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Monoacylglycerol acyltransferase 1 (MGAT) is a microsomal 
enzyme that catalyzes the synthesis of diacylglycerol (DAG) 
and triacylglycerol (TAG). However, the subcellular locali-
zation and catalytic function domain of this enzyme is poorly 
understood. In this report, we identified that murine MGAT1 
localizes to the endoplasmic reticulum (ER) under normal 
conditions, whereas MGAT1 co-localize to the lipid droplets 
(LD) under conditions of enriching fatty acids, contributing to 
TAG synthesis and LD expansion. For the enzyme activity, 
both the N-terminal transmembrane domain and catalytic 
HPHG motif are required. We also show that the trans-
membrane domain of MGAT1 consists of two hydrophobic 
regions in the N-terminus, and the consensus sequence 
FLXLXXXn, a putative neutral lipid-binding domain, exists in 
the first transmembrane domain. Finally, MGAT1 interacts 
with DGAT2, which serves to synergistically increase the TAG 
biosynthesis and LD expansion, leading to enhancement of 
lipid accumulation in the liver and fat. [BMB Reports 2017; 
50(7): 367-372]

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is commonly found 
in patients with metabolic syndrome without extensive 
consumption of alcohol (1), encompassing liver lesions 
ranging from steatosis to nonalcoholic steatohepatitis (NASH), 
cirrhosis and even liver cancer (2). It was reported that about 
75% people who have hepatic steatosis are obese (3). Obesity 
with insulin resistance causes an increased lipolysis in adipose 

tissue, thus resulting in an increased delivery of free fatty acids 
(FFAs) to the liver, contributing to excessive hepatic lipid 
accumulation (4). In turn, this impairs the hepatic functions, 
leading to a spectrum of disorders characterized by liver 
steatosis. 

Mammalian cells synthesize triacylglycerol (TAG) via two 
convergent pathways. The classic pathway, called glycerol- 
3-phosphate pathway, starts first with glycerol-3-phosphate 
acyltransferase (GPAT) which catalyzes the acylation of 
glycerol-3-phosphate forming lysophosphatidic acid. Then 
1-acylglycerol-3-phosphate acyltransferase (AGPAT) and lipin 
act to further acylate and dephosphorylate the lysophos-
phatidic acid, respectively, to produce diacylglycerol (DAG). 
On the other hand, the monoacylglycerol acyltransferase 
(MGAT) promotes alternative pathway to synthesize TAG. This 
enzyme directly catalyze the acylation of monoacylglycerol 
(MAG) to produce DAG. Finally, DAG is converted to TAG by 
DGAT1 or DGAT2, which is common in both pathways (5, 6). 

