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Abstract

Inflammatory mediators and metalloproteinases are altered in acute ischemic stroke (AIS) and play a detrimental effect

on clinical severity and hemorrhagic transformation of the ischemic brain lesion. Using data from the Italian multicenter

observational MAGIC (MArker bioloGici nell’Ictus Cerebrale) Study, we evaluated the effect of inflammatory and

metalloproteinases profiles on three-month functional outcome, hemorrhagic transformation and mortality in 327

patients with AIS treated with intravenous thrombolys in according to SITS-MOST (Safe Implementation of

Thrombolysis in Stroke-MOnitoring STudy) criteria. Circulating biomarkers were assessed at baseline and 24 h after

thrombolysis. Adjusting for age, sex, baseline glycemia and National Institute of Health Stroke Scale, history of atrial

fibrillation or congestive heart failure, and of inflammatory diseases or infections, baseline alpha-2macroglobulin (A2M),

baseline serum amyloid protein (SAP) and pre-post tissue-plasminogen activator (tPA) variations (�) of metalloprotei-

nase 9, remained significantly and independently associated with three-month death [OR (95% CI):A2M:2.99 (1.19–7.53);

SAP:5.46 (1.64–18.74); �metalloproteinase 9:1.60 (1.12–2.27)]. The addition of baseline A2M and �metalloproteinase 9

or baseline SAP and �metalloproteinase 9 (model-2 or model-3) to clinical variables (model-1) significantly improved the
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area under curve for prediction of death [model-2 with A2M: p¼ 0.0205; model-3 with SAP: p¼ 0.001]. In conclusion,

among AIS patients treated with thrombolysis, circulating A2M, SAP and �metalloproteinase 9 are independent markers

of poor outcome. These results may prompt controlled clinical research about agents antagonizing their effect.
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Introduction

Accumulating evidence suggests that inflammatory
mechanisms are consistently involved in acute ischemic
stroke (IS), and that high levels of inflammatory
molecules are associated with early or late neurological
deterioration.1–5 Post-stroke neuro-inflammatory
mechanisms are complex cascade phenomena: after
the ischemic insult, changes occurring in the different
elements of the neurovascular unit and the subsequent
release of pro-inflammatory cytokines stimulates the
local production of metalloproteinase (MMP) 9 by
both resident cells and infiltrating monocytes and neu-
trophils.6–8 MMP9 contributes to the degradation of
neurovascular matrix and the disruption of the tight
junction proteins and the cerebrovascular basal lamina
protein, further promoting brain injury and favoring,
over hours or even days after the initial ischemic event,
new leukocyte extravasation, brain edema, and haemor-
rhagic transformation.9,10 Data about such changes
occurring in the clinical setting and studied using circu-
lating biomarkers are still scanty and incomplete.

A growing body of studies is confirming the associ-
ation between a systemic marker of inflammation, i.e.
C-reactive protein (CRP), and evolution of ischemic
stroke. In fact, elevations of CRP within 24 to 72 h of
admission has been consistently shown to be a valuable
independent predictor of poor outcomes, even after
adjusting for infection and atherosclerosis.5,11,12

Regarding biomarkers associated with poor progno-
sis in the setting of stroke patients treated with thromb-
olysis, evidence exists for few factors only. One is
definitely blood glucose: in fact hyperglycemia predicts
poor outcome not only among untreated patients but
also after thrombolytic treatment, as reviewed recently
by Hasan et al.4 A study, recently published by our
group, has shown that MMP9 variation after thromb-
olysis is associated with hemorrhagic transformation of
lesion and death at three months of follow-up.13

Concerning CRP and other inflammatory markers
of ischemic brain lesion after thrombolysis, scarce and
contrasting data are available in literature.14–16 No
study has addressed hitherto the issue of their potential
interaction with MMPs changes.

Using the patients enrolled into MAGIC Study,13 we
sought to investigate the association of pre- and post-
thrombolysis levels of an extensive array of multiple
pro-inflammatory and anti-inflammatory molecules
with symptomatic intracerebral hemorrhage (sICH),
three-month death and three-month modified Rankin
Scale score (mRS). We also studied the interplay
between MMPs, tissue inhibitors of metalloproteinase
(TIMPs) and the inflammatory markers.

