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Abstract

We present Brain Modulyzer, an interactive visual exploration tool for functional magnetic 

resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain 

regions when resting or when performing mental tasks. Brain Modulyzer combines multiple 

coordinated views—such as heat maps, node link diagrams and anatomical views—using brushing 

and linking to provide an anatomical context for brain connectivity data. Integrating methods from 

graph theory and analysis, e.g., community detection and derived graph measures, makes it 

possible to explore the modular and hierarchical organization of functional brain networks. 

Providing immediate feedback by displaying analysis results instantaneously while changing 

parameters gives neuroscientists a powerful means to comprehend complex brain structure more 

effectively and efficiently and supports forming hypotheses that can then be validated via 
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statistical analysis. To demonstrate the utility of our tool, we present two case studies—exploring 

progressive supranuclear palsy, as well as memory encoding and retrieval.

Index Terms

Linked Views; Neuroinformatics; Brain Imaging; Functional Magnetic Resonance Imaging 
(fMRI); Graph Visualization

1 Introduction

Understanding the large-scale connectivity of the human brain is crucial to comprehending 

the brain’s overall cognitive functioning. Connectivity in the human brain encompasses 

multiple spatial scales, ranging from individual neurons to entire brain regions and systems. 

When studying large-scale brain organization, neuroscientists often focus on high-level 

activity patterns of these spatially distinct brain regions through non-invasive recording 

procedures, such as functional Magnetic Resonance Imaging (fMRI). The correlation of 

activity between regions yields a measure of functional connectivity between regions, 

providing essential information about how neurons and neural networks process information.

Neuroscience has established the existence of a relatively small number of intrinsic 

networks, containing sets of brain regions, also known as communities, that are densely 

connected within themselves and sparsely connected to each other. These networks underlie 

specific processes such as lower- and higher-order vision, hearing, sensory-motor processing 

and spatial processing [1], [2]. Graph-theoretic techniques, such as community detection [3], 

can identify these intrinsically connected networks. Furthermore, the modular structure of 

the brain is hierarchically organized. The study of these hierarchical modules has revealed 

specialized cognitive sub-modules within larger communities. These sub-modules 

dynamically change their coupling with each other based on the cognitive process that the 

brain engages in.

Studying the hierarchical and modular properties of brain networks can provide answers to 

questions such as how brain networks vary across subjects, how the networks change when 

subjects age [4], [5], and how networks differ under different pshychological and 

neurological disorders [6], [7], [8], [9], [10]. Although such analysis typically uses statistical 

models [11], graph theoretic methods and visualization systems provide a means to explore 

and communicate unforeseen connectivity patterns in the data [12]. Toolkits that support 

interactive in-depth exploration of organizational properties of brain networks and portray 

them in their spatial context are currently still lacking.

Existing visualization methods for functional connectivity are primarily designed to 

communicate scientific findings, not comprehensively supporting exploration of connectivity 

data. Moreover, existing tools do not run analyses interactively for various parameter 

combinations and provide immediate visual feedback about the modular structure of brain 

networks at various hierarchical levels. Such a feedback would will allow scientists to 

formulate or reject hypotheses early in the analysis process.
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Brain Modulyzer (Fig. 1) solves this challenge and facilitates a thorough understanding of 

the connectivity data by integrating multiple coordinated views to introduce novel 

interaction techniques that explore the hierarchical and modular properties of functional 

brain networks. The methods and visualization system described in this paper are the result 

of a close collaboration involving neuroscientists and computer scientists, driven by the need 

to build such a tool. Specifically, our system supports (i) abstract views—show connectivity 

information (Figs. 1A, 1C) and analysis results (Figs. 1D, 1E, 1F), enabling quick 

identification of patterns of interest; (ii) anatomical views—relate this information to the 

anatomy (Fig. 1B); and (iii) community analysis— compute and identify modules (Figs. 1D, 

1E), their hierarchical structure (Fig. 1F) and graph theoretic measures, all collectively 

providing overall insight into the topology of the brain network.

This paper makes the following contributions:

• We employ overview+focus+detail visualizations of the modular structure and 

hierarchical organization of brain networks. These visualizations explicitly show 

inter- and intra-modular connectivity relationships.

• We provide methods that dynamically compute various topological properties of 

brain networks such as graph statistics, community structure and its associated 

hierarchy, all based on a user-specified connection strength threshold.

• We introduce an integrated system that uses the concept of brushing and linking 

to combine multiple views highlighting different data aspects and develop novel 

interaction techniques to explore functional brain connectivity.

• We present two case studies that demonstrate the usefulness of our visualization 

tool.

2 Background

2.1 Functional Connectivity

Resting state fMRI captures intrinsic brain connectivity when the brain is not performing 

any task [18]. With such data, neuroscientists are especially interested in developing a better 

understanding of the impact of diseases on brain networks. For example, scientists can better 

characterize the effect of diseases on the cognitive abilities of the human brain based on 

changes reflected in rs-fMRI network data of the subjects involved.

