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Family matters: How MYC family oncogenes impact small cell lung cancer
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ABSTRACT
Small cell lung cancer (SCLC) is one of the most deadly cancers and currently lacks effective targeted
treatment options. Recent advances in the molecular characterization of SCLC has provided novel
insight into the biology of this disease and raises hope for a paradigm shift in the treatment of SCLC.
We and others have identified activation of MYC as a driver of susceptibility to Aurora kinase
inhibition in SCLC cells and tumors that translates into a therapeutic option for the targeted
treatment of MYC-driven SCLC. While MYC shares major features with its paralogs MYCN and MYCL,
the sensitivity to Aurora kinase inhibitors is unique for MYC-driven SCLC. In this review, we will
compare the distinct molecular features of the 3 MYC family members and address the potential
implications for targeted therapy of SCLC.
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MYC family members in small cell lung cancer

Lung cancer is the leading cause of cancer-associated deaths
worldwide,1 and accounts for more than 220,000 new cases
annually in the US alone.2 About 15% of lung cancer cases
are histologically defined as small cell lung cancer (SCLC),
which represents a highly aggressive manifestation that
almost exclusively arises in smokers and is characterized by
rapid growth and frequent metastasis.3,4 Unfortunately, the
major treatment options for SCLC – primarily platinum-
based chemotherapy and radiation – have remained virtu-
ally unchanged for decades. While these treatment regimens
achieve tumor regression in the majority of cases,5 this ini-
tial response is followed by rapid relapse and chemoresist-
ance in most patients, leading to a dismal 5-year survival
rate of about 6%.4,5

Several recurrent genetic aberrations have been identified
in SCLC, among which MYC family genes, including MYC,
MYCL and MYCN, stand out as oncogenic drivers that may
constitute novel therapeutically tractable targets.6-8 The 3
MYC family proto-oncogenes are paralogs with regions of
structural homology, but also functional differences. We
were able to demonstrate that amplification of individual
MYC family members is associated with phenotypic differ-
ences in SCLC. More specifically, we showed that the iden-
tity of the MYC family member determines the
susceptibility toward the Aurora kinase inhibitor alisertib,
where MYC-amplified SCLC cells are particularly sensi-
tive.9,10 Furthermore, recent studies suggest that MYC-

amplified SCLC may be more sensitive to CHK1 inhibition
as well.11 This is in line with previous studies in myeloid
32D cells, where overexpression of MYC sensitizes cells to
the chemotherapeutic agents adriamycin and camptothecin,
while MYCL and MYCN-overexpressing cells are resistant.12

This difference in drug susceptibility based on MYC family
members also seems to occur in other tumor types such as
neuroblastoma.13 Thus, to successfully use MYC family
members as biomarkers to predict treatment susceptibility
in SCLC, it will be crucial to further dissect the molecular
basis underlying the different phenotypes observed.

MYC family transcription factors

MYC family members are basic helix-loop-helix (bHLH)
leucine zipper transcription factors that bind to the canoni-
cal E-box DNA element CACGTG and activate target gene
expression as heterodimers with the small bHLH protein
MAX.14 As paralogs, MYC family members share highly
conserved domains such as a transactivation domain that
recruits the transcriptional machinery, a basic region for E-
box-specific DNA binding, MYC homology boxes (MB)
involved in protein turnover and functional regulation, and
the C-terminal HLH-leucine zipper domain responsible for
MAX dimerization (Fig. 1).3,4,15-19 In the case of MYCL, 2
substantially differing transcripts have been found to be
expressed in SCLC cell lines, and interestingly, the short
isoform lacks the HLH domain.20 All 3 MYC paralogs can
complement an activated Ha-ras gene in transforming
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primary rat embryo fibroblasts and are able to transform
pre-neoplastic precursors of SCLC.15-18 In addition, both
MYC and MYCN induce proliferation and cell cycle pro-
gression in quiescent fibroblasts.16,18,21 Taken together, these
findings indicate a degree of redundancy between the family
members. Indeed, during murine development, Mycn can
partially complement for loss of Myc.22 Moreover, a double
knockout of Myc and Mycn in haematopoietic cells has a
stronger phenotype than either knockout alone,23 and both
Myc and Mycn are essential genes, while Mycl is not
(Fig. 1).24-27 Albeit subtle, differential binding affinities of
recombinant MYC, MYCN, and MYCL with MAX to differ-
ent DNA consensus motifs have been reported in vitro,28

