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What makes oncogenes mutually exclusive?
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ABSTRACT
Cancer is driven by mutations in genes whose products participate in major signaling
pathways that fuel cell proliferation and survival. It is easy to assume that the more of these
so-called driver mutations a tumor accumulates, the faster it progresses. However, this does
not appear to be the case: Data from large-scale genome sequencing studies indicate that
mutations in driver oncogenes often are mutually exclusive. The mechanisms underlying the
mutual exclusivity of oncogenes are not completely understood, but recent reports suggest
that the mechanisms may depend on the tumor type, and the nature of interacting
oncogenes. Here we discuss our recent findings that the oncogenes KRASG12D and BRAFV600E

are mutually exclusive in lung cancer in mouse models because their coexpression leads to
oncogene-induced senescence.
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Major driving oncogenes are commonly
mutually exclusive

Tumor development is driven by mutations that stim-
ulate intracellular pathways that regulate cell prolifer-
ation, survival, and invasion. Additional mutations
that synergistically increase tumor growth are
retained; but mutations that counteract each other,
are selected against in tumor evolution. Data from
cancer genome sequencing efforts have revealed that
mutations in major cancer driving oncogenes (e.g.,
RAS, RAF, and EGFR) are often mutually exclusive,
especially if the oncogenes participate in the same sig-
nal transduction pathway.1-10 Why should 2 activating
mutations in the same pathway that exert similar
effects be disadvantageous for a tumor cell? One
potential and frequently cited explanation is that 2
activating mutations do not occur in the same tumor
cell because they are functionally redundant; i.e., that
their coexistence does not provide an additional bene-
fit to the cell.11-13 If that was the case, their coexpres-
sion should not bring any negative consequences to
the cell. Another potential explanation is that,
coexpression of 2 oncogenes is harmful and causes
cell cycle exit, senescence, or death (Fig. 1). Until
recently, those 2 possibilities have not been addressed
experimentally under physiological conditions in vivo.

Coexpression of mutant forms of KRAS and BRAF
induces senescence

A significant body of evidence pointed to induction of a
permanent cell cycle arrest, often referred to as senes-
cence, after activation of more than one oncogene.14,15

Senescence is a stress response of a cell to different
insults, including suboptimal growth conditions, toxins,
reactive oxygen species, and radiation. Oncogene-
induced senescence (OIS) results from oncogene activa-
tion that leads to the generation of unusually high num-
ber of origins of replication and subsequent DNA
damage response (DDR) and cell cycle arrest. A common
denominator of diverse pathways leading to senescence
is expression of cell cycle inhibitory proteins (CDK
inhibitors).16 Among them, p16Ink4a and p19Arf play a
pivotal role, and together with p15Ink4b are encoded by
the INK4 locus.17,18

Could senescence explain the mutual exclusive pat-
tern of oncogenic RAS and RAF mutations? In mela-
noma, the most frequently mutated driving oncogenes,
NRASQ61R and BRAFV600E, activate the mitogen-acti-
vated protein kinase (MAPK) pathway.19 Those NRAS
and BRAF mutations are mutually exclusive to a point
that even when both mutations are found in the same
tumor, they can be traced to different clones, each with a
single mutation.20 Consistent with the senescence
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hypothesis of mutual exclusivity, forced expression of
NRASQ61R in an endogenous BRAFV600E-expressing mel-
anoma cell line resulted in a flattened cell morphology,
accumulation of cells in G1/G0 phase of the cell cycle,
and increased levels of senescence-associated (SA)-
b-galactosidase (SA-b-gal) activity.21 Those changes
were accompanied, and potentially induced by, hyperac-
tivation of the MAPK pathway as judged by high levels
of phosphorylated (p)-MEK and pERK. However, those
studies did not address whether the crucial CDK inhibi-
tors p16INK4a and p14ARF, and also p53, were involved.
Moreover, NRASQ61R was ectopically overexpressed
rather than expressed at physiologic levels from the
endogenous promoter; it is well known that overexpres-
sion of oncogenes can cause senescence.

We recently studied the mutual exclusive nature of
KRASG12D and BRAFV600E – 2 potent oncogenes and
activators of MAPK signaling, in mouse models of lung
cancer.22 In these models, inhalation of a Cre-adenovirus
induces expression of KRASG12D or BRAFV600E from the
endogenous promoters which results in physiological
levels of oncogene expression in the lung.23,24 Under
these conditions, BRAFV600E produced more tumors and
an overall higher tumor burden than KRASG12D. On the
other hand, even though KRASG12D produced fewer
tumors, the tumors were larger and of a more advanced
grade, suggesting a faster progression to established

advanced tumors. Those results are consistent with pre-
vious studies showing that BRAFV600E has a stronger
tumor-initiating capacity than KRASG12D, whereas
KRASG12D can generate bigger and more advanced
lesions.25-27 Indeed, the cell proliferation index was
higher in KRASG12D than in BRAFV600E tumors.