Brain connectivity based on fMRI analysis is defined in terms of correlation matrices where 

each matrix entry ci,j encodes the statistical similarity between the time courses of 

parcellated brain regions i and j. Other imaging modalities used to study connectivity 

include diffusion tensor imaging (DTI) that map the anatomy of the white matter tracts non-

invasively.

2.2 Modularity Analysis in Functional Brain Networks

Modularity in complex networks measures the division of a network into sets of modules 

where each module possesses dense internal or intra-modular connectivity and sparse 

external or inter-modular connectivtity [19]. Large complex systems like brain networks 
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exhibit modular organization [4] and have a hierarchical network structure at multiple scales 

[20], [21]. This property of the brain ensures that the network is robust, adaptable and able 

to evolve [20].

Analysis of modular organization of brain networks typically aims at answering high-level 

questions such as [22]:

• How diverse are inter—modular connections?

• How does one module specialized in performing a certain task interact with other 

modules?

• What nodes in a module are responsible for global inter-modular integration?

Exploring and ultimately answering these questions requires techniques that dynamically 

explore both inter-modular, and intra-modular connectivity data.

Visualizations showing the modular organization at varying levels are helpful to 

neuroscientists for gaining insights into the topology of the brain network, which allows 

them to come to qualitative conclusions about the data. For example, when analyzing the 

properties of brain networks of diseased subjects diagnosed with schizophrenia, the subjects 

exhibited a significantly reduced hierarchy which might indicate that their brain networks 

were less efficiently wired [23].

3 Related Work

We provide a brief review of visualization methods in three domains: visual analysis in 

functional brain networks, visualizations in hierarchical modular structures, and 

visualization of communities in functional brain networks.

3.1 Visual Analysis Tools in Functional Brain Networks

Functional connectivity data can be visualized as heat map—coloring each matrix cell ci,j 

(See Section 2.1) based on a connection strength or as a node link diagram where nodes 

represent brain regions and edges represent matrix entries ci,j. The edge between nodes i and 

j encodes the connection strength entry ci,j.

To visualize this data, prior work mainly used two common layout techniques, i.e., spatial 

and non-spatial layout principles. Spatial data layout techniques take into account the 

anatomy of the brain regions while non-spatial techniques do not.

Abstract, non-spatial visualization techniques include spring embedding graphs, matrix 

bitmaps and scatter plots [24]. Fair et al. [25] and Deshpande et al. [26] used spring-

embedding algorithms to visualize the brain network as 2D node-link diagrams. An 

alternative approach to visualizing this non-spatial data is to view directly the correlation 

matrix [27], [28], [29], [30].

Three-dimensional (3D) node-link diagrams [31], [32], [33] that place the nodes at the 

spatial coordinates of the anatomical view address this shortcoming. Tools that utilize 

anatomical 3D spatial information, include the CoCoMac Paxinos 3D viewer [32], BrainNet 
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Viewer [15] (Fig. 2D), Brain Voyager QX d [34], and Visual Analysis Tool by Li et al. [13] 

(Fig. 2A). Although visualizing functional connectivity data as 3D node-link diagrams 

allows neuroscientists to inspect visually the structural patterns in the brain, they lead to 

cluttered and occluded visualizations. One way to overcome such clutter and occlusion is to 

filter edges based on the connection strength threshold [31]. Adopting a 2D anatomical 

layout whose nodes are projections on 2D planes (based on two anatomical axes) also 

reduces this clutter to some extent [30].

Spatial representations help neuroscientists orient themselves with respect to the brain 

regions while 2D non-spatial graph layouts provide the necessary flexibility for visualizing 

modifications to the connectivity data [12]. Combining both representations enables 

scientists to seamlessly investigate whether network topology interacts with the spatial 

domain of the data, providing the ability to draw more detailed conclusions. The Functional 

Brain Connectivity Explorer [35] (Fig. 2C) was among the first published tools combining 

the strengths of non-spatial and spatial visualization techniques. Other papers concerned 

with visual analysis of brain connectivity data include that by Akers et al. [36], Bruckner et 
al. [37], Beyer et al. [38], Jianu et al. [39], Whitfield et al. [40], Ribeiro et al. [41] and 

Brown et al. [42] (See also Figure 2). However, there is still a need for additional 

visualization techniques that can help neuroscientists answer more in-depth questions and 

perform more specific analysis of modular structures of functional brain connectivity data.