Material and methods

Study population

Eligible were patients admitted for thrombolysis in 14
Italian centers, registered in the Safe Implementation
of Thrombolysis in Stroke-International Stroke
Thrombolysis Register (SITS-ISTR), according to
SITS-Monitoring Study criteria.17 Study protocol was
approved by local Ethical Committee of the Careggi
University Hospital (Florence) and all patients gave
informed consent.

The study compliance with the Declaration of
Helsinki.

Laboratory determinations

Whole venous blood was collected in tubes without
anticoagulant, before and 24 h after thrombolysis.
Tubes were centrifuged at room temperature at 1500 g
for 15min, and the supernatants were stored in aliquots
at �80�C until measurement of inflammatory markers,
MMPs and TIMPs. Samples were analyzed in a unique
central laboratory. Levels of different inflammatory
markers [interleukin (IL) 1b, IL1RA, IL4, IL6, IL8,
IL10, IL12, IL17, interferon gamma (IFNg), IFNg-
induced protein 10 (IP10), monocyte chemo-attractant
protein 1 (MCP1), macrophage inflammatory protein 1
beta (MIP1b), tumor necrosis factor alpha (TNFa),
CRP, alpha2 macroglobulin (A2M), serum amyloid
P(SAP), and haptoglobin] were determined using Bio-
Plex suspension array system and Biorad Kits (Bio-Rad
Laboratories Inc., Hercules, CA, USA). MMPs (MMP1,
MMP2, MMP3, MMP7, MMP8, and MMP9) and
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TIMPs (TIMP1, TIMP2, and TIMP4) were previously
determined in the same patients13 using Bio-Plex suspen-
sion array system (Bio-Rad Laboratories Inc., Hercules,
CA, USA) and R&D Kits (R&D System, Milan Italy)
following manufacturer’s instructions. The coefficient of
variation of inflammatory markers, MMPs and TIMPs
assays was <6%.

Outcomes

Outcomes were defined as follows: (1) sICH, using the
National Institute of Neurological Disorders and
Stroke criteria; 18 (2) three-month death; (3) modified
Rankin disability score (mRS), dichotomized into good
(mRS, 0–2) or poor (mRS, 3–6) outcome.

Statistical analysis

As a main explanatory variable, we used both baseline
and single patient’s relative pre- and post-thrombolysis
variation (� median value) of inflammatory markers,
MMPs and TIMPs levels. Pre-post thrombolysis vari-
ation was calculated according to the formula: [(24-h
post-tPA inflammatory markers, MMPs or TIMPs)–
(pre-tPA inflammatory markers, MMPs or TIMPs)/
(pre-tPA inflammatory markers, MMPs or TIMPs)].
Differences in these � values were analyzed in relation
to demographic and clinical features and across sub-
groups of patients with different outcomes.

We used Pearson �2 to test for significance while
comparing binary variables and ANOVA or Kruskal–
Wallis H Test for numeric variables as appropriate.
Values are presented as mean and standard deviation
or as median and interquartile range if they had a non-
Gaussian distribution.

As the parameters investigated had a non-Gaussian
distribution, log-transformed pre-tPA values for cyto-
chemokines, CRP, haptoglobin, SAP and A2M and
cube root-transformed pre-post tPA variations were used.

To analyze differences in biomarkers levels between
baseline and 24 h, we choose the Mann–Whitney U
Test because of relatively large statistical variations.
The net effect of each biomarker’s baseline or variation
on outcomes was then estimated by a logistic regression
model including as covariates age, sex, baseline blood
glucose, baseline NIHSS, history of atrial fibrillation,
history of congestive heart failure, time onset-to-
treatment, and history of inflammatory disorders or
infections, occurred in the last seven days, as the
main known outcome determinants. Since there were
significant variations in the concentration of studied
biomarkers across collaborating centers, in the multi-
variate analysis we controlled also for center effect.
To correct results for multiple comparisons, we used
the false discovery rate testing in all the statistical

analyses. Furthermore, Spearman correlation test was
used to study correlations between each MMP, TIMP
and inflammatory marker. Area under the receiver oper-
ating characteristic curve (AUC) of different regression
models for the detection of bad outcomes was also used.