We then determined the impact of expressing both
oncogenes simultaneously. To approach this issue, we
intercrossed BRAFV600E and KRASG12D mice to produce
offspring where both oncogenes could be induced in the
lung following Cre-adenovirus inhalation. Strikingly,
tumor burden, number, and individual tumor area were
markedly lower in double-mutant mice than in
BRAFV600E mice, indicating that activation of KRASG12D

expression in the setting of BRAFV600E expression is dis-
advantageous and reduces tumor formation. This result
suggests that functional redundancy of BRAFV600E and
KRASG12D is not a likely explanation for their mutual
exclusivity: If the mutations were functionally redundant,
we should not have observed reduced tumor burden
caused by BRAFV600E. More importantly, the number of
proliferating cells was lower in double mutant tumors,
raising the possibility of growth arrest due to senescence
induction. To investigate the molecular mechanisms
behind the oncogene mutual exclusivity more closely, we
isolated mouse embryonic fibroblasts (MEFs) from 12.5-
day-old BRAFV600E, KRASG12D, and double-mutant

Figure 1. Co-expression of 2 potent oncogenes in the same cell may result in different outcomes. Expression of 2 strong oncogenes
(KRAS and BRAF; or KRAS and EGFR) hyperactivates their downstream signaling pathways (ERK, AKT, mTOR etc.), and leads to transcrip-
tional activation of target proteins. The most frequently reported suit of proteins encompasses cyclin-dependent kinase inhibitors,
p15Ink4b,p16Ink4a, and p19Arf. Those proteins may, in turn, drive cells toward senescence, or death through either apoptosis, or the
recently described form of cell death, methuosis. In our recent paper22 we suggest that induction of senescence underlies the mutual
exclusivity of KRASG12D and BRAFV600E in lung cancer.

188 J. CISOWSKI AND M. O. BERGO



embryos. We first evaluated proliferation of MEFs after
in vitro transduction with the Cre-adenovirus. Consistent
with the in vivo lung tumor data, proliferation of
BRAFV600E/KRASG12D double-mutant MEFs was lower
than in MEFs expressing either oncogene alone; and they
expressed higher levels of pERKs, showed strong SA-
b-galactosidase staining, and expressed higher levels of
cell cycle inhibitors p16Ink4a, p15Ink4b, and p19Arf. The
p21Cip1 tumor suppressor was not involved in the senes-
cence response, as its mRNA and protein levels were
unaltered. Moreover, expression of the MAPK pathway
negative regulators of the Dusp, Sprouty, or Spread fami-
lies was unaltered. The lack of activation of p21Cip1 was
surprising given that p19Arf is a positive regulator of p53,
the main transcriptional activator of p21Cip1. One possi-
bility is that the levels of p19Arf were not sufficiently high
to stabilize the p53 protein to a point where it obtains
robust transcriptional activity. To further elucidate the
requirement for both KRASG12D and BRAFV600E expres-
sion for the induction of senescence, we knocked down
the expression of the KRASG12D oncogene in the double-
mutant MEFs using retrovirally–delivered shRNAs.
Knock down of KRASG12D expression increased prolifer-
ation of BRAFV600E/KRASG12D MEFs, suggesting that
oncogenic KRAS is functionally involved in senescent
response induced by both oncogenes. Similarly, knock-
down of either p16Ink4a or p15Ink4b significantly increased
BRAFV600E/KRASG12D MEFs proliferation.

Cell death may underlie the mutual exclusivity
of other oncogenes

Interestingly, tumor burden in the double-mutant mice
was similar to the tumor burden observed in KRASG12D

mice. This finding raised the possibility that KRASG12D

expression inhibits efficient BRAFV600E-induced tumori-
genesis. Mutant KRAS was previously shown to induce
apoptosis, primarily by stimulating the RASSF1/Nore/
Mst1 tumor suppressor pathway,28 or by being phos-
phorylated by protein kinase C (PKC), and translocated
to mitochondria.29 We stained lung sections for cleaved
caspase-3 and terminal deoxynucleotidyl transferase
dUTP nick-end labeling (TUNEL) – well-established
markers of apoptosis. We reasoned that any proapop-
totic effect of KRASG12D expression should be rapid and
therefore evaluated apoptosis in lungs of mice, 4 and 10
d after Cre-adenovirus inhalation. However, the number
of apoptotic cells in BRAFV600E, KRASG12D, and double-
mutant lungs did not differ suggesting that apoptosis
does not contribute to the mutual exclusive nature of the
oncogenes. We cannot, however, exclude the possibility
that double-mutant cells underwent another form of cell
death. Along those lines, a recent study by Varmus and

co-workers30 showed that lung cancer cells coexpressing
mutant KRAS and mutant epidermal growth factor
receptor (EGFR) – which are mutually exclusive onco-
genes – undergo methuosis, a cell death pathway charac-
terized by vacuolization and ruffled cell membrane.31-33