3.2 Visualization of Hierarchical Modular Structures

Early work in visualizing communities [43] by Heer et al. [44] paved the path for 

automatically computing and visualizing communities. Later, research by Corinna et al. [45] 

sought to solve the problem of visualizing overlapping communities. However, these 

published approaches do not focus on visualizing modular structures at multiple levels. To 

address this problem, Herman et al. [46] described various techniques to visualize 

hierarchical modular structures. These techniques include tree-map [47], cone-tree [48] and 

information cube [49]. Another technique, presented in the ASK-Graph-View [50] solves the 

problem of visualizing hierarchical structures by juxtaposing an interactive visualization of a 

hierarchical tree with a graph and a matrix view. However, this tool only visualizes user-

selected clusters from the hierarchical tree, hiding the overall connectivity information 

between sub-clusters. Such visualizations make the analysis of interrelationships between 

sub-clusters difficult. Analyzing these interrelationships is of importance to interpreting 

overall topology of the modular structure of hierarchical networks [20]. Summary graph 

[51], community matrix visualizations [52], and dendrograms [53] provide the foundation 

for visualizing hierarchical modular organizations of the functional brain networks. In our 

work, we expand on the aforementioned visual analysis techniques for visualizing 

hierarchical modular data specifically in the domain of functional brain connectivity data.

Our research builds on these methods and expands their capabilities by emphasizing the 

visualization of hierarchically organized modular data.
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3.3 Visualization of Modular Structures Based on Functional Brain Connectivity

Little progress has been made concerning the interactive visualization of the modular and 

hierarchical organization of brain networks. The Connectome Visualization Utility (CVU) 

[16] (Fig. 2E) is a tool used for exploring the modular structure of brain networks. However, 

CVU is limited to identifying and visualizing modular structures at a single scale/level. 

Furthermore, the visualization features of this tool do not provide an overview of the 

communities or relationships between them.

Current systems typically suffer from information overload, occlusion, or lack of overview 

visualization. Information overload occurs when views provide few insights because of the 

overwhelming number of visual elements. Occlusion results when visualizations contain a 

large number of elements that overlap with each other, inhibiting the comprehension of the 

data. Not providing an overview of the data inhibits overall data comprehension as it only 

captures the relationship of an individual brain region/node while not providing the global 

context.

We address these problems and improve the current technology by supporting these 

capabilities: (i) juxtaposed visualization views in a detail+overview style; (ii) easy-to-use 

navigational and explorational techniques that support analysis of intra-modular, inter-

modular or both types of connectivity information; (iii) concurrent access to all the 

representations of the same data by linked views; (iv) easy manageability of modular and 

hierarchical information through the inclusion of a network measure table.

4 Overall Approach

To support the two complimentary tasks of exploring connectivity between brain regions and 

answering questions based on their modular structure (Section 2), Brain Modulyzer supports 

two analysis modes: correlation mode and community mode (Fig. 3). The correlation mode 
focuses on direct visualization of the correlation matrix, showing correlation strength 

between individual brain region and putting this information in an anatomical context. The 

community mode displays the results of analyzing the modular and hierarchical properties of 

brain networks. Switching between the two modes provides in-depth insight into brain 

connectivity and the modular structure arising from it in its anatomical context, making it 

possible to formulate new hypotheses that can subsequently be verified by offline statistical 

analysis.

4.1 Anatomical Views

To understand functional connectivity between brain regions, neuroscientists need to 

determine how it relates to the anatomy. For example, it is often important to know whether 

two functionally correlated regions are also anatomically close or how detected communities 

are distributed over the brain. Anatomical views in Brain Modulyzer provide this 

information by coloring brain regions either based on their correlation strength to a selected 

region—in correlation mode—or based on their community membership—in community 

mode—to effectively combine connectivity information with the anatomy.
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• The Brain parcellation view provides a comprehensible overall picture of the 

brain by visualizing parcellated regions of interest in their anatomical context. 

Each brain region is displayed as a set of contiguous voxels comprising it (Fig. 

4A).

• Parcel centroid view: Visualizing brain regions as voxels often suffers from 

from occlusion and visual clutter. The parcel centroid view addresses this issue 

by displaying just a sphere at the centroid of each brain region using the same 

color scheme as the brain parcellation view (Fig. 4C).

• Slice views: Parcellated brain region are often sparse and fill only a small portion 

of the volume. As a consequence, it is difficult to identify their exact location in 

the brain. The slice views (Fig. 4B) display structural data from an MRI scan, 

providing the spatial cues necessary to locate the parcellated regions. Users can 

qualitatively assess the anatomical locations of the brain regions within the three 

complimentary planes: sagittal, coronal and axial. The view displays grayscale 

images of the MRI scan (registered with the parcellation volume) to provide the 

2D spatial context of the 3D volume view.

To provide additional anatomical context for the 3D views (brain parcellation view and 

parcel centroid view), our tool displays a semi-transparent contextual isosurface representing 

the brain surface in the 3D views.

4.2 Abstract Views

The abstract views support identifying, exploring, and analyzing patterns of interest 

underlying the correlation data. By removing the anatomical constraints on the 

visualizations, the 2D non-spatial abstract views with flexible layouts convey changes in 

connectivity in an explicit way.

