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C9ORF72 is a GDP/GTP exchange factor for Rab8 and Rab39 and regulates
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ABSTRACT
Amyotrophic Lateral Sclerosis and Frontotemporal Dementia (ALS-FTD) are devastating
neurodegenerative disease affecting motoneurons from the spinal chord and neurons from the
frontal and temporal cortex, respectively. The most common genetic cause for ALS-FTD is an
expansion of GGGGCC repeats within the first intron of the C9ORF72 gene. However, little is known
on the function of C9ORF72. Recently, other and we found that C9ORF72 forms a stable complex with
the SMCR8 and WDR41 proteins. This complex acts as a GDP/GTP exchange factor for the small RAB
GTPases Rab8a and Rab39b. Since Rab8 and Rab39 are involved in macroautophagy, we tested the
role of C9ORF72 in this mechanism. Decrease expression of C9ORF72 in neuronal cultures leads to
autophagy dysfunction characterized by accumulation of aggregates of p62/SQSTM1. However, loss
of C9ORF72 expression does not cause major neuronal cell death, suggesting that a second stress
may be required to promote cell toxicity. Intermediate size of polyglutamine repeats within Ataxin-2
(ATXN2) is an important genetic modifier of ALS-FTD. We found that decrease expression of C9ORF72
synergizes the toxicity and aggregation of ATXN2 with intermediate size of polyglutamine (30Q).
Overall, our data suggest that reduce expression of C9ORF72 causes suboptimal autophagy that
sensitizes neurons to a second stress. These data suggest that reduce expression of C9ORF72 may
partly contribute to ALS-FTD pathogenesis.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuro-
nal neurodegenerative disorder for which no effective
treatment is available. With an estimated incidence of
2.6/100,000 per year and a lifetime risk of 1:350 for male
and 1:450 for female, Amyotrophic lateral sclerosis (ALS)
is the third most common neurodegenerative disease
worldwide and the most frequent motor neuron disease.
ALS is mainly characterized by the massive degeneration
of both upper (UMN) and lower (LMN) motor neurons
in the cerebral cortex and spinal cord, which rapidly leads
in most patients to paralysis and death due to denerva-
tion of the respiratory muscles. Frontotemporal dementia
(FTD) is the second most common presenile dementia
after Alzheimer disease. Increasing evidences indicate
that FTD and ALS pathologies form a continuum of neu-
rological diseases, which share a common pathological
background. First, ALS and FTD patients have an overlap
of clinical symptoms, since approximately 15% of FTD
patients have motor dysfunction meeting the criteria of
ALS and 15% to 30% of ALS patients have FTD. Also,
histopathological analyses demonstrate that ALS and
FTD patients share common histopathological markers

with accumulation of cytoplasmic aggregates of phos-
phorylated and cleaved transactive response DNA-bind-
ing protein 43 (TDP-43) in the vast majority of ALS
patients and in the most common Tau-negative patho-
logical subtype of FTD.31 Finally, the concept that FTD
and ALS represent a clinicopathological spectrum of dis-
ease is confirmed by genetic evidences as mutations in
TARDBP (encoding TDP-43 protein), UBQLN2, FUS
and, topic of this highlight, C9ORF72, lead to co-occur-
rence of ALS-FTD. Importantly, an expansion of hun-
dreds to thousands of GGGGCC repeats within the first
intron of the C9ORF72 gene represents the most com-
mon inherited cause for ALS and FTD, accounting for
20–60% of familial forms and 1–7% of sporadic ALS-
FTD patients in Northern Europe and North America.9,35

The GGGGCC expansion is located between 2 5 prime
non-coding exons of C9ORF72, which encodes a poorly
characterized protein. Three main non-exclusive mecha-
nistic models of C9ORF72-mediated ALS have been pro-
posed (review in ref. 17)

First, various studies indicate that expanded GGGGCC
repeats are transcribed both in the sense and the antisense
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strands, forming nuclear aggregates of RNA containing
expanded GGGGCC or GGCCCC repeats. Such mutant
RNAmay bind and titrate specific RNA binding proteins,
including hnRNP-A3, Pur-a, ADARB2, hnRNP-H, and
Nucleolin.1,10,18 However, whether the recruitment of
these RNA binding proteins leads to titration and loss of
their function remains to be determined.

