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Autophagy, a catabolic process necessary for the maintenance 
of intracellular homeostasis, has recently been the focus of 
numerous human diseases and conditions, such as aging, 
cancer, development, immunity, longevity, and neurode-
generation. However, the continued presence of autophagy is 
essential for cell survival and dysfunctional autophagy is 
thought to speed up the progression of neurodegeneration. 
The actual molecular mechanism behind the progression of 
dysfunctional autophagy is not yet fully understood. Emerging 
evidence suggests that basal autophagy is necessary for the 
removal of misfolded, aggregated proteins and damaged 
cellular organelles through lysosomal mediated degradation. 
Physiologically, neurodegenerative disorders are related to the 
accumulation of amyloid  peptide and -synuclein protein 
aggregation, as seen in patients with Alzheimer’s disease and 
Parkinson’s disease, respectively. Even though autophagy 
could impact several facets of human biology and disease, it 
generally functions as a clearance for toxic proteins in the 
brain, which contributes novel insight into the pathophy-
siological understanding of neurodegenerative disorders. In 
particular, several studies demonstrate that natural compounds 
or small molecule autophagy enhancer stimuli are essential in 
the clearance of amyloid  and -synuclein deposits. Therefore, 
this review briefly deliberates on the recent implications of 
autophagy in neurodegenerative disorder control, and em-
phasizes the opportunities and potential therapeutic application 
of applied autophagy. [BMB Reports 2017; 50(7): 345-354]

INTRODUCTION

Autophagy is a cellular process which can have a wide range 

of effects on pathological and physiological conditions, fre-
quently leading to the removal of damaged/injured organelles 
and aggregated proteins (1). In more general terms, basal 
autophagy is important for removing misfolded proteins and 
damaged organelles, and therefore plays a crucial role in 
maintaining cellular homeostasis. Autophagy participates in a 
variety of normal physiological processes such as glucose 
homeostasis (2), lipid metabolism (3), aging (4) and many 
more. However, failure of autophagy causes cellular dys-
functions which render them unable to remove defective 
proteins or damaged organelles. Knockdown/inhibition of 
autophagy often causes premature aging in Caenorhabditis 
elegans (5). Interestingly, research in Drosophila melanogaster 
suggests that lifespan extends after enhanced autophagy (6). 
Several other studies have shown that deletion/mutation of the 
autophagy-related gene (Atg) provokes an imbalance of body 
homeostasis, resulting in obesity (7), insulin resistance (8), 
diabetes (9), and some neurodegenerative disease as well (10). 
In addition, neurodegenerative disease occurs when aggregated 
proteins are not accurately degraded by autophagy; for 
example, accumulation of aggregated forms of amyloid- (A) 
peptide (11) and tau protein (12) in Alzheimer’s Disease (AD), 
-synuclein in Parkinson’s Disease (PD) (13), and that of 
huntingtin in Huntington’s Disease (HD) (14). Therefore, auto-
phagy pathways could be a potential therapeutic target for the 
treatment of neurodegenerative diseases. Indeed, neuronal 
cells are easily damaged through impaired autophagy among 
all types of cells in physiological systems (15). Under- 
stimulated autophagy has been correlated with difficulty to 
maintain synaptic activity (16) and axonal homeostasis (17). 
Several studies have managed to demonstrate a relationship 
between neurodegeneration and the autophagy signaling 
pathway (18). This review would like to emphasize the under-
standing of the basic molecular mechanisms and regulation of 
autophagy in neurodegenerative disease control. 