To quantify how much the addition of a new bio-
marker correctly increases (upwards movements) or
decreases (downwards movements) the risk predicted
by the model for events and non-events, we assessed
category-free net reclassification improvement (NRI)
according to Xanthakis et al.19 To perform NRI calcu-
lation, we categorized the continuous variables A2M
and SAP into quartiles (A2M:1st quartile <1.28mg/mL,
2nd quartile 1.28–1.88mg/mL, 3rd quartile 1.89–
2.67mg/mL, 4th quartile >2.67mg/mL; SAP 1st quartile
<41.5mg/mL, 2nd quartile 41.5–54.5, 3rd quartile 54.6–
70.4, 4th quartile >70.4.

A significant level was defined as P< 0.05.
Integrated discrimination improvement (IDI) ana-

lysis was also performed. All analyses were performed
with SPSS 20.0 (SPSS Inc, Chicago, Ill) and Stata 13.0
(Lakeway Dr College Station, TX).

Results

We investigated 327 IS patients treated with tPA
thrombolysis, enrolled between October 2008 and

Table 1. Characteristics of the 327 patients enrolled in the

study.

Age, years, mean and SD 68.9� 12

Sex (male), n (%) 190/327 (58.1%)

Onset to treatment time, min-

utes, mean and SD

163.5� 75.7

Baseline National Institute of

Health Stroke Scale, mean

and SD

1.9� 6.0

Baseline systolic blood pressure,

mmHg mean and SD

148.2� 21.7

Baseline diastolic blood pres-

sure, mmHg mean and SD

80.1� 12.7

Blood glucose, mg/dl mean and

SD

130.2� 47.9

Risk Factors

Hypertension, n (%) 197/327 (61.0)

Diabetes, n (%) 50/327 (15.4)

Hyperlipidemia, n (%) 81/327 (25.8)

Current smoking, n (%) 51/327 (15.9)

Atrial fibrillation, n (%) 73/327 (22.7)

Congestive heart failure, n (%) 35/327 (10.9)

SD: standard deviation.
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June 2011 (mean age, 68.9� 12.1 years; 58% males).
The percentage of patients treated with endovascular
procedures after tPA was less than 2% overall.
A detailed description of patient cohort is reported in
our previous paper.13 Clinical and demographic char-
acteristics are summarized in Table 1.

Pre-, post-thrombolysis levels and pre-/post-thrombo-
lysis variations of inflammatory markers according to the
main outcomes are reported in the on-line-only Data
Supplement (see Tables 1, 2 and 3 in the Supplement).

Correlation between inflammatory markers and
MMPs, TIMPs

Baseline A2M significantly correlated with baseline
TIMP1 (r¼ 0.128), TIMP2 (r¼ 0.191), TIMP4 (r¼
0.298), MMP1 (r¼ 0.111) and MMP2 (r¼ 0.176)
(p< 0.05). Baseline SAP levels were also significantly

related with baseline MMP3 (r¼ 0.156), MMP7
(r¼ 0.160) and MMP8 (r¼ 0.111), (p< 0.05). The
other inflammatory markers were not significantly cor-
related with TIMPs or MMPs (data not shown).

Logistic regression analyses

At multivariate logistic regression analyses, after
adjusting for clinical and demographic determinants
of unfavorable outcome, patients with high pre-tPA
levels of A2M and SAP (Table 2) and patients with
higher variation in A2M, IL1Ra, IL8, IL10, and
TNFa had significantly higher risk of death (Table 3).

Among the inflammatory markers, only CRP, IL1b,
IL1Ra, IL6, IL8 and IL10 variations were associated
with three-month mRS 3–6 (Table 3).

None of the pre-tPA inflammatory markers was
significantly related with hemorrhagic transformation

Table 2. Effect of baseline inflammatory marker circulating level on sICH, three-month death, three-month mRS 3 to 6, adjusting *for

major determinants of the outcomes.

sICH Death 3 month mRS 3–6

OR (95% CI) P Value OR (95% CI) P OR (95% CI) P

Ln (C reactive protein-CRP) (mg/L) 0.94 (0.68–1.29) .70 1.23 (0.89–1.69) .21 1.01 (0.99–1.02) .17

Ln (haptoglobin) (mg/mL) 0.99 (0.74–1.32) .98 1.29 (0.94–1.76) .11 0.99 (0.98–1.02) .79