• The matrix view supports quickly assessing connectivity trends across the entire 

data set [54], [55], [56]. The view provides users with information about general 

correlation or relationships between brain regions. Each matrix entry ci,j is color-

coded according to the correlation strength between the i-th brain region and j-th 

brain region. As the data is symmetric, the ci,j value is equal to the cj,i value.

• The Graph view allows users to easily identify topological patterns of interest 

and perform qualitative graph theoretical analysis. The view shows the brain 

network encoded in the functional connectivity data matrix as a node-link 

diagram. Nodes depict brain regions, and edges indicate the (pairwise) 

correlation strength between the nodes.

The following capabilities support performing high-level brain analysis tasks with our tool:

• Node coloring: Often neuroscientists are interested in a node and its correlation 

with the other nodes to investigate its topological role in the network. Our tool 

allows users to dynamically select brain regions and explicitly highlight their 

edge strengths with respect to other nodes in the graph. The changes are 

highlighted by coloring the nodes and the edges in the graph view according to 

their correlation data values.
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• Thresholding: Visualizing all the information provided in the matrix produces a 

complete graph, e.g., the 27 region graph in Fig. 1C, would have 576 edges. Such 

a graph suffers from clutter and overdraw, inhibiting users to perform any 

meaningful qualitative analysis. Brain Modulyzer supports filtering connectivity 

data based on a specific threshold value to remove clutter-causing edges in the 

graph. This feature allows users to selectively focus on the strongest connections 

between brain regions.

• Dynamic layout change: Different graph layouts possess varying degrees of 

user preference and aesthetics, highlighting different properties of network data. 

Circular-layouts, for e.g., focus on neutrality [57], i.e., displaying all the nodes 

equidistant from each other, allowing users to better focus on connections rather 

than its underlying topology. Brain Modulyzer supports the most widely used 

graph layout algorithms used by neuroscientists, including the neato graph layout 

[58], force-directed-layout [59], and circular or shell layouts [60].

• Annotations: To provide in-depth details of regions of interest, all of the linked 

views provide interactive tooltips that convey useful quantitative information 

about network measures, correlation strength and the abbreviation of the region 

selected.

4.3 Community Detection and Visualization

The community detection mode in our tool facilitates the exploration of the modular 

property of brain networks. Community detection is performed on the data to identify and 

explore modules and its hierarchies. We apply community detection, e.g., Louvain’s method 
[3], to detect communities from the input correlation data and assign colors with a maximum 

perceptive distance [61] to each of these communities.

To enable real-time interaction with the user, the tool detects and renders communities 

dynamically when the threshold for the connections changes. The following abstract views 

support community mode:

• The community matrix supports detailed analysis of outlier connections or 

connectivity trends within each module. This view (Fig. 5) shows intra-modular 

connections by coloring a cell cij based on its community membership. The data 

is only visualized if it corresponds to a connection within a community and has a 

connection strength above a given threshold. To allow easy extraction of 

connectivity trends within modules, rows and columns of the matrix are 

contiguously sorted [62] such that colored cells are squeezed along the diagonal 

of the matrix view.

A larger number of colored cells in the community matrix view indicate strong 

intra-modular connections. For example, out of the twelve identified 

communities shown in Fig. 5, only six are connected internally, i.e., have edges 

within the module. As the other seven communities are single region 

communities, they do not possess any colored cells in the community matrix 

view.
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• The community graph provides an overview of the entire community structure 

of the brain network, enabling users for easy identification of inter-modular 

connectivity patterns. This view supports a high-level investigation of modules 

that are highly correlated or anti-correlated with each other.

Nodes in the community graph (Fig. 7A) represent individual communities and 

the edges thickness depict inter-modular correlation. The inter-modular 

correlation strength between two communities A and B is computed as the mean 

strength of all edges that start from nodes in community A and end at nodes in 

community B.

To support visual correlation between community graph view and graph view, we 

ensure that the modules are placed consistently in both views. Community nodes 

are placed at the average node coordinates of all the nodes in the original graph 

layout (Fig. 7A and 7C) comprising their community.

The anatomical views color parcellated brain regions according to the communities 

identified in the corresponding abstract views. This coloring provides an anatomical context 

for the detected communities, allowing users to quickly investigate whether anatomically 

close regions are also members of the same community.

4.4 Dendrogram View

Common hierarchical brain analysis tasks often require qualitative analysis of correlation 

information of sub-communities. The dendogram view not only supports interactive 

exploration and analysis of modular information at varying levels of hierarchy but also 

allows the investigation of the structure of the modular hierarchy itself.

The Louvain method [3] outputs a hierarchy of modules that we visualize in the form of a 

dendrogram. Nodes in the lowest level of the hierarchy denote individual brain regions while 

the nodes in the highest level denote the resulting communities. The nodes that are neither of 

these denote sub-communities.