Since the liver is not the primary fat storage depot, the 
steady state concentration of hepatic triglycerides is low under 
physiological conditions. However, with overeating and lack 
of exercise, the liver stores the excess energy as TAG. NAFLD 
associated with obesity is contributed largely by greater fatty 
acid release from the adipose tissue. Elevated levels of FFA in 
plasma increase the delivery of FFA to the liver, resulting in 
excessive hepatic TAG accumulation. Therefore, in the 
obesity-related hepatic steatosis, FFAs from adipose tissue and 
dietary fat directly enter the TAG synthesis pathway, probably 
through the GPAT pathway, as well as alternative pathways 
using increased MGAT1 enzyme, resulting in rapid TAG 
incorporation (7). In the last decade, a family of three 
mammalian genes encoding enzymes with MGAT activity 
have been identified (8-10). MGAT1 was originally identified 
in mice as a microsomal enzyme that catalyzes the synthesis of 
DAG and TAG (8). MGAT2 is predominantly expressed in the 
small intestine, and plays a role in dietary fat absorption (11). 
MGAT3, which shares a higher sequence homology with 
DGAT2, is found only in higher mammals and humans, but 
not in rodents (12-14). All three MGAT family genes are 
localized in the endoplasmic reticulum (ER), but differ in tissue 
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Fig. 1. MGAT1 is an integral ER membrane protein. (A) The 
MAG pathway involved in the synthesis of TAG. (B) Real-time 
PCR analysis of MGAT1 mRNA levels in the liver from chow-diet 
(CD) and high fat diet (HFD)-fed mice, and levels during 
adipogenesis of 3T3-L1 cells. (C) Immunofluorescent staining 
showing expression of FL-MGAT1 (red) on forming LDs (BODIPY, 
green) in oleate-loaded COS-7 cells. (D) Schematic representation 
of the MGAT1 structure using MGAT1 deletion mutant protein. 
HEK293T cells were transiently transfected with FL-MGAT1 and 
the indicated MGAT1 mutants. Total cellular membranes and 
cytosol were isolated and immunoblotted with anti-FLAG, 
anti-calnexin (ER marker), and anti-GAPDH (cytosolic marker) 
antibodies. COS-7 cells expressing FL-MGAT1 or FL-1-160 were 
stained with anti-FLAG. Scale bars, 10 m. (E) Protease 
protection. Proteinase K (PK) was added to intact microsomes 
with or without Triton X-100. A representative experiment out of 
three with similar outcome is shown. *P ＜ 0.05. Data represent 
the mean ± SEM.

expression patterns and in catalytic properties (15). Recently, 
we reported that MGAT1 expression is upregulated in hepatic 
steatosis, and the adenovirus-mediated shRNA for MGAT1 
critically reduces lipid accumulation in the liver (16, 17). 
However, little is known how the MGAT1 enzyme acts in the 
cell, including at its subcellular localization. Because MGAT1 
is considered as an effective target for reducing hepatic 
steatosis and obesity (16, 17), it is now important to uncover 
the characteristics of the enzyme in lipid accumulation.

In this report, we demonstrate that MGAT1 is an integral ER 
membrane protein, and consists of two transmembrane 
domains. In addition to existing at the ER, MGAT1 is also 
localized in lipid droplets. We further determined that 
LD-localized MGAT1 may contribute to the growth of 
TG-containing lipid droplets, through the HPHG residue 
which is associated with catalytic activity of the enzyme. The 
heterodimer formed by MGAT1 with DGAT2 synergistically 
increases the TG biosynthesis and LD expansion, suggesting 
that MGAT1-DGAT2 coordination plays an important role in 
the progression of hepatic steatosis.

RESULTS

MGAT1 is an integral ER membrane protein and promotes TG 
synthesis
Synthesis of TAG is through a distinct MGAT-dependent 
pathway: MAG is converted to DAG by MGAT enzymes, and 
DAG is converted to TAG by DGAT (Fig. 1A). Our previous 
studies suggest that MGAT1 has an important role in fatty liver 
formation, and a new target gene of PPAR (17-19). We 
analyzed the expression patterns of MGAT1 in high-fat-fed 
liver and 3T3-L1 adipocytes, the two main tissues of lipid 
accumulation. As shown in Fig. 1B, MGAT1 is highly up-
regulated in fatty liver, as previously reported (17). Moreover, 
MGAT1 expression dramatically increased during adipogenesis, 
and escalated approximately 70-fold at 8 days. To confirm the 
role of MGAT1 in lipid accumulation, we used confocal 
immunofluorescence microscopy in COS-7 cells. Under oleate 
loading, the overexpression of MGAT1 led to the formation of 
lipid droplets (LDs) (Fig. 1C). Moreover, when MGAT1 was 
co-expressed with DGAT2, the LDs were significantly larger 
than those of cells expressing MGAT1 alone.

