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Abstract Biogenic synthesis of nanoparticles has received

a tremendous attention from the past few decades. The

significant progress in the field of nanotechnology has

resulted in a cost-effective and eco-friendly process for

nanoparticle synthesis. In the present study, the extracel-

lular synthesis of gold nanoparticles was carried out using

culture supernatant of Streptomyces griseoruber, actino-

mycetes isolated from the soil. Bioreduction of gold

nanoparticles was confirmed by UV–visible spectropho-

tometer that showed the peak between 520 and 550 nm.

The crystalline nature and mean size of the GNPs were

confirmed using XRD. FTIR revealed the possible func-

tional group that could be useful in immobilisation and

stabilisation of GNPs. Size and distribution of the biosyn-

thesized GNPs were analysed by HR-TEM that showed the

formation of GNPs in the range of 5–50 nm. The synthe-

sised GNPs showed good catalytic activity for the degra-

dation of methylene blue. The study shows the rapid and

eco-friendly synthesis of GNPs from Streptomyces grise-

oruber, and this is the first report on the catalytic activity of

GNPs from actinomycetes so far.
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electron microscope (HR-TEM) � Catalytic activity

Introduction

Nanoparticles are the fundamental building blocks of

individual materials dealing with the science of nanoscale

structures (Heiligtag and Niederberger 2013). This unique

property of nanomaterials has enhanced tremendous

research activities for the synthesis, characterisation, and

application of functional nanomaterials that include

antimicrobial, catalytic, biomedical, electrochemical, and

imaging applications (Schrofel et al. 2014).

Metal nanoparticles like silver, gold, iron, platinum,

copper, and zinc have fascinated over centuries because of

their wide range of applications in nanotechnology (Mody

et al. 2010). Among various metal nanoparticles, gold

nanoparticles had received considerable attention and have

been a focus area of research because of their unique optical,

catalytic, and biomedical properties, lack of toxicity, and

biocompatibility (Singh et al. 2012; Tikariha et al. 2012;

Ahmed and Ikram 2016). This obviously leads to the various

applications of GNPs in drug and gene delivery (Pissuwan

et al. 2011), cancer nanotechnology (Cai et al. 2008), surgery

and medicine (Giasuddin et al. 2012), bioimaging (Nune

et al. 2009), and biosensors (Doria et al. 2012).

The synthesis of nanoparticles through physical and

chemical routes has been studied extensively, but the use of

toxic chemicals and solvents, stringent synthetic condition,

non-eco-friendly protocol; higher energy consumption

restricts their use in the clinical field. Hence, there is an

increase in demand for the development of the non-toxic,

reliable, and eco-friendly synthesis of nanoparticle for

biomedical applications (Tiwari et al. 2011, Srinath and

Rai 2014). In recent days, biosynthesis of nanoparticles is

done using a diverse group of microorganisms like bacte-

ria, virus, algae, actinomycetes, and fungi (Narayanan and

Sakthivel 2010; Shedbalkar et al. 2014; Dhas et al.
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2014a, b). Nevertheless, actinomycetes have received a

considerable attention as they are least explored and stand

as an efficient candidate for the synthesis of metal

nanoparticles (Golinska et al. 2014).

Actinomycetes are regarded as superior groups among

microbial species that are of commercial interest for their

saprophytic behaviour and for the production of diverse

bioactive secondary metabolites and extracellular enzymes

(Yu et al. 2015; Kumar et al. 2016). From actinomycetes,

only a few of the genera have been reported for the

biosynthesis and characterisation of gold nanoparticles like

Thermomonospora, Nocardia, Streptomyces and

Rhodococcus (Batal et al. 2015) of which Streptomyces

species are regarded as a dominant contender for the

biosynthesis (Zonooz et al. 2012).

In view of this, the present study is to synthesise gold

nanoparticles from an actinomycetes, Streptomyces

griseoruber. To our knowledge, this is the first report for

an eco-friendly synthesis of GNPs from Streptomyces

griseoruber isolated from the soil where the potent nature

of GNPs was evaluated for the catalytic degradation of

methylene blue in comparison with the commercially

available GNPs.

Materials and methods

Actinomycetes strain and growth condition

The actinomycetes used were isolated from the soil sample

of Mercara region (12�2104700N 75�3605200E) and main-

tained on ISP-2 (International Streptomyces production

medium-2) at 4 �C. Genomic DNA isolation of the potent

strain was carried as described previously (Goodfellow and

Williams 1986). The 16s rRNA gene was amplified by

PCR method using universal primers (27F-50-AGTTTG
ATCCTGGCTCAG-30), 1492R-50-ACGGCTACCTTGT
TA CGACTT-30), and Taq DNA polymerase. PCR was

carried out in thermocycler conditions (Eppendroff

Mastercycler, Germany). The final PCR product was

analysed by 1.0% agarose gel electrophoresis and purified

using the GenElute gel elution kit (Sigma–Aldrich, USA).