Ln (serum amyloid P-SAP) (mg/mL) 0.89 (0.35–2.28) .86 5.08 (1.58–16.29) .006 1.01 (0.99–1.02) .10

Ln (alpha2 macroglobulin-A2M) (mg/mL) 1.14 (0.53–2.45) .74 2.85 (1.19–3.87) .009 1.12 (0.91–1.28) .30

Ln (interleukin 1Beta-IL1Beta) (pg/ml) 1.09 (060–1.96) .78 0.57 (0.30–1.09) .09 1.03 (0.86–1.23) .76

Ln (interleukin 1 receptor antagonist-IL-

1Ra) (pg/mL)

0.68 (0.49–0.93) .02 0.82 (0.60–1.12) .20 1.00 (0.99–1.01) .84

Ln (interleukin 4-IL4) (pg/mL) 0.74 (0.46–1.21) .23 0.70 (0.39–1.25) .23 0.99 (0.91–1.07) .72

Ln (interleukin 6-IL6) (pg/mL) 0.81 (0.54–1.22) .30 1.28 (0.87–1.89) .21 0.99 (0.98–1.06) .45

Ln (interleukin 8-IL8) (pg/mL) 0.68 (0.40–1.16) .16 1.00 (0.63–1.60) .97 1.00 (0.99–1.01) .29

Ln (interleukin 10-IL10) (pg/mL) 0.77 (0.60–0.98) .03 0.79 (0.61–1.02) .07 0.99 (0.98–1.01) .50

Ln (interleukin 12-IL12) (pg/mL) 0.79 (0.55–1.13) .20 0.64 (0.43–0.95) .03 0.99 (0.98–1.01) .83

Ln (interleukin 17-IL17) (pg/mL) 0.85 (0.58–1.24) .39 0.76 (0.52–1.09) .13 0.99 (0.94–1.01) .67

Ln (interferon gamma-IFN gamma)

(pg/mL)

1.21 (0.67–2.20) .53 0.60 (0.37–1.08) .09 1.00 (0.99–1.01) .97

Ln (interferon gamma inducing protein-

10-IP10) (pg/ml)

0.84 (0.46–1.54) .66 0.74 (0.41–1.31) .30 1.0 (0.99–1.01) .08

Ln (macrophage inflammatory protein

1Beta-MIP1Beta) (pg/ml)

0.51 (0.20–1.32) .17 1.00 (0.42–2.40) .99 1.0 (0.99–1.01) .90

Ln (monocyte chemotactic protein 1-

MCP1) (pg/mL)

0.60 (0.35–1.05) .07 0.88 (0.51–1.50) .63 1.0 (0.99–1.01) .85

Ln (tumor necrosis factor alpha-

TNFalpha) (pg/ml)

0.79 (0.63–1.01) .05 0.80 (0.63–1.02) .07 1.0 (0.99–1.01) .95

*Binary logistic regression analyses adjustment for age, sex, onset-to-treatment time, baseline blood glucose level, baseline NIHSS, history of infections,

history of atrial fibrillation, history of congestive heart failure, and for center effect. P value was adjusted for multiple comparisons using the Benjamini

and Hochberg False Discovery Rate.
sCI: confidence interval; mRS: modified Rankin Scale; NIHSS: National Institutes of Health Stroke Scale; OR: odds ratio; sICH: symptomatic intracer-

ebral hemorrhage; TIMP: tissue inhibitors of metalloproteinases; Ln: natural logarithm.
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(Tables 2). Only pre-post-tPA variation of IL10 was a
significant predictor of the hemorrhagic transformation
(Table 3).

When in the logistic regression model containing
as independent variables age, sex, glycemia, baseline
NIHSS, history of atrial fibrillation, or congestive
heart failure, history of inflammatory diseases or infec-
tions occurred within the last seven days before stroke
onset, the inflammatory markers (each one at a time),
we added �MMP9 or �TIMP1 only pre-tPA A2M,
SAP and �MMP9 remained significantly and inde-
pendently associated with three-month death [OR
(95% CI): baseline A2M: 2.99 (1.19–7.53), p¼ 0.020;
baseline SAP: 5.46 (1.64–18.74); p< 0.01; �MMP9:
1.60(1.12–2.27), p< 0.01].