The second potential mechanism for neurotoxicity of
expansions is a form of non-canonical protein translation
termed repeat-associated, non-ATG (RAN) translation.48

Extensive studies have now established that sense and
antisense RNA containing the expanded repeats are RAN
translated in all 6 sense and antisense frames, resulting in
expression of 5 different di-peptide repeats containing
proteins (DPRs), which form inclusions throughout the
brain of patients with C9-ALS/FTD.2,16,30,49 These DPRs
were also identified in mice expressing expanded GGG
GCC repeats;4 Peters et al., 2015; O’Rourke et al., 2015;27

Jiang et al., 2016), and were found to be toxic in neuronal
cell cultures and in Drosophila models through alteration
of the nucleocytoplasmic transport.14,22,40,47

Third, several studies consistently found reduced levels
of C9ORF72 transcripts in GGGGCC expanded-repeats
carriers, suggesting a possible loss-of-function disease
mechanism.1,9,35,42,43 Haploinsufficiency of C9ORF72 is
to be anticipated if the hexanucleotide-expanded genomic
DNA promotes epigenetics modification and impairs
C9ORF72 transcription. However, the absence of neuro-
nal phenotypes in mouse depleted of C9orf72 expression
in brain or in neurons,23,24 as well as the absence of ALS/
FTD patients with null alleles or misense mutations in
C9ORF72, argue against a loss-of-function of C9ORF72
as the sole or main cause of ALS-FTD. Nevertheless, evi-
dences of locomotion deficit in zebrafish with reduced
expression of C9ORF727 and the correlation of decreased
C9ORF72 mRNA expression with decreased patient sur-
vival43 suggest that reduced expression of C9ORF72 may
partly contribute to ALS-FTD pathogenesis.

C9ORF72 in complex with SMCR8 regulates
autophagy through Rab8 and Rab39

Despite many major recent advances, little is known on
the normal molecular and cellular functions of C9ORF72.
Other and we found that C9ORF72 forms a complex with
2 proteins, SMCR8 and WDR41 of unknown func-
tions.37,39,45 Bioinformatics analysis identified that both
C9ORF72 and SMCR8 contain DENN (Differentially
Expressed in Normal and Neoplastic cells) domains char-
acteristic of Rab GDP/GTP exchange factors (GEFs).26,46

Consistent with these predictions, we found that SMCR8
interacts with various RAB GTPases and that the