Mouse MGAT1 is a 335-aa polypeptide, and the sequence 
of MGAT1 predicts one or two transmembrane domains, 
which is similar to DGAT2 (8). To clarify the transmembrane 
domain of MGAT1, we expressed different Flag-tagged 
deletion mutants of MGAT1 in HEK293T cells, followed by 
membrane fractionation (Fig. 1D). The mutant FL-1-160, with 
both transmembrane regions deleted, displayed relocation in 
the cytosol. In contrast, like FL-MGAT1, mutant FL-161-335, 
which contained the N-terminus and the two transmembrane 
domains, exists in the membrane fraction. Consistently, 
MGAT1 displayed a typical ER staining pattern, whereas when 
transmembrane domains were deleted from MGAT1 

(FL-1-160), the MGAT1 displayed a diffuse cytoplasmic 
staining pattern (Fig. 1D), thereby demonstrating that the 
transmembrane domain of MGAT1 consists of two 
hydrophobic regions at the N-terminus. 

We next examined whether the N and C termini of MGAT1 
are localized in the cytoplasm or the ER lumen. Protease 
protection studies employing proteinase K treatment 
demonstrated that the Flag tags fused to either terminus of 
MGAT1 were digested by proteinase K, while the ER luminal 
protein GRP78 remained undigested by protease (20), 
indicating that the N and the C termini of MGAT1 are 
localized in the cytoplasm (Fig. 1E). These results suggest that 
MGAT1 has a number of membrane-inserted helices, and the 
residues 1-160 of MGAT1 include the transmembrane domain 
containing the ER targeting signal. 

Highly conserved HPHG is important for MGAT1 activity
Next, we explored the enzymatic activity of MGAT1. 
Intriguingly, enzymatic activity was absent when the 
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Fig. 2. Deletion mutants of MGAT1 have no effect on enzyme 
activity. (A) Immunoblot analysis of total membrane fraction 
isolated from COS-7 cells transfected with the indicated deletion 
mutants (left). The enzymatic activity determined in membrane 
fraction by measuring the fluorescence signal (right). (B) Alignment 
of partial sequence of MGAT1 members. A highly conserved 
HPHG sequence is indicated by a blue box. (C) The enzymatic 
activity determined in membrane fraction by measuring the 
fluorescence signal. (D) Immunofluorescence microscopy of lipid 
droplets in COS-7 cells treated with oleate. These cells were 
labeled with the neutral lipid stain BODIPY 495/503 (green). One 
representative experiment of three is shown.

Fig. 3. MGAT1 is present in the lipid droplet. (A) Total cellular 
membranes and fat layers were isolated from fully differentiated 
3T3-L1 adipocytes and HeLa cells transfected with Flag-MGAT1. 
Western blots of equal protein amounts against FLAG, Calnexin, 
Perilipin A, and ADRP are shown. (B) Immunoblot for indicated 
proteins in total cellular membranes or fat layers from HEK293T 
cells transfected with the indicated deletion mutants. (C) COS-7 
cells transfected with mRFP-tagged MGAT1 were fixed with 
paraformaldehyde and were stained for neutral lipid with BODIPY 
495/503 (green). A representative experiment out of three with 
similar outcome is shown.

transmembrane domains were deleted (Fig. 2A) Moreover, the 
mutant FL-101-335 also lost its enzyme activity (Fig. 2A), 
suggesting that this domain has a catalytic motif. MGAT1 has 
homology with DGAT2, and also contains a highly conserved 
HPHG, a characteristic motif of the DGAT2 family (21). 
Alignment of the MGAT family members shows that the motif 
HPHG is conserved in sequences from animals and fungi (Fig. 
2B). Four mutants of HPHG (109-112 aa of murine MGAT1) 
were generated by conservative substitution: H109A, P110G, 
H111A, and a triple mutant in which HPH was changed to 
AGA. Their expressions were confirmed by immunoblotting 
with anti-FLAG antibodies. As a result, all four mutants caused 
an approximately 60-70% decrease in enzymatic activity, 
compared to control FL-MGAT1 (Fig. 2C). We also performed 
TAG synthesis by BODIPY and immunofluorescent staining in 
COS-7 cells. In oleate-treated cell, the wild-type MGAT1 led to 
the formation of lipid droplets (LDs), whereas in cells 
expressing mutants, there were no LDs (Fig. 2D), suggesting 
that the conserved HPHG residue is associated with catalytic 
activity of enzyme, and the transmembrane domain is also 
required for the enzyme activity.