We construct the dendrograms (Fig. 6) in our system as follows: given the hierarchical 

modular information, we maintain a tree-like data structure that maps nodes in the 

dendrogram view to the nodes in the graph view. We visualize the cluster data using a layout 

that places the nodes in hierarchical order, i.e., it places nodes in the same hierarchy level at 

the same height starting with leaf nodes at the bottom and community nodes at the top. 

Changing the threshold for community analysis interactively results in an updated 

dendrogram view. The highly interactive features of the dendrogram view are what makes 

the view a significant feature for the modular analysis. For simplicity, we assume that the 

modularity-optimization algorithm provides us with three levels of hierarchy, i.e., higher-

level communities, mid-level sub-communities and lower-level brain regions.

The leaf nodes and subcommunity nodes of the dendrogram view are color-coded according 

to their community/sub-community membership. All of the nodes in the dendrogram view 

are ordered based on the hierarchical structure of the data.
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In order to provide an overview of interactions between sub-communities, the tool allows the 

user to pick a level in the dendrogram hierarchy and investigate how communities merge or 

split across the hierarchy. For example, in Fig. 7A, the community graph visualizes sub-

communities formed by the modularity optimization algorithm at level 1. Highlighted sub-

communities colored in yellow and pink later merge into one community in the next stage of 

the hierarchy.

4.5 Network Measure Table

Measures used in graph theory often convey useful information about connectivity profiles 

of individual brain regions [22], [63], [64]. The graph theoretic measures that we utilize in 

our tool include:

• Degree centrality: This measure captures the fraction of nodes a node is 

connected to [65]. A high value indicates that a node is a local hub that integrates 

information from its neighbors.

• Participation coefficient: This measure reflects the distribution of links of a 

node with all the modules in the network [66]. A high value indicates that a node 

acts as a bridge between modules.

• Betweenness Centrality: This measure is the sum of the fraction of the shortest 

paths from all vertices to all others that pass through a node [67], [68]. A high 

value characterizes nodes that enable rapid distribution of information from one 

part of a network to another part.

• Within-module degree z-score: This measure represents the connectedness of a 

node to other nodes in the same module [22]. A high value indicates that the 

node is a provincial hub within its module.

We present these measures in a table showing one row per brain region, supporting the 

identification of anomalies or patterns in brain networks. Tooltips provide additional 

information regarding Z-score values and the relative rank of the measure that is selected. A 

user can sort the table using any network measure by selecting the table headers.

The table shown in Fig. 7E provides statistics for communities identified for the threshold 

value 3.056, sorted by descending centrality. Additionally, one can examine the measures of 

brain regions that belong to a selected community in the dendrogram view. For example, the 

brain region RPreSMA has a centrality value of 0.19 and is ranked fourth based on the 

sorting criteria. One can deduce that the node has a relatively average participation index of 

value 0.49 and a low betweenness value.

Visualizing Graph Measures as Graph Properties—To convey qualitative patterns 

that are not so obvious when presenting network statistics alone, our tool maps visually 

maps network statistics to graph properties. Fig. 7C, uses node size (a graph property) to 

represent centrality (a network measure), where larger node sizes indicate higher centrality.
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4.6 Linking and Interactivity

All views are coordinated and linked together with a rich set of interactions enabling the 

users to gain multi-level insights for community analysis. Interactivity combined with 

various linking features in our tool allow the user to perform in-depth exploration of 

modules/brain regions of interest across the modular hierarchy.

Users can select a brain region of interest in a particular view of interest and explore its 

representations in all the other views. For example in Fig. 7D, the user selects a community 

in the dendrogram view and can simultaneously examine its representation network measure 

table, overview graph, and community graph view.

Brain Modulyzer supports three types of linking features to analyze hierarchical 

relationships, these include:

• Leaf-node to brain region linking: Selecting leaf-nodes in the dendrogram 

view highlight all the corresponding brain regions and the connections belonging 

to the selected community in all visualization views.

• Sub-community nodes to brain regions linking: Selecting a sub-community 

node (e.g., in level 1), highlights not only the corresponding brain regions that 

belong to the selected sub-community but also the edges within the sub-

community.

• Community nodes to brain regions linking: Picking a community node (e.g., 
in level 2) in the dendrogram view highlights all the associated sub-communities. 

Highlighting a sub-community is similar to the sub-community nodes to brain 
regions linking mechanism.

For the exploration of modular properties of the brain networks, the interactive features 

include: (i) inter-modular highlighting for between-module connections (Figure 7A), (ii) 

intra-modular highlighting for within-module connections (yellow or blue community in 

Figure 7C, Figure 5). Other interactive features include specifying the connection strength 

threshold to filter edges in the connection graph, see Fig. 7C, de-cluttering the connection 

graph, dynamically recalculating the graph structure, graph-theoretical metrics, and 

hierarchy of communities. Changing the connection strength threshold re-orders the headers 

of the community matrix and the leaves of the dendrogram such that community 

relationships of entities are reflected by the placement of their corresponding graphical 

primitives.