ROC analysis demonstrated that the addition of
baseline A2M and �MMP9 (model 2) or baseline
SAP and �MMP9 (model 3) to a model that included
factors known to affect the outcome (model 1) signifi-
cantly improved the area under the curve for the pre-
diction of mortality in IS patients [model 1:AUC¼ 0.82
(95% CI 0.74–0.90); model 2:AUC¼ 0.88 (95% CI
0.83–0.94), p¼ 0.0205; model 3: AUC¼ 0.90 (95% CI
0.84–0.95), p¼ 0.001] (Figure 1).

The addition of A2M as categorical variable (4th
quartile vs. others quartiles) led to a significant
change in the prediction of death (NRI¼ 0.469�
0.197; p¼ 0.0177) by the model 1 plus �MMP-9.
Changes in the risk of death estimated by the model
were also significant when SAP was added to the model

Table 3. Effect of Pre-Post-tPA variations of inflammatory marker circulating level on sICH, 3-month Death, 3-month mRS 3 to 6,

adjusting * for major determinants of the outcomes.

sICH Death 3 month mRS 3–6

Pre – Post-tPA variations (**) OR (95% CI) P OR (95% CI) P Value OR (95% CI) P

C reactive protein (CRP) (mg/L) 1.64 (1.15–2.34) .006 1.36 (0.94–1.95) .10 1.33 (1.03–1.72) .03

Haptoglobin (mg/mL) 0.96 (0.71–139) .96 1.21 (0.89–1.64) .22 1.02 (0.80–1.28) .92

Serum amyloid P (mg/mL) 1.57 (0.78–3.17) .20 1.44 (0.72–2.91) .31 1.07 (0.68–1.68) .78

Alpha2 macroglobulin (A2M)

(mg/mL)

1.36 (0.69–2.69) .37 2.32 (1.13–4.76) .02 1.15 (0.72–1.82) .56

Interleukin 1Beta (IL1Beta)

(pg/ml)

1.42 (0.82–2.46) .21 1.91 (0.96–3.78) .06 2.45 (1.36–4.39) .003

Interleukin 1 receptor antagonist

(IL-1Ra) (pg/mL)

1.16 (0.86–1.57) .32 1.58 (1.13–2.19) .007 1.53 (1.10–2.12) .012

Interleukin 4 (IL4) (pg/mL) 1.73 (0.91–3.30) .09 1.57 (0.77–3.29) .21 1.26 (0.77–2.05) .36

Interleukin 6 (IL6) (pg/mL) 1.11 (0.88–1.41) .38 1.64 (1.09–2.47) .01 1.49 (1.10–2.12) .01

Interleukin 8 (IL8) (pg/mL) 1.32 (0.97–1.81) .08 1.52 (1.02–2.26) .04 1.88 (1.32–2.69) <.001

Interleukin 10 (IL10) (pg/mL) 2.02 (1.31–3.12) .002 2.02 (1.30–3.12) .002 1.66 (1.17–2.35) .004

Interleukin 12 (IL12) (pg/mL) 1.06 (0.55–2.03) .86 1.34 (0.66–2.73) .42 1.33 (1.03–1.72) .03

Interleukin 17 (IL17) (pg/mL) 1.18 (0.72–1.92) .51 1.40 (0.84–2.34) .20 1.02 (0.80–1.28) .92

Interferon gamma (IFN gamma)

(pg/mL)

1.51 (0.83–2.75) .18 1.97 (0.99–3.92) .05 1.07 (0.68–1.68) .78

Interferon gamma inducing

Protein-10 (IP10) (pg/ml)

0.42 (0.17–1.05) .06 1.64 (0.87–3.11) .13 1.15 (0.72–1.82) .56

Macrophage inflammatory pro-

tein 1Beta (MIP1Beta) (pg/ml)

1.25 (0.61–2.53) .54 2.16 (0.98–4.77) .06

Monocyte chemotactic protein 1

(MCP1) (pg/mL)

0.51 (0.25–1.03) .06 1.39 (0.78–2.47) .26 2.45 (1.36–4.39) .003

Tumor necrosis factor alpha

(TNFalpha) (pg/ml)

1.23 (0.87––1.74) .25 2.15 (1.28–3.61) .004 1.53 (1.10–2.12) .01

(**)Cube root-transformed values of Pre-Post tPA variations were used.