Consistent with our findings, lung cancer cells expressing
both KRAS and EGFR displayed higher pERK levels.30

Ras mutations may coexist with mutations
in some of its downstream pathways

Mutations in KRAS are not mutually exclusive with
mutations in all of its downstream protein mediators.
Activating mutations in PI3KCA frequently coexist with
mutant KRAS in lung cancer.34,35 This may be related to
the fact that KRAS is a relatively poor activator of the
PI3K-AKT pathway,36 so it may benefit from activation
of this pathway without the risk of inducing senescence.
Accordingly, it has been proposed that activation of
PI3K-AKT pathway in mutant KRAS tumor cells may
stimulate tumor growth by reducing KRAS-induced
senescence.37 In keeping with this notion, KRAS muta-
tions frequently co-occur with mutations in HRAS, a
much stronger PI3K activator,36 in soft tissue sarco-
mas;13 but HRAS mutations are mutually exclusive with
loss of the PTEN tumor suppressor in skin cancer.38 On
the contrary, HRAS is recruited to the plasma membrane
and activates CRAF less efficiently than KRAS.36 It is
possible that RAF-MEK-ERK activation by HRAS is sub-
optimal and may benefit from additional activation by
e.g.,mutant BRAF.

Consistent with the mutual complementation of the
MAPK-ERK and PI3K-AKT pathways, mutations in
BRAF have been found together with mutations in PI3K
or with PTEN deletions in human tumors, and were
shown experimentally to increase tumor aggressiveness
in mice.39-42 Mechanistically, activation of both pathways
seems to enable escape from senescence.43 However,
another study revealed that expression of KRASG12V, or
expression of either of 3 KRAS mutants that specifically
activate one of the 3 major KRAS downstream pathways
MAPK-ERK, PI3K-AKT, and RalGDS, markedly reduces
endogenous BRAFV600E-induced lung cancer, suggesting
that activation of canonical KRAS pathways is incompat-
ible with BRAFV600E mutation.25 This interesting result,
should, however, be interpreted with caution as high
level of transgene expression of the 3 KRAS mutants was
used. Regardless, it seems clear that the mechanism that
underlies the mutual exclusive nature of oncogenic RAS
and RAF is potent, and effectively eliminates double-
mutant cells in tumor development and progression.
Intriguingly, mutations in KRAS and BRAF may sporad-
ically co-occur in advanced, metastatic disease44 likely
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due to inactivation of several tumor suppressive
mechanisms.

A key pathway downstream of both ERK and AKT is
the mTOR pathway which is responsible for new bio-
mass synthesis required for cell growth and proliferation.
It has been proposed that excessively strong mTOR sig-
naling may stimulate OIS, especially when the cell cycle
is inhibited by CDKs.45 Our data support this scenario.
Lung tumors that developed in BRAFV600E/KRASG12D

mice showed higher levels of phosphorylated AKTSer437,
a known downstream “feed-back-target” of mTORC2
and pS6Ser235/236 protein which is downstream of
mTORC1. Why does expression of both oncogenes syn-
ergistically increase mTOR activation is unclear, but may
involve cumulative activation of Akt pathway directly by
KRASG12D, and indirectly by BRAFV600E through activa-
tion of p90 ribosomal S6 kinase (RSK),46 inhibition of
PTEN expression via AP-1 transcription factor,47 nega-
tive regulation of LKB1/AMPK signaling,48,49 or through
a yet another mechanism. However, those possibilities
require an experimental verification.

Summary

Our paper aimed at elucidating the mechanisms behind
the mutual exclusive nature of 2 major human onco-
genes, KRASG12D and BRAFV600E using a mouse model
of lung cancer.22 In this paper we propose that cell cycle
arrest and senescence are causally involved in this
response. Our results imply that if a BRAFV600E-mutant
cell acquires an additional KRASG12D mutation, or vice
versa, it will hyperactivate MAPK-ERK pathway and sen-
esce, and be outcompeted by single mutant cells. This
concept fits well in the so-called “Goldilocks Principle,"
the idea that certain biological processes require precise
levels in order to promote fitness, where either too little
or too much is detrimental.50 The evidence that ERK sig-
naling obeys this principle was nicely illustrated in a
mouse model of breast cancer in which mutant KRAS
expression levels were doxycycline-regulated. Low levels
of KRAS activity promoted tumor formation, whereas
high levels induced growth arrest and senescence.51

Presently, it is unclear whether the mutual exclusive
nature of oncogenes may be exploited therapeutically.
Some light on this matter was shed by an intermittent
use of kinase inhibitors like BRAFV600E and MEK inhibi-
tors. When both inhibitors were withdrawn from
addicted cells, the pERK levels in those cells rebound,
and their growth was inhibited.52 Moreover, pharmaco-
logic inhibition of CDK4/6, which de facto mimics the
function of the endogenous CDK inhibitors, p16INK4a

and p15INK4b, is undergoing clinical trials in a number of
cancer types.53
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