4.7 Focussing on Data Subsets

Our experience with tool showed that when analyzing larger data sets, the matrix cells and 

the headers are no longer appropriate for visually capturing all the salient information of 

interest. In particular, to present a matrix view with a large number of rows/columns., it 

becomes necessary to omit row and column headers. While tool tips can provide information 

as to which pair of regions corresponds to a correlation value, this process becomes tedious 

for larger subregions. To support these use cases, our tool displays a subset of the data, i.e., a 

block of selected matrix elements, in another view. Restricting the matrix to a subset makes 
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it possible to display row and column headers for orientation. The matrix elements to be 

displayed in the magnifier window can be based on any number of elements in the matrix 

views.

5 Results

Our team constitutes experts from visualization as well as neuroscience groups, all of which 

contributed to the design of the tool. The main research questions of our case studies were: 

What insights did the neuroscientists gain from using such a tool? How does the interplay of 

standard visualization techniques help them arrive at the hypotheses?

The tool has helped the domain experts gebnerate new hypotheses and research ideas to 

analyze neurodegenerative diseases such as Progressive Supranuclear Palsy and tasks based 

on memory encoding and retrieval. We describe the data acquisition process as well as the 

scientific insights gained through the use of our tool by the domain experts.

5.1 Case Study 1: Progressive Supranuclear Palsy

Progressive supranuclear palsy (PSP) is a neurodegenerative disease that typically begins 

around the age of 60 and causes restricted vertical eye movement, balance impairment, axial 

muscle rigidity, and cognitive-behavioral deficits. Patients demonstrate atrophy of particular 

brain structures including the midbrain, cerebellum, thalamus, basal ganglia, and portions of 

the prefrontal cortex. The disease course is rapid and there is no available cure [69]. 

Previous work has identified functional connectivity reductions in a network anchored by the 

rostral mesothalamic junction (MTJ), connecting to an array of regions which contribute to 

diverse functions including oculomotor control, skeletomotor control, and social/emotional 

processing [70]. In this study, 18 patients with PSP and 36 age-matched healthy control 

(HC) subjects received task-free (resting state) fMRI scans. A total of 27 specific regions of 

interest comprising this network were used to calculate the pairwise functional connectivity 

of all regions and define a 27 × 27 covariance matrix for each subject. To summarize the 

network connectivity patterns in patients with PSP and healthy controls, we calculated the 

average connectivity matrices for the 36 controls and 18 patients.

As reported by Gardner et al. [70], the mesothalamic junction (MTJ) is an epicenter of PSP 

disease-related pathology, structural atrophy, and functional connectivity disruption. In that 

study, the MTJ node exhibited significantly reduced total flow, a graph theory measure 

similar to the nodal degree. In this study, we visualized the connectivity of this node with 

other nodes in the MTJ network using the Brain Modulyzer. As can be seen in Fig. 8, the 

right MTJ node in control subjects (Fig. 8C; blue lines emanating from selected node) shows 

higher connectivity to neighboring nodes than it does in PSP patients (Fig. 8D). 

Furthermore, the graph view (color-coded with communities) shows the left and right MTJ 

fragmented as an isolated community in PSP patients (Fig. 8D, right column, purple nodes). 

This isolation can be simultaneously recognized in the matrix view (Fig. 8A, right column) 

and the anatomical location of these nodes can be seen in the anatomical view (Fig. 8B, 

right). Finally, the graph view (color-coded with communities) illustrates the significant 

isolation that exists between each community of nodes in PSP patients. Our previous work 

had shown that connectivity was globally reduced in this network.
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The visualization tool clarified that the major consequence of reduced connectivity was 

progressive isolation of the three modules in this network: the subcortical (Fig. 8B, left, 

blue), frontal (Fig. 8B, left, red), and parietal (Fig. 8B, left, green) modules. The cognitive 

symptoms of PSP include bradyphrenia, an impairment of concentration, and loss of mental 

flexibility, both of which are components of what has been called a subcortical dementia 

[71]. These symptoms are thought to reflect impaired interaction between cortical regions 

and subcortical regions including the basal ganglia and thalamus [72].

The visualization tool makes simultaneously apparent: (i) the reduced degree centrality of 

the basal ganglia (RBG and LBG nodes) in PSP as compared to HC (purple lines in Fig. 8D, 

right in PSP compared to right in HC, Fig. 8C) and (ii) the substantial isolation of the 

subcortical module from the frontal module (blue nodes to red nodes in Fig. 8C, right, vs 

cyan nodes to red nodes in Fig. 8C, right).

This combination of community detection, nodewise graph theory metrics, anatomical 

rendering of community membership, and the ability to assess nodewise connectivity edges 

enables complex, multipart observations that are not otherwise easy to synthesize. Here, this 

disconnection of the basal ganglia in the face of cortical-subcortical isolation is a candidate 

mechanism for bradyphrenia in PSP that has not previously been explored in a network 

context.