MOLECULAR MECHANISMS OF AUTOPHAGY

Autophagy occurs through consecutive steps in the molecular 
biological pathway, such as sequestration, delivery of auto-
phagosome to lysosomes (autolysosomes), degradation and 
utilization of toxic components, and collectively every step 
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Fig. 1. Regulation of autophagy signaling pathway. Autophagy may initiate deprivation of nutrients or growth factors which activate AMPK 
and/or inhibition of mTORC1, leading to stimulation of ULK complex (FIP200 and ATG13). Beclin-1 become phosphorylated, leading to 
VPS34 activation and then initiation of phagophore formation. VPS34 complex function comprises a regulatory subunit like VPS15 (p150) 
and Beclin-1, their connection being with other regulatory factors e.g. AMBRA, ATG14, UVRAG, and BIF-1. Atg5–Atg12 conjugation 
involves Atg7 and Atg10 to form a complex, Atg12-atg5-Atg16 influences the formation of phagophores. Atg5 and Atg12 forms a complex 
with Atg16, which acts like an E3-function towards LC3-PE assembly (LC3-II). This has a role in the initiation of phagophore formation. 
LC3-II is a particular autophagy indicator marker which is eventually disrupted by autolysosomes. Autophagosome maturation also involves 
fusion with lysosomes which are mediated by Rab7, ESCRT and SNARE proteins, eventually leading to cargo degradation and recycling of 
nutrients and metabolites.

demonstrates the diverse role of autophagy. Importantly, 
formation of phagophores are initiated during the early stages 
of autophagy, the production components of which are likely 
derived from numerous sources, including the endoplasmic 
reticulum (19), the endoplasmic reticulum-golgi intermediate 
compartment (20), the plasma membrane (21), recycling endo-
somes (22), the golgi complex (23), and lipid droplets (24). In 
fact, multiple autophagy-related genes are involved in membrane 
rearrangements and autophagosome formations that conse-
quently become attached to the lysosomes. Generally, there 
are two ubiquitin-like conjugation reactions involved during 
autophagy. Firstly, there is the Atg12 conjugation to Atg5. 
Secondly, Atg16L1 binds to conjugate Atg12-Atg5 to form a 
complex which is essential for phagophore maturation (25). 
However, the second conjugation of Atg8 and LC3 is 
necessary to complete the autolysosome formation, in that the 
process of LC3 being cleaved through Atg4 to obtain cytosolic 
LC3-I. Finally, LC3-I is coupled to phosphatidylethanolamine 
(PE) during the macromolecular assembly of phagophores, 
which appears in the form of microtubule-associated protein 
light chain 3 (LC3-II) proteins (Fig. 1). It has been found that 
LC3-II localizes to the autophagosomal membrane, which is 
the most important marker of autophagy in mammal cells (26). 

Whereas with several adaptor proteins, such as the neighbor of 
BRCA1 gene 1 (NBR1), nuclear dot protein 52 (NDP52), and 
p62/sequestosome 1 proteins are directly bind to LC3-II (27, 
28). Subsequently, misfolded proteins (29) or abnormal cellular 
organelles (as well as mitochondria (30), peroxisome (31) and 
the endoplasmic reticulum (32) are engulfed by double- 
membrane autophagosomes. Strikingly, the autophagosomes 
are ultimately combined with lysosomes to form an autoly-
sosome, where the internal substrates are degraded to produce 
nutrients and metabolites (33).

CLEARENCE OF AGGREGATE-PRONE PROTEINS 
THROUGH AUTOPHAGY IN NEURODEGENERATION

Recently, several studies revealed that intracellular protein 
aggregation and misfoldings are a common phenomenon of 
many neurodegenerative diseases, such as AD, PD, HD, and 
spinocerebellar ataxias (SCA) (34). To date, there are no efficient 
therapeutic approaches that can cure or prevent neurode-
generation diseases in humans. Thus, the need to understand 
the precise molecular mechanisms of neurodegeneration is 
urgent. To be studied are factors that regulate expression levels 
of protein misfolding and aggregate-prone proteins during the 
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Fig. 2. Modulation of autophagy and intersections between autophagy and disease-associated genes as a therapeutic approach for 
neurodegenerative disorders. Impaired autophagy is involved in the pathogeneses of several neurodevelopmental and neurodegenerative 
disorders. Different cytosolic mutant and aggregate proteins are linked with neurodegenerative symptoms, which may predominantly be 
removed through autophagy. Pharmacological stimulation of small molecule autophagy enhancers may initiate autophagy via mTOR 
dependent/independent pathways that reduce mutant protein-associated aggregates and toxicity, leading to cytoprotection and rescue against 
neurodegeneration. Several genes connected with neurodegenerative disorders have now been associated with autophagy function. These 
genes perform a number of diverse steps throughout the autophagic cycle, from early steps of autophagosome development through 
autolysosome formation. Their proposed sites of action are now designated, along with the neurodegenerative disease with which they are 
associated.