and the transforming capacity of MYCL is lower than that
of MYC in rat embryonic fibroblasts.29 Furthermore,
CRISPR-mediated inactivation of Mycn or Mycl in mouse
tumor-derived SCLC cell lines reduces colony formation,
while that of Myc does not.30 This indicates that mechanis-
tic differences between the family members likely exist.
Interestingly, differential effects on transcriptional repres-
sion were discovered for heterotrimeric complexes of MYC
family members with MAX and MIZ1.31-34 Even though
MYCN/MIZ1 complex formation was described in cell line
models,35,36 MYC/MIZ1 complexes were shown to be more
readily detectable than MYCN/MIZ1 complexes and are
considered to be relevant components for medulloblastoma
subtype differentiation.32 Even though this points to biologi-
cal differences between MYC family members, most data
are based on overexpression of exogenous MYC, MYCN
and/or MIZ1, future studies are warranted to clarify

complex formation at endogenous, physiological levels.
Currently no data exists regarding complexes of MYCL
with MIZ1 and the role of these complexes in SCLC is yet
to be determined.

The tissue specific expression of MYCN and MYCL, in
contrast to the more broad expression pattern of MYC
(Fig. 1), also argues for functional differences between MYC
family members. Myc is expressed in most developing tis-
sues and sustained in many tissues in the adult mouse,
while Mycn expression is restricted to early developmental
stages, with elevated levels in forebrain, kidney, hindbrain
and intestine of newborn mice.37-39 Mycl is also develop-
mentally regulated and expressed in embryonic brain, kid-
ney and lung tissue.40 Overall, this is largely consistent with
the frequency of alterations in each paralog in human can-
cer types,41-43 with MYC being widely affected across many
blood-borne and solid tumors, MYCN being frequently
altered in solid tumors of neuroendocrine and neuronal ori-
gin, and MYCL predominantly in SCLC. Specifically, MYCN
deregulation is frequently found in neuroblastoma,16 retino-
blastoma,44 medulloblastoma,45 Wilm’s tumors46 and in
prostate cancer with neuroendocrine differentiation,47 while
MYCL amplifications occur in SCLC,41 Merkel cell carci-
noma48 and ovarian carcinoma.49 In contrast to other
known oncogenes such as RAS or EGFR, MYC (with the
exception of Burkitt’s lymphoma) is typically not mutated
in cancer, but rather amplified or deregulated resulting in
increased expression. Interestingly, in SCLC MYC, MYCN
and MYCL are all found to be affected in a mutually exclu-
sive manner.3,5-8

Figure 1. Schematic overview of major characteristics of the 3 MYC family paralogs with a focus on SCLC. Rows 1–3: Biochemical properties and physiological functions of
MYC family members- protein domain architecture, phenotype of knockout mouse models and predominant distribution of MYC family member expression across tissues
(broad expression of MYC, expression of MYCN primarily in neural and neuroendocrine tissues, and MYCL expression mainly in the lung). Row 4: Response of SCLC models
to Aurora kinase inhibition with high sensitivity of MYC amplified/overexpressing cells. Row 5: Schematic differences of SCLC mouse models regarding genetic back-
ground, MYC family member activity/alteration and expression of neuroendocrine markers including the transcription factors Neurod1 and Ascl1. (bHLH D basic Helix-
Loop-Helix, NLS D nuclear localization sequence, GEMD genetically engineered mouse, NE D neuroendocrine).
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MYC function and regulation