5.2 Case Study 2: Memory Encoding and Retrieval

Fifteen healthy young subjects participated in an episodic memory encoding and retrieval 

task (unpublished data). Subjects were asked to learn the associations between images of 

different famous faces and famous places that involved first studying the pairs of faces and 

places to be remembered, then immediately afterwards receiving a task-free (resting state) 

fMRI scan. The following day, subjects returned and performed a memory test to assess how 

many of the studied pairs they could accurately recall from the previous day. Memory 

performance was measured in order to relate it to functional connectivity as observed by the 

pre-encoding and post-encoding fMRI scans. We hypothesized that subjects with superior 

memory would show elevated connectivity between memory and visual regions in the post-

encoding scan, indicative of more active memory consolidation. Subject fMRI scans were 

parcellated into 199 brain regions spanning the cortical gray matter, subcortical, and 

brainstem regions. The pairwise functional connectivity between these regions was 

calculated to derive the 199 × 199 connectivity matrix for each subject. A behavioral 
correlation matrix matrix was obtained by calculating the correlation of each subject’s 

performance on the memory task with their functional connectivity between region A and 

region B, then repeating this procedure for all pairs of regions. This 199 × 199 groupwise 

behavioral correlation matrix can be thought of as a network representing successful 

memory consolidation. The memory consolidation network (MCN) was analyzed for 

community structure to determine if particular regions became more central hubs in the post-

learning network, when memory consolidation was occurring for the subjects with superior 

memory performance.

Community assignments were visualized in the Brain Modulyzer both in abstract and 

anatomical space. The modules in this network can be recognized as known intrinsic 
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functional connectivity networks—the default mode (Fig.; green), visual/sensory (red), 

executive control (cyan), and motor networks (purple). The anatomical view is essential for 

identifying the spatial topography of these networks. For example, in Fig. 9A and B, the 

default mode network (green) can be recognized based on its layout in medial frontal, 

medial parietal, lateral inferior parietal, and temporal lobes. The executive control network 

(blue) can be recognized in dorsal lateral prefrontal and superior parietal areas. The axial, 

sagittal, and slice views, along with the 3D surface view, all provide complementary 

information. While the spatial pattern of nodes in the same module can be useful for 

recognizing the system, the anatomical view provides little information about the network 

interactions within and between these different modules. A graph view is a valuable tool for 

discerning how the different modules interact. The ability to simultaneously observe this 

network in linked anatomical, graph, and matrix views enables a rich navigational 

experience, unlike any currently available tool.

In the network under examination here, the executive control network lies between the 

default mode and visual/sensory networks (Fig. 9B, top left). The default mode and visual/

sensory networks have extremely sparse direct connectivity to one another, as can be seen by 

the weak inter-modular connectivity in Fig. 9B, top left, and the nearly perfect separation of 

the green and red nodes in the spring embedded network in Fig. 9C. From this observation 

we can generate the hypothesis that during successful memory consolidation, the executive 

network plays a pivotal role coordinating between these networks, potentially by allocating 

resources for attention and multimodal sensory binding. One node played a particularly 

critical role in connecting multiple modules, the posterior hippocampus/fusiform cortex 

(Fig. 9D, green). This node exhibited the highest combination of degree centrality, 

participation coefficient, and betweenness centrality of any node in the MCN. This suggests 

that this node plays an important role binding information from communities supporting 

memory encoding (default mode; green), visual/sensory processing (red), executive function 

(blue), and motor function (purple).

6 Conclusions and Future Work

We have presented a visualization tool for exploration and analysis of modular functional 

brain connectivity data. The innovative capabilities of our system make it possible to apply 

visualization techniques to all relevant data representations and use automated analysis 

methods for detailed exploration of brain network data. Our tool provides focus+context and 

detail+overview visualizations supporting an interactive, in-depth analysis of hierarchical 

communities. We have used our system to visualize community hierarchies in real-time for 

datasets up to 200 brain regions. The tool has already proven to be a valuable resource for 

the neuroscientists in our collaborative team. Since other groups have voiced a strong 

interest in our tool, we plan to make it publicly available for download.

While already useful in its current state, numerous extensions of our system are possible. For 

example, currently the tool supports analyzing one graph at a time. We plan to add the 

ability to read several connectivity matrices, e.g., a resting state network and a network after 

performing a mental task and display graphs that highlight the differences in an intuitive 

way. We also plan to expand our framework to more effectively combine statistical and 
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visual data analysis. Since these two modes of data analysis complement each other, it will 

be worthwhile to explore whether statistical insights can inform the visualization process 

and whether visual presentations can also lead to refined statistical analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Our system links multiple views showing different data aspects to allow neuroscientists to 

investigate modular and hierarchical organisation of brain networks. A) Heat maps show the 

pairwise correlation matrix between parcellated regions. B) Selecting a region of interest—