Based on the 16S rRNA sequencing and BLAST analysis,

the strain was identified as Streptomyces griseoruber. 16S

rRNA gene sequence was submitted to the gene bank

(NCBI, USA) and Accession Number (KU921225) was

obtained.

The culture was inoculated in 500 ml Erlenmeyer flasks

containing 200 ml of sterile ISP-2 broth and incubated in

an orbital shaker at 120 rpm for 5–6 days at 27 �C. After
incubation, the cultures were centrifuged at 8000 rpm for

10 min at 4 �C. The supernatant obtained after centrifu-

gation was used for GNPs synthesis.

Biosynthesis of gold nanoparticles

In the process for the biosynthesis, 3 ml of the supernatant

was added to the 7 ml of 1 mM Hydrogen tetrachloroau-

rate (III) (HAuCl4�3H2O) and incubated at 37 �C for 24 h.

The two controls, a cell control that lacked gold salt con-

centration and a gold salt control that lacked culture

supernatant, were incubated at the same experimental

conditions. Biosynthesis of GNPs was studied by measur-

ing the absorbance of the resulting nanoparticle solutions

by UV–visible spectrophotometer. Then, the whole mixture

was centrifuged at 5000 rpm for 30 min at 4 �C. The gold

nanoparticles (Au-NPs) were separated and were used for

further studies.

Characterization of gold nanoparticles

UV–visible spectrophotometer analysis

The bioreduction of gold ions into gold nanoparticles was

monitored and recorded using UV–visible spectropho-

tometer (Thermo scientific, multiscan spectrum) between

the wavelengths ranging from 400 to 700 nm. The surface

plasmon resonance peak (SPR) was used to assess the size

and distribution of the gold nanoparticles by sampling the

aliquots.

X-ray diffraction analysis

The biosynthesized GNPs was lyophilised and the dried

powder was used for the analysis of XRD where the

crystalline nature and mean size of the GNPs was deter-

mined using X-ray diffractometer (Rigakumini Flex 11)

operating at 30 kV and a current of 15 mA with Cu Ka
radiation (k = 1.506 Å) and the 2h scanning range was 6�–
60� at 5 min-1.

Attenuated total reflectance–Fourier transmission

infrared spectroscopy (ATR-FTIR) analysis

ATR-FTIR was used for the characterisation of the func-

tional groups on the biosynthesized nanoparticles (Perkin

Elmner Spectrum-2). For this purpose, a small amount of

nanoparticles (0.01 g) was placed and the spectra were

recorded at the wavelength range of 4000 and 400 cm-1.

High-resolution-transmission electron microscope

(HR-TEM) analysis

To determine the size and distribution of the biosynthe-

sized GNPs, TEM studies were done (JEOL 2000 FX-II).

For this purpose, the sample was prepared by dispensing a
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drop of colloidal gold solution on a carbon-coated 200

mesh copper grid and allowed to dry at room temperature

(27 �C) before the examination.

Dynamic light scattering analysis

Size distribution of the synthesised GNPs was measured

using MALVERAN nanoseries (Nadaf and Kanase 2016).

Catalytic activity of gold nanoparticles

The catalytic activity of gold nanoparticles was studied as

described previously (Srinath and Rai 2015a). Briefly,

10 ml of MB (9.37 9 10-5 M) was mixed with 3 ml of

NaBH4 (5.28 9 10-2 M) and a suitable quantity of

biosynthesized GNPs was added. UV–Vis spectra were

recorded between 400 and 800 nm.

Results and discussion

Preliminary screening for the GNPs synthesis was done by

visualising the change from pale yellow to purple colour.

In the present study, the cell-free supernatant was mixed

with a different concentration of gold salts and the reaction

mixture was incubated for 24 h at 37 �C. Figure 1 shows

the change in colour of the reaction mixture that confirmed

the GNPs synthesis. No colour change was observed in

control as well as culture supernatant for GNPs synthesis.

There was a distinct colour change from pale yellow to

purple colour in 1 mM concentration. Furthermore, the

reaction mixture was subjected to UV–visible spectroscopy

for SPR peak for confirmation.

To ascertain the formation and stability of the gold

colloidal solution, UV spectroscopy is done that is asso-

ciated with surface plasmon resonance (SPR) band arises

due to collective oscillation of 6 s electron in the con-

duction band of GNPs (Mulvaney 1996; Abdelhalim et al.

2012). The absorption spectrum for GNPs was observed

between 400 and 700 nm ranges. The SPR for GNPs was

observed from 500 to 560 nm with an intense peak around

540 nm. Figure 2 shows the UV–visible spectrum of the

GNPs synthesis for 1 mM concentration.

FTIR was used to study the nature of biomolecules

involved in the capping and stabilisation of GNPs. Figure 3

shows the FTIR spectra of the culture supernatant and the

synthesised GNPs from Streptomyces griseoruber that

revealed the presence of different functional groups. There

was a shift in peak from 3321, 2926, 1362, 1739, 1215, and

600 of the culture supernatant to 3458, 3017, 1739, 1366,

1229, 1206, and 599, respectively, for GNPs synthesis.