process of neurodegeneration. Usually, there are many methods 
to treat neurodegenerative diseases that might enhance 
degradation of prone-proteins. Among the most possible routes 
of misfolded protein clearance are the autophagy-lysosome 
and ubiquitin-proteasome pathways (Fig. 2). Although the 
ubiquitin proteasome system primarily degrades small-molecule 
proteins, its mechanism is not clear and it is unknown whether 
it is a possible therapeutic target for the clearance of 
aggregate-prone proteins. In addition, autophagic degradation 
of aggregate-prone proteins are related to decreasing protein 
aggregation and toxicity. Therefore, enhancing autophagy may 
be a promising therapeutic approach for neurodegenerative 
diseases, in that aggregate-prone proteins are used as autophagy 
substrates, such as tau (35), -synuclein (36), mutant huntingtin 
(14), and mutant ataxin 3 (35), for their clearance of toxic 
products and having an effect on neurodegeneration control. 

Autophagy in Alzheimer’s disease
AD is a multifactorial, irreversible, progressive and the most 
common type of dementia in elderly people worldwide. It is 
characterized by the gradual diminishment of memory and 

thoughts, and ultimately the capability to carry out any 
cognitive function (37). Recently it has been shown that the 
main pathological feather of AD is comprised of intracellular 
neurofibrillary tangles containing hyperphosphorylated tau 
proteins, self-aggregating extracellular A plaques, the 
weakening of cholinergic function, and eventually autophagy 
dysfunction (38, 39). However, the A peptide derived from 
the successive splitting of amyloid precursor protein (APP) 
through the -site APP cleavage enzyme 1 (BACE1) and 
-secretase also has been linked to neurodegeneration. 
Accumulation of this peptide has been shown to cause 
cognitive deficits and neuronal dysfunction in the cortex and 
hippocampus during AD pathogenesis (40). Particularly, A 
may also be produced in autophagosomes, which seem to 
comprise APP and presenilin-1 enzymes that participate in the 
cleavage of APP to A (41). Additionally, autophagy con-
ditions may play an important role in A secretion into 
extracellular space, where it contributes to the accumulation 
of plaques. Numerous studies shows that deletion of Atg7 in 
transgenic mice models of APP results in fewer A 
extracellular secretions as well as plaque formations; therefore 
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autophagy up–regulation would simply lead to degraded A 
secretion (42). Furthermore, other research has suggested that 
autophagy is involved in the removal of A under physio-
logical states, suggesting that maintenance of A homeostasis 
in a healthy brain is essential (43). In correlation with these 
findings, it has been indicated that autophagy activation is 
decreased in AD patient brains and animal models (44). More 
importantly, the direct link between autophagy reduction 
activity and promotion of accumulation of A in the brain 
consequently demonstrates their contribution to AD patho-
genesis (45). Therefore, targeting A and tau protein should be 
considered as an important therapeutic approach against AD 
pathogenesis via upregulation of the autophagy process.

Perhaps most importantly, class III PI3K/beclin-1 signaling 
has been found to be a constructive and significant regulator in 
autophagy (46). For that reason, it seems that modulation of 
autophagy represents a feasible method for A clearance in the 
brain (45). Moreover, substantial efforts have been made to 
recognize safe and effective pharmacological stimulation of 
autophagy for AD treatment (47). In practical terms, the 
existing outcomes of ongoing research have provided 
biochemical, epidemiological, neuropathological and genetic 
evidence to further motivate the design of viably therapeutic 
approaches against AD. Incidentally, most anti-AD research 
groups are now embracing the discovery of BACE1, a 
rate-limiting enzyme in A generation, which acts as an 
enzymatic inhibitor (48). To understand the molecular basis of 
AD in autophagy, recent studies have been shown that 
elevated protein levels of BACE1 found in AD patients, as well 
as mouse models, suggest the down-regulation of BACE1 
expression as a novel target for AD treatment (49, 50). Even 
though this approach may offer some improvement, an 
effective therapy to halt the development of neural damage in 
AD patients is still missing. Meanwhile, medications for AD 
have already been approved by the FDA, such as an NMDA 
receptor antagonist and four other acetylcholinesterase (AChE) 
inhibitors (51). It is possible that combined therapy with 
NMDA receptor antagonists along with AChE inhibitors could 
facilitate greater treatment efficacy. Otherwise, multifunctional 
agents are also being considered as possible drug candidates 
for AD (52). For that reason, research for multi-target com-
pounds has been constantly growing for the treatment of AD 
(53). 