MYC activates gene transcription in conjunction with MAX by
several mechanisms, including the recruitment of basal transcrip-
tion factors, histone acetylases, chromatin remodelling enzymes,
and RNA polymerases.50-55 MYC, the most frequently deregu-
lated and best studied family member, mediates a transcriptional
response that promotes cell growth and proliferation.56,57 In
numerous genome-wide studies in Drosophila and mammalian
cells, MYC binding sites and regulated genes have been found to
cover more than 15% of genomic loci,58,59 while even regulating
up to 1/3 of all transcribed genes in embryonic stem cells.51 How
exactly this transcriptional response is orchestrated remains a
matter of ongoing debate, likely due to the complex feedback
mechanisms involved. Two opposing models have been put for-
ward, each substantiated by numerous lines of evidence: MYC as
a global amplifier of existing transcriptional programs51,60,61 or
MYC as a regulator of specific target genes.33,62,63 Support for
the first model comes from the direct interaction between MYC
and the CDK9/Cyclin T1 complex, which has been shown to
mediate pause-release of RNA Polymerase II (Pol II) and thereby
enhance transcription of all expressed genes, rather than recruit-
ing Pol II to specific target genes.51,64 Further studies in cell lines,
including SCLC, demonstrate that MYC primarily acts by glob-
ally amplifying existing gene expression patterns, rather than spe-
cifically inducing a distinct set of target genes,60 a finding that
could explain some of the variation in reported MYC effects
between different cell types. Providing evidence for the latter of
the 2 models are studies combining global chromatin immuno-
precipitation (ChIP) and gene expression analysis, which derived
gene-specific MYC effects and defined dedicated MYC target
gene sets, including genes involved in ribosome biogenesis, trans-
lation, cell cycle regulation and energy metabolism.33,62,65,66 These
2 contrasting models may be reconciled by the recently postu-
lated hypothesis that individual gene promoters exhibit varying
affinities for binding and activation by MYC.67 According to this
model, transcription of high affinity genes, such as ribosomal
constituents, whose promoters are bound by MYC with high
affinity, occurs at low cellular MYC levels. In contrast, the
expression of low-affinity genes, e.g. genes involved in TGF-b
signaling, is induced only upon strong MYC overexpression. At
extreme MYC levels, DNA-binding has been reported to become
increasingly unspecific and to occur sequence-independently,68 a
phenomenon referred to as promoter invasion.60,62 This is in line
with evidence suggesting threshold-specific tumorigenic effects of
MYC depending on its expression levels.69

In addition to its transcriptional role, MYC also controls
S-phase entry and replication initiation in a non-transcrip-
tional manner by interacting with the replication initiation
complex and promoting recruitment of CDC45.70-72 MYC
overexpression induces activation of the DNA damage
response (DDR) and results in increased genomic instabil-
ity, likely a result of the well documented MYC-induced
replicative stress caused by pre-mature origin firing and
aberrant fork progression.70,73,74 Similarly, MYCN has also
been reported to induce DDR signaling in neuroblastoma
cells,13,75 which could be due to increased replicative
stress.76 No reports of similar effects of MYCL overexpres-
sion are available to date.

Intriguingly, despite its indisputable central role in promot-
ing proliferation, high levels of MYC can also induce apopto-
sis,77,78 and overexpression of all 3 MYC family members was
found to induce apoptosis upon IL-3 withdrawal in 32D
myeloid cells.12 Moreover, an “apoptosis-primed” state has
been described for MYCN-overexpressing neuroblastoma,79

but also for physiological MYC levels during tissue develop-
ment in young mice.80 In part, gene repression by MYC/MIZ1
is important for induction of apoptosis,81 as is MYC phosphor-
ylation at T58,82 and downstream activation of the p53 path-
way.83,84 Nonetheless, several examples of p53-independent
MYC-driven apoptosis have been reported, such as during
mitosis.85,86

Consistent with its central role in mediating proliferation
and differentiation, MYC expression is tightly regulated in nor-
mal cells. Transcription of MYC is controlled by numerous
transcription factors including CNBP, FuBP1, and TCF, as well
as by structural DNA elements such as G4 quadruplexes.87-90

MYC mRNA transport, stability and translation is in turn
affected by multiple factors including miRNAs,91-94 while MYC
protein is post-translationally modified with ubiquitin, result-
ing in a short half-life of 15–30 min.95-97 Phosphorylation con-
trols the stability of both MYC and MYCN by affecting
polyubiquitination and hence proteasomal degradation.98-100

Serine 62 is phosphorylated by CDK1/CyclinA and CDK1/
CyclinB1, leading to a transient stabilization of the protein, but
also serving as the prerequisite for threonine 58 phosphoryla-
tion by glycogen synthase kinase 3 b (GSK3b).98,101 This phos-
phorylation event triggers ubiquitination and subsequent
degradation by the 26S proteasome. No such regulatory mecha-
nism has been reported for MYCL to date. The relevance of
these regulatory processes for the signaling of the 3 MYC family
members in the context of SCLC remains to be studied.