C9ORF72-SMCR8 complex promotes in vitro GDP/GTP
exchange for the Rab8a and Rab39b. Since Rab8 and
Rab39 are involved in macroautophagy (Pilli et al.,
2012;36,38 and as SMCR8 was identified in proteomic
analysis of autophagy network,3 we investigated whether
C9ORF72 was regulating autophagy. Depletion of
C9ORF72 expression by shRNA and/or siRNA in trans-
formed neuronal cells or in primary cultures of cortical
neurons of E18 mouse embryo has a deleterious role on
autophagy, with notable accumulation of unresolved
aggregates of the autophagy receptor P62/SQSTM1. A
function of C9ORF72 in autophagy is consistent with a
previous report of LC3B alteration in C9ORF72 siRNA-
depleted neuronal cells,12 but also with the increased
accumulation of P62 and the susceptibility to autophagy
inhibitors observed in cultures of human neurons derived
from iPS cells of ALS-FTD patients carrier of an
GGGGCC expansion in C9ORF72.1,8 Furthermore, the
recent demonstration that siRNA-mediated depletion of
C9ORF72 leads to a decrease formation of LC3B-positive
vesicles conclusively pinpoints a role of C9ORF72 in the
initiation of autophagy.44 Finally, a role of the C9ORF72-
SMCR8 complex in autophagy is also strengthened by the
observation that this complex interacts with 2 kinases reg-
ulating autophagy, ULK1 and TBK13,37,39,44 Our in vitro
phosphorylation assays indicate that both ULK1 and
TBK1 kinases phosphorylate SMCR8, but not C9ORF72.
Interestingly, a mutant of SMCR8 threonine 796 in
aspartic acid, which mimics a constitutive phosphoryla-
tion of SMCR8 by TBK1, is able to correct autophagy dys-
functions caused by siRNA-mediated reduced expression
of either SMCR8 or TBK1. This may be relevant to disease
pathogenesis as loss of function mutations in TBK1 cause
ALS-FTD.6,15 Furthermore, TBK1 is known to phosphor-
ylate P62 and OPTN, 2 autophagy receptors also found
muted in rare case of ALS.28 In that aspect, we found that
Rab39b interacts with P62 and confirmed previous obser-
vations19 (Pilli et al., 2012) that OPTN interacts with
Rab8a. These results support a model where P62 or
OPTN autophagy receptors act as essential hubs to gather
specific Rab GTPases with there specific GEF effectors
and kinase regulators to initiate autophagy precisely at
the site of ubiquitinated protein aggregates, dysfunctional
organelles or intracellular pathogens (Fig. 1). A model
supported by the recent report of the importance of TBK1
recruitment to dysfunctional mitochondria to phosphory-
late P62 or OPTN and initiate mitophagy.20,25,29 Finally,
we found that a mutant form of Rab39b, which is locked
in its GTP conformation and does not consequently
require any GEF activity, can rescue autophagy dysfunc-
tion caused by siRNA-mediated loss of C9ORF72-
SMCR8 or of its upstream kinase regulator, TBK1. These
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results suggest that TBK1, C9ORF72-SMCR8 complex
and RAB39b belong to a common pathway regulating
autophagy in neuronal cells.

Loss of C9ORF72 synergizes ATXN2 polyQ toxicity

While reduce expression of C9ORF72 causes a partial dys-
function of autophagy, this was not sufficient to trigger overt
neuronal cell death in neuronal cultures. This is consistent
with the absence of neurodegeneration inmouse depleted of
C9orf72 expression in brain or in neurons.23,24 Thus, we
hypothesized that a second stress might be required to trig-
ger neuronal cell loss upon C9ORF72 depletion. Intermedi-
ate size of 27 to 33 glutamines in Ataxin-2 increases the risk
of ALS-FTD.11 Importantly, we found that decrease expres-
sion of C9ORF72 synergizes the toxicity of Ataxin-2 with 30
glutamines both in mammalian neuronal cell cultures and
in zebrafish embryos. Importantly, this synergic or double
hit model of toxicity is consistent with the absence of ALS/
FTD patients with null or misense mutations in C9ORF72,
while there is increasing genetic evidences of oligogenicity
in ALS-FTD.13,42 Also, this synergic toxicity appears specific
to Ataxin-2 since reduced expression of C9ORF72 does not
accentuate aggregation of Ataxin-3 or huntingtin with

expanded polyglutamine repeats.37 This is rather unex-
pected, as these polyglutamine-containing proteins are
cleared by autophagy. However, it is possible that the little
effect of C9ORF72 loss on the aggregation of Ataxin-3 or
huntingtin that we observed is due to the inherent limitation
of in vitro cell cultures and the short time frame of our study.
Alternatively, the aggregations of Htt or Ataxin-3 with
expanded polyglutamine repeats may have reach a maxi-
mum in our cell culture and cannot be enhanced further.
Thus, an effect of C9ORF72 depletion on polyglutamine-
containing proteins remains to be tested in animal model
and/or on a longer time period of analysis.