For treatment purposes, autophagy enhancers treated in 
various AD mouse models have produced useful evidence 
related to a decrease in A levels. For example, carbamazepine, 
an mTOR-independent autophagy stimulator, improves memory 
deficits by enhancing autophagy via decreasing A formation 
in APP/PS1 double-transgenic mice (54). Notably, A plaque 
formation diminishes by rapamycin in triple-transgenic PS1/ 
APP/Tau mice and improves cognitive defection through 
inducing autophagy (55). Lithium treatment also suppresses 
tau protein in aged APP/PS1 mutant mice pathology via 
GSK3 inhibition, found to disturb tau phosphorylation (56). 

Interestingly, latrepirdine, an antihistamine drug, shows to 
increase autophagy by reducing the A peptide through 
inactivating the mTOR complex 1, which has been found to 
recover cognition function in an AD mice models (57). 
Correspondingly, trehalose, a disaccharide sugar, reduces 
aggregation of insoluble tau, which enhances neuronal 
brainstem survival in the cerebral cortex via influences of 
autophagy (58). Moreover, rapamycin and lithium have been 
demonstrated to decrease the aggregation of p62 in cortical 
and hyperphosphorylated tau proteins (59, 60). Taken together, 
all of this evidence indicates that autophagy stimulation is a 
promising therapeutic approach for “tauopathies,” as well as 
for A clearance in AD mouse models.

Autophagy in Parkinson’s disease 
PD is a progressively degenerative disorder of the nervous 
system and the second most common neurodegeneration in 
humans. PD is a long-term degenerative brain disorder that 
mostly affects motor function of the central nervous system, 
due to the progressive degeneration of dopamine neurons in 
an area of the brain called the substantia nigra, where clumps 
of -synuclein protein known as Lewy Bodies are formed (61). 
Dementia becomes more common in advanced phases of the 
disease, with depression and anxiety generally occurring in 
more than one third of people with PD (62). PD is also related 
with A53T and A30P point mutations of -synuclein or 
leucine-rich repeat kinase 2 mutations, and sometimes other 
gene multiplication. PTEN-induced kinase 1 or Protein 
deglycase mutations in parkin have also c been associated 
with recessive, early-onset PD (63). The pathological feature of 
early-onset PD is Lewy body formation via -synuclein 
aggregation (64). It has been found that -synuclein point 
mutations are sometimes autophagy substrates and their 
excessive expression does not distress autophagy (65). For that 
reason, autophagy influences by lithium, trehalose, carbama-
zepine, calpastatin, and rilmenidine promote the removal of 
mutant -synuclein (66). In contrast, wild-type -synuclein 
overexpression reduces autophagosome synthesis in transgenic 
mice and mammalian cells through down regulation of 
Ras-related protein Rab-1A (65). Additionally, overexpression 
of -synuclein has been proposed to prevent autophagy in the 
rat midbrain by repossessing transcription factor EB into 
combinations, thereby affecting cytoplasmic retention. Con-
versely, transcription factor EB overexpression activates 
autophagy and prevents neurotoxicity of -synuclein-induction 
(67). Hence, autophagy activator protein beclin-1 ameliorates 
neuronal pathology in lentiviral-overexpression transgenic 
mice models through a decrease in -synuclein accumulation 
(36). Even though the effectiveness of autophagy stimulation in 
vivo attempts further warrant consideration, absence of strong 
neurodegeneration phenotypes, together with dopaminergic 
neuronal susceptibility in numerous transgenic PD models, 
have prevented treatment trials in PD (68).