Targeting MYC in small cell lung cancer

Due the fact that deregulation of MYC family members is one
of the most frequent oncogenic events in cancer,102 and the
observation that MYC withdrawal in mouse models can lead to
tumor regression,103-106 MYC family members have been con-
sidered compelling therapeutic targets for decades. Compounds
directly targeting MYC or the MYC/MAX interaction have
been developed,107-109 but overall this approach has proven
challenging.110 This is at least partly due to the lack of intrinsic
enzymatic activity and their activation by overexpression,
rather than by oncogenic mutations that could be directly
exploited therapeutically. This precludes the application of
strategies developed for compound discovery in the context of
kinase inhibition, such as inhibitory substrate-analogs and tar-
geting mutated proteins only.

In recent years, exploiting synthetic lethality has emerged as
a promising approach to overcome such limitations, and sev-
eral examples demonstrate that this may be a viable option for
treatment of MYC-driven tumors. In MYC-driven SCLC, we
and others identified Aurora kinases (AURK) as promising
synthetic lethal targets,9,10,111,112 which also emerged as poten-
tial candidate targets in other MYC-driven tumors.99,113,114 An
elegant explanation for the activity of Aurora kinase inhibitors
in MYCN-amplified neuroblastoma is the observation that
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Aurora kinase A (AURKA) binds to the MYCN/FBXW7 com-
plex, reduces K48-linked ubiquitination of MYCN, and thus
increases MYCN protein half-life.99,114,115 This MYCN-stabiliz-
ing function of AURKA is independent of its catalytic activity
and compounds such as alisertib or CD532 induce a perturba-
tion of the AURKA/MYCN complex that results in a reduction
of MYCN protein levels.115 A similar stabilizing role of AURKA
for MYC has also recently been proposed in NRAS-driven,
MYC-expressing hepatocellular carcinoma.113 This is in con-
trast to what we find in SCLC, where no strong decrease of
MYC stability upon alisertib treatment was observed.9,10 This
indicates that additional mechanisms may sensitize MYC-over-
expressing cells toward Aurora kinase inhibition independently
of MYC protein abundance. Moreover, in contrast to
neuroblastoma, MYCN-amplified SCLC cell lines were not par-
ticularly sensitive to AURK inhibition,9,10 suggesting that line-
age-dependent factors and/or the genomic background
contribute to the specific sensitivity of MYC-driven SCLC to
AURK inhibition.

In another study, CDK7, a cyclin-dependent kinase that
phosphorylates Pol II, was proposed as a novel therapeutic tar-
get in SCLC.116 Using the covalent CDK7 inhibitor THZ1,
Christensen and colleagues demonstrated efficacy in in vitro
and in vivo SCLC models. The increased THZ1-sensitivity in
SCLC compared with NSCLC was in part explained by the
impact of CDK7 inhibition on SCLC-specific super enhancers
including those regulating MYC family members, leading to
decreased MYC and MYCN levels.116 Of note, THZ1 had previ-
ously been explored in the context of neuroblastoma, where it
showed selective activity against MYCN-amplified, but not
against non-amplified cell lines.117 Similarly, MYC-dependent
effects of CDK inhibition have been observed in other contexts.
For example, MYC-addicted tumors are selectively responsive
to CDK9 inhibition in hepatocellular carcinoma,118 breast can-
cer,119 and B-cell lymphoma.120 In cell line models overexpress-
ing different oncogenes, inhibition of CDK1 was demonstrated
to induce apoptosis only in cells overexpressing MYC.121

Whereas associations of MYC status and activity of CDK inhi-
bition were shown in these contexts, it remains to be deter-
mined whether MYC status correlates with sensitivity to THZ1
or other CDK inhibitors in SCLC.

An alternative strategy to MYC inhibition is the targeted
inhibition of epigenetic regulators such as BET proteins that
may reduce MYC expression levels. The most extensively char-
acterized bromodomain inhibitor is JQ-1,122 which has been
shown to reduce MYC family member expression and exhibits
activity in MYC-driven acute leukemia,123 Merkel cell carci-
noma,124 BRD4-NUT midline carcinoma125 and MYC-ampli-
fied medulloblastoma.126 Similarly, in a murine SCLC model,
Jahchan and colleagues showed that Mycl activity is crucial for
tumor-propagating SCLC cells and that their tumorigenic
potential was significantly reduced after abrogation of Mycl
activity by JQ-1-induced transcriptional repression or following
Mycl knock-down.127 JQ-1 was moreover shown to have anti-
proliferative effects in SCLC cell lines.128,129 Interestingly, key
targets with reduced expression upon JQ-1 treatment in SCLC
cell lines were MYC family members129 and ASCL1,130 but cur-
rently biomarkers predicting JQ-1 sensitivity in SCLC are lack-
ing. More recently, CHK1 inhibition has been identified as an

additional drug target that elicits efficacy specifically in MYC-
driven SCLC,11 suggesting that MYC status is an important
determinant of therapeutic response in SCLC.