colored green in the figure—and coloring all other parcellated regions based on their 

correlation shows connectivity in relation to anatomy. C) Node-link diagrams—considering 

only connections above a threshold—show connectivity. D) Integrating community detection 

and coloring nodes according to the community memberships highlights groups of brain 
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regions with strong internal connectivity. E) The community graph provides a high-level 

overview over communities in Fig. 1B by representing them as nodes. F) Dendrograms 

represent the hierarchical organization of the modules.
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Fig. 2. 
Typical analysis and visualization methods used for fMRI connectivity data. A) The visual 

analysis tool by Li et al. [13] shows fMRI/DTI data as a 3D node-link diagram linked with 

an anatomical view. B) The connectome viewer toolkit [14] embeds a 3D node-link diagram 

in the anatomical view, the nodes are located at the centroid of their brain region 

parcellation. C) The Functional Brain Connectvity tool visualizes functional fMRI data in 

these views: a) anatomical view, b) anatomical network, c) scatterplot, d) matrix bitmap, e) 

hierarchical edge bundling view D) The BrainNet Viewer [15] visualizes 3D node-link 

diagrams where the nodes are scaled by nodal strengths E) The Connectome Visualization 

Utility(CVU) [16] visualizes connectivity information in three different modalities (MEG, 

fMRI and DTI) through linked views, a) Anatomical View, b) Matrix Views, c) Circle View 

F) Nelson et al. [17], defined regions based on modularity assignments. The 2D node-link 

diagram represents modularity assignments based on the color of each node
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Fig. 3. 
Our system uses the connectivity matrix and its associated parcellation as input. The system 

operates in two modes—correlation mode and community mode. Correlation mode focuses 

on analysis of correlation network data, and the Community mode supports modular 

analysis.
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Fig. 4. 
Results of community detection with respect to anatomy. Each community is represented by 

a distinct color, and each region is colored according to its community membership. 

Parcellated brain regions can be shown as outlines in Fig. 4A or centroid depiction via a 

sphere Fig. 4C.
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Fig. 5. 
The matrix view shows twelve communities identified by the modularity optimization 

algorithm (Fig. 7). Six of the twelve communities are connected internally. Color coded cells 

of the matrix view represent intra-modular connections.
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Fig. 6. 
The Dendrogram view showing the hierarchical modular information of a community 

corresponding to threshold value 3.309. Level 1 of the dendrogram represents sub-

communities formed when optimizing modularity locally with the nodes in level 0; level 2 

nodes represent the final community emerging from the sub-communities identified in level 

1.
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Fig. 7. 
A) The community graph highlights the subcommunities associated with the community 

selected in the dendrogram view. B) Configuration options provide various choices for 

interactivity, such as toggling hovering/clicking, choosing graph layout and varying the 

opacity of highlighted nodes. C) The brain region graph displays highlighted nodes 

associated with selected sub communities. D) (While the dataset is same as Fig. 1F, the 

threshold value for this visualization view is different)

The dendrogram view displays the hierarchy of communities. The communities that do that 

not have any edges emanating from them are grayed out. E) A table view lists important 

graph properties of the graph shown in Fig. 7C.
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Fig. 8. 
Functional connectivity of the mesothalamic junction (MTJ) network in 36 healthy controls 

subjects and 18 PSP patients. A. Matrix views of the MTJ network in controls (left column) 

and PSP patients (right column); the top row shows the connectivity weights as a heat map 

with the right MTJ nodes row highlighted in blue, while the bottom row shows connections 

above the selected weight threshold as solid colors corresponding to the community they 

belong to. B. Anatomical views of the nodes comprising the MTJ network, colored 

according to their community membership in controls (left) and PSP patients (right). Spring-

embedded network views of the control C and PSP patient D group mean networks, 
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illustrating connectivity strength from the right MTJ (left column) and the community 

structure of the networks (right column). Right MTJ connections are shown as blue edges in 

all networks. Right basal ganglia connections are shown as purple edges in the right column.
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Fig. 9. 
Anatomical and graph views of the memory consolidation network (MCN). A. Planar (top 

row) and 3D surface (bottom row) views of the 199 regions of interest in the network, 

overlaid on the anatomical template brain. Node colors correspond to modules as determined 

by the Brain Modulyzer. B. Network aggregate community graphs (top) and Louvain 

modular hierarchy dendrogram (bottom). The left network shows the four communties at the 

top level of the hierarchy while the right network shows the eight subcommunities at the 

second level of the hierarchy. C. Whole graph view of the network, showing all nodes with 

the color corresponding to module membership as in A and B at the top level of the 

hierarchy. Highlighted are all connections within the default mode network module nodes 

(green). D. Whole graph view of the network, showing the connections of the posterior 

hippocampus/fusiform cortex (green node) to its most strongly connected neighbors (r > .25; 

bottom). Node colors respresent the correlation strength to the selected node.
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