In the preclinical approach to PD, autophagy’s significance 
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has been increased by the promising effects of several 
potential autophagy enhancers, such as rapamycin, lithium, 
metformin and trehalose - routinely used in laboratory settings 
to increase clearance of -synuclein – thereby protecting 
neuronal cells (69). To date, the most comprehensively-tested 
autophagy-enhancer is rapamycin, isolated from bacterial 
strain of Streptomyces hygroscopicus. In particular, rapamycin 
blocks the upstream signaling factor mTOR by binding to its 
intracellular small protein FK506 binding protein 12 receptor, 
thus disrupting mTOR function (70). Rapamycin also has the 
capability to decrease -synuclein accumulation and block 
-synuclein induction of neurodegeneration in wild-type and 
A53T -synuclein expressing PC12 cells (71), as well as - 
synuclein overexpressing mice (72) and rats (67). In addition, 
rapamycin decreases neuronal cell death induce via 6-OHDA 
(73), rotenone (74) and MPTP mouse models of PD (74). 
Furthermore, rapamycin exclusively improves motor function 
in A53T -synuclein overexpressing mice (75) and also shows 
neuroprotective activity in Drosophila melanogaster mutated 
PTEN-induced putative kinase-1 as well as parkin (76); although 
it has been noted to accompany a widespread number of 
side-effects (77). By comparison, another preclinical trial drug, 
lithium, induces autophagy in an mTOR-independent manner 
and has a role in in vivo as well as in vitro models of 
neuroprotection (78). In preclinical models of PD, lithium has 
been shown to inhibit aggregation of -synuclein in PC12 cells 
expressing A53T and A30P -synuclein (79). In addition, 
lithium has also been demonstrated to prevent rotenone- 
induction neurotoxicity and cell death through the stimulation 
of autophagy (80). When taken together, these preclinical 
studies via rapamycin in addition with lithium shows valuable 
effects on diverse models of PD-related pathological progres-
sions, such as -synuclein aggregation, which is associated 
with autophagy stimulation. These pioneering studies have 
demonstrated that the prospective role of autophagy-enhancing 
approaches in the setting of experimental drugs and medical 
treatments lends credence to the furtherance of research in 
PD-related pathology.

Autophagy in other neurodegenerative diseases
Huntington disease (HD), an autosomal dominant mutation, is 
a progressive neuronal genetic disorder that impacts muscle 
coordination and manifests in the formation of cognitive 
decline and dementia. Symptoms include unsteady move-
ments, lowering of mental and emotional abilities, and finally 
psychiatric and behavioral problems (81). Pathologically 
speaking, the polyglutamine disorder group of neurodegenera-
tive diseases are caused by the expansion of cytosine-adenine- 
guanine repeats in DNA encoding, therefore rendering the 
protein aggregation-prone and pathogenic (82). For treatment 
of HD with CCI-779, a rapamycin analog drug improved 
pathology in mice models of HD by diminishing the 
aggregation of mutant huntingtin protein via stimulation of the 
autophagy pathway (14). Interestingly, numerous mTOR- 

independent autophagy activators, for example Ca2＋ channel 
blockers (loperamide, verapamil, amiodarone), inositol-lowering 
agents (lithium), calpain inhibitor (calpastatin), and NOS 
inhibitor (L-NAME), improved the removal of huntingtin as 
well as lowered toxicity in cellular HD models (66). Recently, 
a natural compound, the quaternary ammonium salt berberine 
(an isoquinoline alkaloid), has been found to prevent mutant 
Htt protein accumulation, alleviate HD symptoms, as well as 
activate autophagy in HD cell and mouse models (83). 
Another natural product, onjisaponin B (derivative of Radix 
Polygalae), has been found to control autophagy in PC12 cells 
through Atg7 as well as the AMPK-mTOR signaling pathway to 
enhance clearance of the Htt mutant protein and -synuclein 
mutant (84). Therefore, it has been suggested that modulation 
of autophagy in HD might be a favorable approach to the 
treatment of this neurodegeneration.

