Full or subset data Covariance Structure of X θ observed utility

Subset No correlation (−1.11, 0.33, 0.11) 18.9

Full No correlation (−1.02, 0.31, 0.10) 24.7

Subset Positive correlation (−0.91, 0.27, 0.13) 19.3

Full Positive correlation (−1.00, 0.31, 0.10) 24.4

Subset Negative correlation (−1.04, 0.31, 0.15) 17.3

Full Negative correlation (−1.03, 0.32, 0.12) 24.6
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Table 4

The covariates in the mortgage case study which were deemed useful for prediction based on tol = 0.25, 0.50, 

0.75 and 1.00.

tol Remaining covariates

0.25 x1, x2, x3, x4

0.50    x2, x3

0.75     x3

1.00     x3
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Table 5

Summary of the posterior distribution of the parameters for the full main effects model based on all mortgage 

default data for the year 2000.

Parameter Mean SD 2.5th Median 97.5th

β0 -11.40 0.13 -11.67 -11.40 -11.16

β1 -0.42 0.03 -0.48 -0.42 -0.36

β2 -0.63 0.03 -0.68 -0.63 -0.56

β3 3.03 0.05 2.94 3.03 3.13

β4 0.20 0.03 0.12 0.20 0.26
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