MGAT1 is associated with lipid droplets
Neutral lipids are synthesized by enzymes which mainly 

localize to the ER; likewise, newly formed lipid droplets also 
originate from the ER (22). Consequently, LD growth occurs by 
the local synthesis of TAG at the surface of LD, indicating a 
demand of enzymes necessary for TAG synthesis (23). To 
explore whether MGAT1 is present on LD surface, cellular 
membranes and the floating fat layer containing lipid droplets 
were separately isolated from fully differentiated-adipocytes 
and HeLa cells expressing MGAT1. As expected, MGAT1 
localizes to the lipid droplets (Fig. 3A), as a similar pattern 
with previous reports that DGAT2 and GPAT4 localize to LDs 
(24, 25). Western blot analysis revealed that FL-MGAT1 is 
presented in the fat layer as well as in the membrane fraction, 
whereas constructs lacking the N-terminus or C-terminus could 
not be detected in the fat layer (Fig. 3B). Interestingly, 
FL-1-160 lacked both transmembrane domains and the 
conserved HPHG residue; in contrast, FL-161-335 possessed 
both, but lacked the C-terminus. Consequentially, these results 
propose the possibility that both the HPHG residue and the 
C-terminal region are essential for the LD localization of 
MGAT1. To confirm that MGAT1 localized to lipid droplets, 
we co-stained MGAT1-transfected cells with the neutral lipids 
dye, BODIPY 493/503. As shown in Fig. 3C, MGAT1 was 
co-localized with the lipid droplets, indicating that 
LD-localized MGAT1 may contribute to the growth of 
TAG-containing lipid droplets. 

MGAT1 interacts with DGAT2
Recent studies have shown that DGAT1 and DGAT2 form 
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Fig. 4. MGAT1 interacts with DGAT2. Co-immunoprecipitation 
experiments detecting (A) the interaction between myc-MGAT1
and FL-MGAT1, and (B) the interaction between HA-DGAT2 and 
FL-MGAT1 in HEK293T cells transfected with the indicated 
deletion mutants. The precipitated proteins were subjected to 
western blot analysis with FLAG antibody. A representative 
experiment out of three with similar outcome is shown. (C) 
Model of MGAT1 anchored in lipid droplet.

homodimers and homotetramers (26, 27), and MGAT2 can 
exist as both a homodimer and homotetramer (28, 29). Since 
MGAT1 shares sequence homology with MGAT2, and the 
N-terminus of MGAT1 contains transmembrane domains, we 
investigated whether MGAT1 can form a homodimer. Cell 
lysates containing Myc-MGAT1 and various FLAG-MGAT1 
deletion mutants were immunoprecipitated with anti-Myc, 
after which they were immunoblotted with anti-FLAG. 
Deletion of transmembrane domains (1-160) abolished the 
interaction between two MGAT1 monomers, but the MGAT1 
mutant containing only the N-terminus and transmembrane 
domains interacted with each other (Fig. 4A). It has been 
shown that MGAT and DGAT catalyze the two consecutive 
steps in TAG synthesis, and as shown in Fig. 1B, the 
co-expression of MGAT1 and DGAT2 promotes TG synthesis. 
Thus, we next examined whether MGAT1 heterodimerizes 
with DGAT2. As verified by co-immunoprecipitation, MGAT1 
interacts with DGAT2 (Fig. 4B). However, the N-terminal 
deletion mutant (1-160) of MGAT1 was a blunted hetero-
dimer with DGAT2, due to removal of the transmembrane 
domains, while DGAT2 interacted strongly with C-terminal 
deletion mutants of MGAT1 (161-335). Taken together, these 
results suggested that MGAT1 localizes to both the ER and 
LDs, and the transmembrane domains are important for the 
enzyme activity as well as for the interaction with each other.