Spinocerebellar ataxia (SCA), a progressive, genetic neuronal 
disease, is described by means of gradually growing problems 
associated with muscle stiffness, speech and swallowing 
difficulties, which also leads to involuntary eye movements. In 
addition, SCA is caused by the aggregation of mutant ataxin-3, 
thereby impairing learning and cognition function (85). 
Interestingly, modulation of autophagy is also involved in the 
removal of the abnormal ataxin-3 protein, and impaired 
autophagy may affect the aggregation of the mutant ataxin-3 
protein that initiates cellular toxicity as well as cell death. 
Accordingly, targeting SCA3 through directing autophagy 
could become a novel therapeutic strategy (86). Likewise, 
trehalose, a natural alpha-linked disaccharide, is an mTOR- 
independent autophagy inducer that could be used to control 
the ataxin-3 protein in SCA. Recently, it has also been found 
that trehalose analogs - such as lactulose and melibiose- 
significantly decreased aggregation of abnormal ataxin-3 
protein in a cell model, which was also associated with the 
stimulation of autophagy, along with a reduction in free 
radical production (87). Therefore, autophagy induction could 
potentially be used as a therapeutic strategy to control SCA.

Amyotrophic lateral sclerosis (ALS), a rare group of 
neurological disorders, is the effect of gradual degeneration 
and death of nerve cells; mainly motor neurons which control 
voluntary muscle function, resulting in difficulty in speaking, 
walking, swallowing, chewing, and finally breathing (88). To 
control this disease, it is necessary to induce autophagosomes 
through a decreasing mTOR complex 1, using a Cu-Zn 
superoxide dismutase mutant mice model (89). It is suspected 
that p62 could bind to superoxide dismutase mutations in an 
ubiquitin-independent manner to target its removal by 
autophagy (90). Conversely, mTOR-independent autophagy 
stimulation by lithium eases removal of mutant superoxide 
dismutase and hinders the disease from the start. However, 
treatment with trehalose has been found to be more beneficial 
in superoxide dismutase mutant mice through upregulation of 
mTOR-independent autophagy, as is found in ALS (91). 
Therefore, autophagy stimulation is very essential issue for in 
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vivo studies of ALS treatment.

THERAPEUTIC IMPLICATIONS OF AUTOPHAGY IN 
NEURODEGENERATION

For therapeutic purposes, it has been suggested that 
upregulation of autophagy through the mTOR complex 
1-mediated pathway might help target the removal of 
aggregate protein molecules, as has been suggested by a 
decrease in cytotoxicity of mouse, zebrafish, and Drosophila 
studies as well (92). Tauopathies, -synucleinopathies, SC 3, 
HD, and familial prion disease models, have all been im-
plicated in the successful treatment of neurodegenerative 
disease through this strategy of stimulated autophagy. In 
particular, mTOR-independent autophagy inducers, rapamycin 
analogues such as rilmenidine and trehalose, haves been used 
in the treatment of those diseases (92). On the other hand, 
autophagy inhibitor activity increases the toxicity of proteins 
that lead to enhancement of neurodegeneration (92). Recently, 
it has been shown that the phosphatidylinositol-binding clathrin 
assembly protein, also known as PICALM, acts equally in the 
autophagosome formation and autophagosome degradation 
process, in AD genome-wide association studies (GWAS). 
Hence, altered PICALM activity in vitro as well as in vivo leads 
to the increase in toxicity and accumulation of tau in AD 
pathogenesis (93). Moreover, pharmacological inhibition of 
mTOR complex 1 is a demonstrated target in autophagy 
control in neurodegeneration (94). This also implies that 
rapamycin and its chemically synthesized analogues such as 
CCI-779, are widely used as potential activators of autophagy 
in yeast and mammalian cells in neurons, as well as in vivo in 
the mouse brain. Eventually, widespread preclinical animal 
model studies are required to explore the use of autophagy in 
the prevention of neurodegenerative disease.