However, the absorption band at 1739 was retained from

culture supernatant in synthesised GNPs. The shift in peak

from 3321 to 3458 cm-1 corresponds to –NH or OH stretch

involved in the reduction of Au to Auo (Dhas et al.

2014a, b). Sharp band at 3016 cm-1 arises from the C–H

stretching mode (Velmurugan et al. 2016). The strong peak

at 1739 cm-1 is attributed to –C=O stretching vibrations

(Singh et al. 2012; Tikariha et al. 2012). The absorption

peak at 1229 and 1206 cm-1 corresponds to –C-O

stretching (Islam et al. 2015) and the peak at 599 cm-1

corresponds to the metal–ligand stretching frequency that

may arise due to the interaction of biomolecules with the

GNPs surfaces (Srinath and Rai 2015a).

XRD analysis can provide information about the crys-

talline nature of the GNPs. Figure 4 shows the 2h values of

38.12�, 44.14�, 64.46�, 77.5�, and 81.54� and Braggs

reflection corresponding to (111), (200), (220), (311), and

(222), respectively. The result obtained clearly proves that

the GNPs formed were crystalline in nature and also agrees

with the earlier reports of GNPs (Bindhu and Umadevi

2014; Sharma et al. 2014). The average crystallite size

estimated by the Debye–Scherrer formula using a Gaussian

fit was found to be 12.67 nm. A typical HR-TEM image of

the synthesised GNPs is shown in Fig. 5 which shows the

particle is well dispersed with size ranging from 5 to 50 nm

morphological analysis revealed the shapes from spherical

to triangular and hexagonal.

Fig. 1 Visual observation of the colour change of culture supernatant exposed to 1 mM gold salt concentration from Streptomyces griseoruber.

a Control that lacked culture supernatant. b With 1 mM gold salt concentration. c Culture supernatant without gold salt
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The average size distribution of the synthesised GNPs

from DLS graph was found to be 80.9 nm. That is shown in

Fig. 6. The large particle size observed is due to some

bioinorganic substances acting as a protein envelope on the

synthesised GNPs and the difference in particle size from

XRD, HR-TEM, and DLS may be because of polydisperse

nature and due to the difference in sample preparation

(Prathna et al. 2011).

Catalytic activity synthesised GNPs

The efficacy of GNPs synthesised as a catalyst is attributed

to their size and high surface area-to-volume ratio. MB is a

cationic dye with its absorption band at 665 nm that cor-

responds to n–p* transition and a shoulder band at 614 nm

in the visible range (Rajan et al. 2015). In our study, the

Fig. 2 UV–visible spectra showing peak at 540 nm for the biosyn-

thesis of GNPs using Streptomyces griseoruber

Fig. 3 a FTIR spectra of

culture supernatant of

Streptomyces griseoruber and

b FTIR spectra of the

synthesised GNPs

Fig. 4 XRD pattern of the synthesised GNPs
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reduction of MB by NaBH4 at room temperature was

monitored. On the other hand, the reduction of MB by

NaBH4 by the addition of the synthesised GNPs and

commercially available GNPs was also monitored by

incubating the reaction mixture for 5 min at the same

condition. A solution containing methylene blue and

NaBH4 did not show frequent change in colour even after

40 min of incubation (Fig. 7a), when compared, the solu-

tion containing commercially available GNPs showed a

slight reduction in the peak at 665 nm with a little colour

change. Whereas, complete reduction of MB was accom-

plished in the case of synthesised GNPs within 5 min. This

clearly proves that the GNPs synthesised is a potent

nanocatalyst that accelerates the reduction of MB to LMB

and acts as an electron relay in the degradation of MB

(Banerjee and Rai 2016). This also agrees with the earlier

report of catalytic activity of GNPs (Srinath and Rai

Fig. 5 HR-TEM images of the

synthesised GNPs (a), (b), (c),
(e) at 100, 50, 10, and 5 nm,

respectively. d and f represents
the enlarged section of the

individual nanoparticle

Fig. 6 DLS graph of the synthesised GNPs showing size distribution

at 1 mM concentration
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2015b). However, actinomycetes are least explored for

nanoparticle synthesis and this is the first report for the

catalytic activity of GNPs from actinomycetes so far.

Conclusion

The present study reports the simple and eco-friendly

synthesis of GNPs from the culture supernatant of Strep-

tomyces griseoruber, actinomycetes isolated from the soil.

GNPs were characterised by HR-TEM that showed the size

in the range of 5–50 nm. The catalytic activity of the

synthesised GNPs from actinomycetes was reported for the

first time in comparison with commercially available

GNPs. Moreover, the spent cultures are used for the GNPs

synthesised which might be treated as an effluent in

industrial processes. The study shows that the spent cul-

tures can have extended application in nanotechnology.
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