Taken together, MYC family transcription factors are central
signaling hubs, in one way or another affecting virtually all
(proliferative) processes in a cell, which –together with their
frequent deregulation- makes them attractive therapeutic tar-
gets in SCLC. However, to further define and eventually treat
MYC-dependent SCLC, in vivo models that faithfully recapitu-
late the complexity of the human disease are crucial.

Reconstructing the role of MYC signaling
in SCLC GEMMmodels

Multiple genetically engineered mouse models (GEMMs) for
SCLC have been developed in the past decades. The first SCLC
GEMMs were based on conditional loss of Rb1 and Trp53 as
the key genetic alterations, leading to SCLC with high resem-
blance to the human disease both histologically and molecu-
larly, albeit with long latency.131 Importantly, tumors in this
model frequently exhibit focal amplifications and/or high
expression of Mycl.132,133 Subsequent GEMMs incorporated the
additional loss of Rb1 family member Rbl2 (p130) or Pten, both
of which are lost in a subset of SCLCs.6,134-136 Loss of either
tumor suppressor accelerates tumorigenesis, and has made
these models more tractable for experimental use. A recent
comprehensive histopathological review found that these
GEMMs develop a spectrum of histopathologies including clas-
sic SCLC, NSCLC with neuroendocrine (NE) features and large
cell neuroendocrine carcinoma (LCNEC).137 Notably, tumors
from these GEMMs that exhibit classic SCLC morphology are
characterized by high expression of neuroendocrine markers
and Ascl1, a transcription factor involved in neuroendocrine
differentiation. In a mouse model, Ascl1 has been shown to be
required for tumorigenesis of classic SCLC,138 and was demon-
strated to be essential for the survival of neuroendocrine lung
cancer cell lines including NE-NSCLCs.139 Although Mycl
amplifications observed in these original models occur stochas-
tically, Mycl has been shown to play a significant functional
role in SCLC tumorigenesis. Overexpression of Mycl in combi-
nation with Trp53 and Rb1 loss significantly decreases tumor
latency,140 and deletion of Mycl dramatically suppresses tumor
formation and leads to more mixed and NSCLC morphologies,
even when targeting neuroendocrine cells.30 This suggests that
beyond just driving proliferation, MYCL may play a role in
SCLC differentiation.

The Rb1/Trp53/MycT58A (RPM) mouse is the first known
SCLC GEMM driven by Myc, and expresses a non-phosphory-
latable point mutant of MYC (T58A) causing substantially
increased MYC protein levels.9 Interestingly, tumors in this
model exhibit reduced neuroendocrine gene expression, includ-
ing Ascl1, but in contrast display high Neurod1 expression.
They thereby resemble a subset of human SCLC marked by low
neuroendocrine markers, which is known as “variant” SCLC
morphology.141-143 Although it is still unknown whether vari-
ant SCLC depends on Neurod1 in a similar manner as classic
SCLC depends on Ascl1, it is conceivable that tumors may be
addicted to their respective driver transcription factors. In addi-
tion to the variant morphology, some tumors in the RPM mice
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were negative for both ASCL1 and NEUROD1, a phenotype
also observed in human tumors and human SCLC cell lines.9,138

The significance and the molecular mechanisms underlying
these “double negative” SCLC cells are currently unclear. It is
tempting to speculate that the “double negative” histological
phenotype associated with high MYC expression may represent
the most de-differentiated state of tumors and that MYC may
be causally involved. However, whether/how MYC may control
the differentiation of SCLC into the variant or “double nega-
tive”morphologies is yet to be fully understood.