Recent observations have found that inhibition or reduction 
of histone deacetylase 6 helps to rescue memory in 5XFAD 
AD mouse models and AD patients, which implies further 
therapeutic possibilities for AD, as well as other neuro-
degenerative diseases (95). In addition, it has been found that 
transplanted protein-induced pluripotent stem cells (iPSCs), 
derived from skin of mouse fibroblasts, differentiate into glial 
cells, resulting in the reduction of plaque depositions shown to 
alleviate cognitive dysfunction in 5XFAD transgenic AD 
mouse models. This suggests a favorable therapeutic applica-
tion for AD (96). Similarly, insulin-degrading enzymes and 
major proteases of A secreted from astrocytes have been 
shown to potentially alleviate AD symptoms through alter-
native, autophagy-based secretory pathways (97). Furthermore, 
statin, a class of lipid-lowering medications, has been demon-
strated to induce autophagy in astrocyte cultures through 
AMPK-mTOR mediated pathways, and as it has been suggested 
that autophagy is essential in insulin-degrading enzyme 
secretion, modulation of autophagy could provide a possible 
therapeutic approach in A pathology by increasing clearance 

of extracellular A (98). Hence, accumulation of A peptide 
participates in the pathological condition of AD, while in-
hibiting A production or increasing A removal may be 
implicated in slowing the progression of AD (40). In particular, 
the promotion of A clearance is currently considered to be an 
additional therapeutic approach for AD. Thereby, autophagy 
has been found to have an important role in the clearance of 
A under normal physiological conditions; for that reason it is 
essential to maintain A homeostasis in a healthy brain (43). 
Most importantly, our current research is considerably directed 
to the identification of safe and more effective pharma-
cological inducers of autophagy in neurodegenerative diseases. 
Therefore, to target AD drug development, natural compound- 
mediated enhancement of autophagy might represent a 
sustainable strategy to A clearance. To assess this question, 
alternatively a natural compound could be a potential drug 
candidate which facilities the enhancement of autophagy in 
AD patients. It has recently been found that several alkaloids, 
such as oxoisoaporphine, significantly decreased A secretion 
in neuroblastoma cells when overexpressed in human APPsw 
Swedish mutants (99). Another recent report suggests that 
chronic administration of the isoquinoline alkaloid berberine 
significantly decreases A deposits while promoting A 
clearance. As a result, this was shown to improve cognitive 
impairments in 3XTg AD mice by enhancing activity of 
autophagy via the class III PI3K/beclin-1 pathway (100).

For the treatment of PD, several natural compounds have 
recently gained attention due to their ability to clear 
-synuclein in animal and cell models. Specifically, studies 
have indicated that a natural compound, curcumin, derived 
from the curry spice of turmeric shows low toxicity in normal 
cells, and also significantly decreases the accumulation of 
-synuclein in A53T cell via downregulation of the mTOR 
signaling via increasing autophagy (101). Interestingly, oxy-
resveratrol, a natural antioxidant, increases mTOR dependent 
autophagy in human neuroblastoma cell models independent 
of apoptosis (102). In addition, 18-glycyrrhetinic acid, well 
known a gap-junction inhibitor, induces autophagy through 
upregulation of beclin-1, Atg5, Atg7 and LC3, as well as 
downregulation of p62 in neuroblastoma cells (103). Therefore, 
these reviews attempt to expound upon the important obser-
vation that the pharmacological targeting of autophagy- 
enhancing natural compounds hold a favorable implication for 
the development of PD therapies.

CONCLUSION

Even though a variety of autophagy-related proteins have been 
demonstrated to participate and control endogenous auto-
phagy pathways (104), several studies have been performed to 
explore autophagy regulation through use of the active 
compounds of plants. Although numerous fundamental queries 
are essential for further address, many novel agents could one 
day be useful in a clinical approaches; thus the interest of 
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research in autophagy is developing rapidly, and clinical 
applications might be anticipated in the near future. Further-
more, it is now important to characterize dysfunctional 
autophagy in diverse stages of genetic and molecular subtypes 
in order to better understand their roles in neurodegeneration. 
It is also necessary to produce clinical results demonstrating 
the efficacy of downstream autophagy regulation, which 
would help usher in an exciting new era for the development 
of neurodegenerative therapeutic strategies. Consequently, 
additional studies are required on the physiological roles of 
modulation of brain autophagy processes in neurodegenerative 
disease. Finally, we would like to screen novel, natural 
compounds that modulate autophagy and identify main 
therapeutic targets, such as the key molecular mechanisms that 
underlie the pathophysiological roles of neurodegeneration, 
with our main concern being the discovery of potential 
therapeutic drug targets.
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