*Binary logistic regression analyses adjustment for age, sex, onset-to-treatment time, baseline blood glucose level, baseline NIHSS, history of infections,

history of atrial fibrillation, history of congestive heart failure, and for center effect. P value was adjusted for multiple comparisons using the Benjamini

and Hochberg False Discovery Rate.
sCI: confidence interval; mRS: modified Rankin Scale; NIHSS: National Institutes of Health Stroke Scale; OR: odds ratio; sICH: symptomatic intracer-

ebral hemorrhage; TIMP: tissue inhibitors of metalloproteinases.
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with traditional risk factors and �MMP9 (NRI¼
0.493� 0.198; p¼ 0.0126).

The IDI for pre-tPA SAP was 0.0467� 0.0187,
p¼ 0.0307, whereas for A2M was not significant
(IDI¼ 00118� 0185, p¼ 0.2617).

No statistical interaction was found between inflam-
matory markers and MMPs/TIMPs.

Discussion

In this large series of patients treated with i.v. thromb-
olysis we found that: (1)baseline A2M and SAP levels
independently predict three-month death, (2)pre-post
tPA variations of CRP, IL1b, and IL6 are associated
with worse clinical outcome, (3)pre-tPA values of any
of the tested inflammatory markers are related with
SICH, whereas only pre-post tPA variation of IL-10
was a significant predictor of hemorrhagic transform-
ation and (4)after adjustment for several potential con-
founders and MMP9 and TIMP1, only baseline A2M,
baseline SAP and �MMP9 (reported in our previous
study on the same series of patients) remain signifi-
cantly and independently associated with three-month
death.

Inflammation is increasingly recognized to be the
key element in pathological progression of IS. After
cerebral ischemia, an inflammatory response mediated
by the activation of nuclear factor Kappa-B occurs, and
cytokines production by microglia and neurons may
significantly increase.20 A recent review of clinical
studies aimed to assess biomarkers related to poor
stroke outcomes showed that none of the inflammatory
molecules are associated with death risk.4

By using an extensive array of circulating cytokines
and other inflammatory markers, we identified, for the

first time, A2M and SAP as factors selectively asso-
ciated with three-month death.

Human A2M is a broad-spectrum proteinase inhibi-
tor, and a cargo protein for growth factors and cytokines
in the blood and other extracellular spaces.21 A2M
enhances prothrombotic properties by neutralizing plas-
min, plasminogen activators and activated protein
C.22–24 and acts as proteinase inhibitor through steric
shielding and rapid clearance of the bound proteinases.
This binding causes change in A2M conformation to an
activated form, which recognizes the low-density lipo-
protein receptor-related protein 1 (LRP1).25

In a case-control study,26 A2M levels were signifi-
cantly higher in patients with acute IS (especially those
with lacunar stroke) than in controls and they were asso-
ciated with older age and white matter lesion severity.30

Interestingly, in our study, we found significant correl-
ations between A2M and age (r¼ 0.27, p< 0.001), and
between A2M and NIHSS score at admission (r¼ 0.21,
p< 0.001). In addition, A2M levels turned out to be
independently associated with the total anterior circula-
tion syndrome (TACS) (p¼ 0.034).

SAP is a member of pentraxin family and plays a key
role in innate immunity and inflammation. SAP acti-
vates the classical complement pathway, has opsonin
activity and is a component of extracellular matrices,
and is present in elastic fibers in blood vessels.27,28

In our study, pre-post tPA variations of CRP, IL1b
and IL6 were associated with it three-month mRS 3–6,
after adjusting for potential confounders.

In humans, peripheral white blood cell count, CRP
level and cytokines are increased within 24 h after the
onset of stroke,7 and a prolonged activity of the post-
ischemic inflammatory response even three months
after the onset of stroke29 was demonstrated.

Model 1

Model 2

Model 1

Model 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

Figure 1. Receiver operating characteristic (ROC) curves for death of the two models of logistic regression. (model 1: age, gender,

glycemia, baseline NIHSS, atrial fibrillation, heart failure, recent infections or inflammations; model 2: model 1þ baseline a-2-

macroglobulinþ delta MMP9; model 3: model 1þ baseline SAPþ delta MMP9).
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Our data showed that the patients with higher pre-
post tPA increase in CRP, IL1b, IL6 and SAP were
those patients with higher risk of poor outcome (mRS
3–6), confirming the role of CRP in influencing the risk
of poor outcome in IS and extend to other inflamma-
tory markers such as IL1b and IL6.