Conclusion and perspectives

Expansion of GGGGCC repeats within the first intron of the
C9ORF72 gene is the prime cause of ALS-FTD, but little is
known on the molecular function of C9ORF72. Recent evi-
dences indicate that C9ORF72 interacts with SMCR8 and
that this complex regulates autophagy.3,12,37,39,44,45 However,
the precise role of C9ORF72 or SMCR8 in the autophagy
pathway remains to be determined. C9ORF72 and SMCR8
in complex or in isolation interact with various Rab
GTPases, including Rab8 and Rab39 as well as Rab1, Rab5,
Rab7 and Rab11,12,44 but it is unclear which Rab would reg-
ulate which autophagy steps in which tissue or cellular type.
Furthermore, Rab GTPases act in cascades where the pas-
sage from one Rab to the next requires the recruitment of
Rab GAP and GEF effectors to the upstream and down-
stream Rab GTPases, respectively. Thus, it remains to deter-
mine the importance of C9ORF72-SMCR8 in such Rab
cascade as well as the identity of such Rab GTPases. In that
aspect, the recent demonstration that Rab1 may be the ini-
tial Rab GTPase recruiting C9ORF72 to promote GDP/
GTP exchange and thus activation of a downstream Rab
GTPase is especially exciting.44 It is also highly possible that
C9ORF72 and SMCR8 in complex or in isolation bind
specific Rab GTPases involved in other cellular process than
autophagy. In that aspect, functions of C9ORF72 in endocy-
tosis and lysosomal pathways have been recently
suggested.5,12,33,39 Next, we found that SMCR8 is phosphor-
ylated by ULK1 and TBK1. Also, SMCR8 is found phos-
phorylated by AMPK and mTOR kinases in large
proteomic screen. However, the physiological consequences
of SMCR8 phosphorylation by ULK1, TBK1, AMPK or
mTOR kinases remain to be explored. Finally, reduce
expression of C9ORF72 is not overly toxic by itself but syn-
ergizes the toxicity of Ataxin-2 with intermediate size of pol-
yglutamine. This synergic model supports a 2 hit hypothesis
in ALS-FTD and partly explains why the sole loss of
C9ORF72 is not sufficient to cause massive neuronal cell
death in cell culture or in knockout mouse models. How-
ever, it remains to test validity of this model in mammals,

Figure 1. Tentative model of C9ORF72 role in autophagy.
C9ORF72 forms a complex with the SMCR8 and WDR41 proteins.
This complex acts as a GDP/GTP exchange factor for the small
GTPases Rab8a that interacts with the autophagy receptor Opti-
neurin (OPTN), or for Rab39b that interacts with P62, an auto-
phagy receptors alike to OPTN. SMCR8 is phosphorylated and
potentially activated by the TBK1 kinase, which also interacts
with OPTN. Optineurin bridges ubiquitinated proteins to the
autophagosome membrane through the LC3B proteins. Recruit-
ment of Rab8a and TBK1 by OPTN allows initiation of autophagy
at the precise site of protein aggregate, dysfunctional organelles
or intracellular pathogen. However, it remains to determine the
function of Rab8a or RAb39b in autophagy, notably whether
Rab8a or Rab39b may promote autophagosome membrane elon-
gation or fusion.
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notably by testing whether expression of Ataxin-2 with
intermediate size of polyglutamine promotes neuronal cell
death in C9ORF72 knockout mice. Similarly, it remains to
explore whether reduced expression of C9ORF72 may syn-
ergize other cellular stress such as RAN translation of
expanded GGGGCC repeats into toxic DPRs. Furthermore,
as Rab39b interacts with P62 that is involved in the autopha-
gic clearance of protein aggregates, while Rab8 interacts with
OPTN that is involved in the autophagy of dysfunctional
mitochondria,20,25,29 it will be exciting to test whether
C9ORF72 is also involved in mitophagy. Last but not least,
it is striking to note that various mutations causing ALS-
FTD are found in genes involved in protein clearance path-
ways, includingUBQLN2, CHMP2B, VCP, OPTN, SQSTM1
and TBK1. Thus, our work linking decrease expression of
C9ORF72 to suboptimal autophagy may provide further
support to compromised protein-clearance mechanisms in
ALS-FTD (Fig. 2).Whether suboptimal protein degradation
may contribute to disease pathogenesis in ALS-FTD is an
exciting area that remains to be fully explored.
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