Consistent with the human disease, MYC-driven murine
SCLC is initially highly sensitive to the standard-of-care che-
motherapy. In RPM mice, chemotherapy induces significant
cell death, reduces tumor burden and increases survival. How-
ever, relapse is so rapid that animals only gain»10 d in survival
benefit compared with untreated animals.9 We initially found
that the AURK inhibitor alisertib is effective in MYC-driven
human SCLC cell lines10 and notably, mice with MYC-driven
tumors had a significant increase in survival when alisertib was
coupled with chemotherapy.9 In line with these findings in
GEMMs are reports from clinical trials for second-line SCLC
treatment, which were designed to exploit such vulnerabilities
discovered in vitro: 1) a phase II study investigating alisertib in
pre-treated SCLC144 and 2) a recent phase II trial of relapsed
SCLC patients given paclitaxel with or without alisertib
(NCT02038647). In the unselected cohort of SCLC patients,
the addition of alisertib to taxane treatment did not signifi-
cantly prolong survival.145 However, evaluation of MYC
expression by IHC revealed that in patients with high MYC lev-
els, survival was significantly increased with the alisertib/pacli-
taxel combination compared with patients treated with
paclitaxel only. This illustrates that MYC status may be a pre-
dictor of both SCLC subtype and therapeutic vulnerability in
patients, and therefore, preclinical studies using these different
GEMMs may be able to predict the outcome of clinical trials.

As mentioned above,MYCN is amplified in a small subset of
SCLC patients and cell lines, but has not yet been clearly linked
with variant or classic histopathology or to therapeutic
response. Currently no SCLC mouse models driven by overex-
pression of Mycn have been published. However, David
MacPherson has reported the generation of Rb1/Trp53/Mycn
conditional mice (personal communication) and comparisons
to existing GEMMs are awaited. It will be important to deter-
mine whether Mycn-driven SCLC GEMMs have similar or dis-
tinguishing molecular and phenotypic characteristics
compared withMycl/Myc-driven tumors.

Conclusions

Currently SCLC is treated as a homogeneous disease based on
the stage at diagnosis.146 However, growing evidence of hetero-
geneity among SCLC patient tumors, cell lines and GEMMs
based on histology147-149 and genomics9,138,150 indicates that a
more differentiated treatment stratification would likely prove
beneficial. Deregulated MYC signaling may play a central role
in the molecular and histological heterogeneity observed in
SCLC. Apart from their association with histological sub-
groups, the central role of MYC family members in processes
governing tumor maintenance offers new opportunities for

targeted therapy, for example by exploitation of paralog-
specific synthetic lethal interactions. As discussed above, the
majority of functional characterization and identification of
synthetic lethality has been performed for MYC and -to a lesser
extent- for MYCN. In contrast, despite being the most fre-
quently altered MYC family member in SCLC and the finding
that Mycl inactivation leads to tumor suppression in mice,30

very limited knowledge is available regarding MYCL, its basic
biology, its role in cancer and potential synthetic lethal part-
ners, and this deserves intensified investigation.

In the past, in-depth molecular analyses of human
SCLCs were limited by the lack of tumor tissue due to the
infrequent availability of biopsy samples. The improved
development of patient-derived circulating tumor cell and
tissue xenograft models (CDX and PDX, respectively) may
be a means to broaden the scope of human tumor models.
Nevertheless, GEM models are indispensable in comple-
menting CDX/PDX studies. Because they provide autoch-
thonous tumors in an immune-competent background,
GEMMs allow the investigation of treatments in relation to
an intact tumor microenvironment and offer the possibility
to study immune-checkpoint modulation in conjunction
with other treatment approaches.

Overall, several central questions remain open and need
to be addressed: Are synthetic lethal interactions with MYC
overexpression also relevant to MYCN and/or MYCL? What
is the best strategy to discover novel synthetic lethal inter-
actions in MYCL and MYCN-driven SCLC? How well do
findings in in vitro and in vivo models translate into the
clinic? To answer these questions, the investigation of
human SCLC samples will certainly remain a cornerstone.
However, integrative analysis of orthogonal tumor models
including cell lines, GEMMs and CDX/PDXs will be an
essential factor to gain biological insights and develop novel
treatment strategies. Given the important phenotypic differ-
ences associated with different MYC family members in
GEM models, it will be important to characterize MYC sta-
tus in patients and model systems. A more complete under-
standing of the role of MYC family members in tumor
phenotype and drug response ultimately holds great prom-
ise for improved outcome for patients with SCLC.
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