Inflammation may underpin multiple factors known
to contribute to the hemorrhagic transformation after
thrombolysis such as vascular injury, reperfusion and
altered permeability. However, in our study, we did not
found any significant association between inflammatory
markers and hemorrhagic transformation.

Our data on pre- and post-tPA CRP are consistent
with those obtained by Karlinski et al.,16 showing
that patients treated with thrombolysis and with high
24h-serum CRP experienced more frequently sICH
than patients with normal CRP level, but after the adjust-
ment for clinical predictors of hemorrhagic transform-
ation, this association did not remain, as in the present
study. An unexpected result of our study was the signifi-
cant association between pre-post tPA variations of IL10
and sICH: patients who experienced the hemorrhagic
transformation had higher pre-post tPA variations of
the anti-inflammatory cytokine IL-10, suggesting that in
these patients, the increased pro-inflammatory response
observed after tPA administration was counterbalanced
by a higher anti-inflammatory response.

Among different definitions available for ICH occur-
ring after thrombolysis, we choose NINDS criteria as
the most sensitive one. In our cohort, the number of
patients with symptomatic ICH defined using NINDS
criteria was 8.3%, whereas it was 3.7% using ECASS
criteria, and only 0.3% using SITS-MOST criteria. The
choice of NINDS criteria might affect the results of our
study as a recent paper evidenced that the NINDS cri-
teria had the lowest clinical/functional effect.31 However,
in our study, functional outcome was anyhow deter-
mined since we had the three months Rankin’s score
assessed and analyzed for all patients.

In analyzing the interplay between MMPs and the
inflammatory markers in determining poor outcomes,
we demonstrated that �MMP9, baseline A2M and
SAP are the only factors independently associated with
three-month death, suggesting that both A2M, SAP and
MMP9 contributed to the cerebral damage after IS and
thrombolysis. A2M, in fact, determines a reduction in
the fibrinolytic potential. Furthermore, A2M and LRP1
can regulate matrix MMP,30 and A2M could be crucial
in the progression of atherosclerotic lesions through
interaction with LRP1.

The results of our study evidenced that A2M and SAP
may be clinically useful as they significantly and correctly
increases the risk predicted by the model including trad-
itional risk factors and �MMP-9 for death, suggesting
that high pre-tPA levels of A2M and SAP may be useful

to identify those patients with and increase probability of
death after the administration of tPA.

From a translational, clinical practice point of view,
the determination of pre-tPA levels of A2M and SAP,
easily and quickly assessed by immune-nephelometric
assay already available in general laboratories, could
help identifying very early, i.e. soon after the treatment,
patients at higher risk of worse outcome to be eventu-
ally subjected to a more intensive surveillance and care.

Further studies are needed to confirm the role of
biomarkers also in ischemic stroke patients treated
with endovascular thrombectomy.

The specific role of rtPA in stroke-related inflamma-
tion remains largely unknown since most of the side
effects could be due to reperfusion injury itself. Recent
experimental data show an effect on rtPA in enhancing
microglia cell recruitment after transient middle cerebral
artery occlusion (MCAO) in mice.32 In another study,
protein levels of IL6, TNF alpha, MMP9 were attenu-
ated after MCAO in those animals where the thromb-
olysis was successful.33

One limitation of our study is the lack of a control
group of patients with stroke not treated with tPA.
A further limitation rests upon the lack of further blood
sampling to determine the inflammatory response during
the first days after stroke, as different time-courses are
characteristic feature of different inflammatory markers.

In conclusion, our study documented that inflamma-
tion and particularly A2M and SAP influence, the
adverse outcomes in IS patients treated with tPA, and
suggests the usefulness of determining pre-tPA A2M
and SAP as surrogate predictor of unfavorable stroke
outcomes.

By exploring the complex interaction among several
inflammatory markers and MMPs, and by using an
extensive array of cytokine/chemokines and MMPs,
our results provide further insights into the patho-
physiological mechanisms underlying the unfavorable
outcomes after thrombolysis.

Present findings encourage controlled clinical trials
to test the effectiveness of MMP antagonists and anti-
inflammatory therapy administered together with tPA.
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