DISCUSSION

Since LD is now considered as a cellular organelle, regulation 

of the formation, growth, and degradation has now attracted 
considerable attention. Because it is believed that fatty acids 
are directly transported and incorporated into LDs after being 
separated from ER by budding, the LD should contain an 
independent machinery for lipid accumulation, including the 
TAG synthesis enzymes. Our data revealed that TAG synthesis 
is supported by luminally oriented acyltransferases, such as 
MGAT1 and DGAT2. (Fig. 4C). We previously demonstrated 
that MGAT1 expression is induced by PPAR which is 
aberrantly overexpressed in steatotic liver, and liver-specific 
disruption of MGAT1 dramatically ameliorates hepatic 
steatosis associated with diet-induced obesity (16, 17). In 
addition, according to recent researches, inhibiting the 
MGAT1 activity improves hepatic metabolic abnormalities and 
insulin signaling (30, 31). In accordance with this, we 
observed that the intracellular contents of lipid droplets were 
increased by MGAT1 in the presence of FFA, but LDs barely 
generated in the cells without fatty acid treatment. Thus, these 
results indicated that under FFA loading, MGAT1 facilitates 
TAG synthesis and LD expansion. 

Deletion of the hydrophobic transmembrane domain leads 
to diffuse cytosolic staining. Evidence suggests that this region 
might be critical for localization for MGAT1 to ER. Our data 
indicate that MGAT1 harbors maybe two or more hydrophobic 
domains, with both the N-terminal and the C-terminal portions 
extending toward the cytosol. Notably, MGAT1 contains the 
consensus sequence FLXLXXXn (where n is a nonpolar residue 
and X is any amino acid except proline) that is conserved for a 
putative neutral lipid-binding domain in the transmembrane 
domain (amino acids 28FLLLVQV34) (32). This sequence is 
most highly conserved in the vertebrate DGAT2 and MGAT 
orthologues (23) and other proteins that either interact or 
metabolize neutral lipids (32). Moreover, MGAT1 contains the 
catalytic HPHG motif (109-112 of murine MGAT1), and 
mutations of amino acids within this sequence significantly 
reduce the MGAT1 catalytic function. Intriguingly, we 
detected high enzyme activity only in full-length FL-MGAT1, 
while other deletion mutants failed to catalyze the synthesis of 
diacylglycerol. We speculate the possibility that neutral 
lipid-binding domain and catalytic HPHG motifs, as well as 
C-terminus region and other elements, are required for 
MGAT1 activity. Further experiments are required to 
determine the function of these active site domains.

DGAT1 has been shown to form a homodimer or 
homotetramer (27), and heterodimerize with MGAT2 to 
mediate dietary fat absorption (28). Similarly, DGAT2 is part of 
a multimeric complex (16), and interacts with other TG 
synthesis enzymes, such as fatty acid transport protein 1 
(FATP1), stearoyl CoA desaturase 1 (SCD1), and MGAT2, to 
facilitate TG synthesis, resulting in an expansion of lipid 
droplets. We found that MGAT1 also forms homodimer 
through the N-terminal part, possibly homotetramer like 
MGAT2 or DGAT, and also interacts with DGAT2 to promote 
TAG synthesis. In addition, although MGAT1 is thought to be 
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mainly regulated by gene expression, it will be interesting to 
examine whether a certain stimulus (i.e. fatty acid loading) 
induces the translocation of MGAT1 to LDs.

In conclusion, our studies indicate that MGAT1 is localized 
to the ER and lipid droplets, where it catalyzes the formation of 
DAG from MAG and fatty acyl-CoA. Transmembrane domain 
of MGAT1 consists of hydrophobic regions in the N-terminus, 
and both N and C termini are localized to the cytosol. 
Importantly, MGAT1 interacts with DGAT2, which serves 
synergistic increase in TG biosynthesis and LD expansion, 
resulting in enhanced lipid accumulation in the liver.

MATERIALS AND METHODS

Cell culture and transfection
COS-7 and HEK293T cells were maintained in Dulbecco’s 
modified Eagle’s medium supplemented with 10% (vol/vol) 
fetal bovine serum (Invitrogen). Transient transfection was 
performed with Lipofectamine LTX, according to the 
manufacturer’s protocol (Invitrogen). Cells were harvested and 
used for experiments 48 h after transfection.

Construction of MGAT1 plasmids
N-terminal FLAG tagged murine MGAT1 (FL-MGAT1) was used 
as a template for all mutagenesis reactions. Site-directed 
mutagenesis was carried out with Pfu Turbo DNA Polymerase, 
according to the manufacturer’s protocol (Agilent), and the 
presence of the desired mutations was confirmed by sequencing. 

Cellular fractionation
Cells were harvested, washed with ice-cold PBS, and 
re-suspended in STE buffer (250 mM sucrose, 50 mM Tris-HCl, 
pH 7.4, 1 mM EDTA, and protease inhibitor). Cells were 
homogenized by 10 passages through a 27-gauge syringe 
needle, and lysates were cleared by 10 min centrifugation at 
600 × g, and 15 min at 12,000 × g, to pellet the crude 
mitochondria. The supernatant was then centrifuged at 
100,000 × g for 1 h at 4oC to pellet microsomes. The 
supernatant was used as the cytosolic fraction. 

Immunofluorescence
Cells were washed with PBS, fixed in 4% paraformaldehyde for 
10 min, washed with PBS and blocked with 3% BSA in PBS for 
1h. Cells were incubated in primary antibody for 2 hour at 
room temperature (RT), followed by incubation with 
appropriate secondary antibody for 1 hour at RT. Cells were 
stained for lipid droplets with BODIPY493/503 (1 g/ml, 
Molecular Probes) and for nuclei with Hoechst 33342 
(Molecular Probes). Slides were mounted. Confocal scanning 
was performed on a LSM700 scanning microscope (Carl Zeiss).

Immunoprecipitation
Whole cell protein extracts were obtained from 293T cells 
using a lysis buffer (1% NP-40, 25 mM HEPES, 150 mM NaCl, 

2 mM EGTA) containing protease and phosphatase inhibitor 
cocktail. Extracts were incubated overnight with 2.5 g of 
anti-myc antibody (Santa Cruz Biotechnology) in the presence 
of Protein G beads. The resulting complexes were washed, 
denatured and eluted. The IP samples and whole cell extracts 
were analyzed by immunoblotting performed with anti-Flag 
antibody (Sigma).

MGAT activity assays
In this assay, MGAT1 activity was measured as described 
previously (33). Briefly, the assay was carried out in a total 
volume of 150 l under the following conditions: 100 mM 
Tris-HCl, pH 7.4, 200 M 2-monoacylglycerol, 100 uM 
oleoyl-CoA, and 10 g of microsomal proteins. The reaction 
was initiated by addition of MGAT1 microsomes, and carried 
out for 30 min at room temperature. Then, 50 l of 
7-Diethylamino-3-(4-maleimidophenyl)-4-methylcoumarin 
(CPM) at 500 M concentration, was added to the reaction; 
the plate was incubated at room temperature for another 30 
min. A standard curve of CoASH (ranging from 0 to 100 M of 
CoASH) was generated together with each assay, followed by 
detection of fluorescent signal by a Thermo Scientific - 
varioskan flash (Ex. 355 nm, Em. 460 nm).

Statistical analysis 
All results are expressed as mean ± SEM. Statistical compari-
sons of groups were made using an unpaired Student's t test.
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