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Cortical and trabecular morphology 
is altered in the limb bones of 
mice artificially selected for faster 
skeletal growth
Saira Farooq1, Shannon Leussink1, Leah M. Sparrow1, Marta Marchini1, Hayley M. Britz2,4, 
Sarah L. Manske3,4 & Campbell Rolian   1,4

Bone strength is influenced by mineral density and macro- and microstructure. Research into 
factors that contribute to bone morphology and strength has focused on genetic, environmental 
and morphological factors (e.g., body mass index), but little is known regarding the impact of rates 
of skeletal elongation on adult skeletal morphology and strength. Using micro-CT, we examined 
the impact of rates of skeletal elongation on bone cortical and trabecular morphology, and on rates 
of estrogen-dependent bone loss in the tibia in CD-1 mice, and in mice with accelerated skeletal 
growth (Longshanks). Groups of adult mice (n = 7/group) were subjected to ovariectomy or sham 
surgeries, scanned for 6 weeks, and indices of bone morphology were collected. Results show that 
Longshanks mice had significantly less trabecular bone at skeletal maturity, characterized by fewer, 
thinner trabeculae, and furthermore lost trabecular bone more slowly in response to ovariectomy. 
Artificial selection for rapid skeletal growth relative to somatic growth thus had a significant impact 
on trabecular bone morphology in Longshanks. Our data do not unequivocally demonstrate a causal 
relationship between rapid bone growth and reduced trabecular bone quality, but suggest that rapid 
linear bone growth may influence the risk of cancellous bone fragility.

Bone strength is a major determinant of fracture risk in osteoporosis and other skeletal conditions such as osteo-
penia1–3. Bone strength, the ability to resist plastic deformation (i.e., fracture), is itself influenced by several fac-
tors, including bone mineral density (BMD), macrostructural morphology, such as cortical shape and thickness, 
and microstructural features, such as the density and connectivity of trabeculae in the cancellous metaphysis4–7. 
The biological and environmental determinants of limb bone macro- and microstructure are numerous and com-
plex. To date, epidemiological research into these determinants in humans has focused primarily on predisposing 
genetic factors (e.g., genomic markers of low bone mineral density8, 9), on lifestyle and environmental factors (e.g., 
smoking and nutritional status, physical activity10, 11), and/or on morphological characteristics such as the body 
mass index (BMI) in adulthood and in old age12–17.

In contrast, the developmental determinants of bone morphology and strength are poorly understood, perhaps 
due to the paucity of longitudinal studies of bone growth vs bone structure and strength in adulthood18, and/or  
the challenges associated with longitudinal studies of bone morphology and strength19, 20. There is evidence that 
rates of skeletal growth during adolescence can impact peak bone mass in adulthood21, 22, and similarly that peri-
ods of more rapid longitudinal growth can lead to a transient reduction in the mineralization of trabecular and 
cortical bone23, 24. However, much less is known regarding the relationship, if any, between rates of longitudinal 
skeletal growth, and bone cortical and trabecular morphology at skeletal maturity. Similarly, it is not known how 
variation in these rates during skeletal development may impact bone loss later in life, e.g., in response to estrogen 
withdrawal.
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We investigated the relationship between accelerated skeletal growth and bone morphology and rates of 
estrogen-dependent bone loss, in Longshanks mice. These mice were selectively bred for increases in tibia length 
relative to body mass25, 26. Over 15 generations, we produced two independent lines of mice in which tibia length 
at eight weeks old, and at skeletal maturity (~12 weeks), is ~15% longer than in random-bred controls on the same 
genetic background (CD-1), but body masses remain largely unchanged. Importantly, the duration and rates of 
somatic growth in controls and Longshanks remains unchanged, while at their peak, around 8–9 days postnatal, 
the rates of skeletal growth are 15% greater in Longshanks, even though the time to skeletal maturity remains 
unchanged as well (Fig. 1). All other husbandry conditions are identical by design in the Longshanks experiment 
(see methods, and Marchini et al.25). Hence, comparing Longshanks to CD-1 mice allows us to emphasize the 
potential impact of limb bone linear growth and length at skeletal maturity over other factors known to contribute 
to skeletal morphology, such as nutrition and environmental factors, rate and duration of somatic growth, and 
body mass at skeletal maturity.

Any association between bone elongation rates, bone morphology at skeletal maturity, and rates of estrogen 
dependent bone loss, is likely too subtle to detect within populations of mice and other empirically tractable 
model organisms, at least not without impractically large sample sizes. Through selective breeding, we have effec-
tively introduced greater variation in tibia length and bone growth rates than is typically present within popula-
tions of CD-1 mice. By comparing CD-1 to Longshanks, this amplified variation significantly improves our ability 
to detect any association between linear growth rates and bone morphology. Moreover, the availability of two 

Figure 1.  Growth curves for body mass (top) and tibia length (bottom) in Control (C, black squares), 
Longshanks 1 (LS1, blue triangles), and Longshanks 2 (LS2, red circles). The curves were obtained by fitting a 
Gompertz logistic growth function to cross-sectional ontogenetic samples in each line. Insets show growth rates 
for body mass and tibia length by line, based on the first derivative of the Gompertz function. For a detailed 
description of methods used to collect and analyse growth data, see Supplementary Methods.



www.nature.com/scientificreports/

3SCIEntIFIC REPOrtS | 7: 10527  | DOI:10.1038/s41598-017-10317-x

independently bred Longshanks lines allows us to replicate findings, or conversely to determine whether rapid 
skeletal growth affects bone morphology differently in individuals from different populations.

In this study, we used longitudinal micro-CT scans in ovariectomized and sham-operated Longshanks and 
random-bred control mice to test the overall hypothesis that accelerated bone growth and increased bone length 
are associated with altered bone morphology and inferred strength at skeletal maturity in the two Longshanks 
lines. We sought to answer the following questions: (1) is rapid linear growth associated with changes in corti-
cal and trabecular bone morphology that could compromise a bone’s strength? (2) how does rapid linear bone 
growth correlate with changes in trabecular vs. cortical morphology? (3) are the changes in cortical and trabecu-
lar morphology, if any, similar between the two independently bred Longshanks lines?

Results
Morphometric Data.  Mean tibia length was significantly different among lines (one-way ANOVA, 
F(2,39) = 113.8, p < 0.001). Mean tibia length was longer in Longshanks by ~15% over Controls (herefter line C), 
but there was no difference in length between Longshanks lines (Tukey’s post-hoc test, p = 0.74) (Fig. 2, Table 1). 
Mean body mass at baseline was significantly different among lines (one-way ANOVA, F(2,39) = 6.08, p < 0.01), 
with Longshanks line 1 (hereafter LS1) having greater body mass (by ~9–12%) than the other groups (Table 1, 
Tukey’s post-hoc test, p < 0.05). This difference in body mass, generally absent in other Longshanks studies25–27 
(see also Fig. 1), is likely due to sampling variance related to the small sample sizes in this study.

Baseline differences in bone morphology.  Cortical morphology.  There were significant differences in 
cortical morphology of the proximal tibia among the lines at week 0 (Figs 2 and 3, Table 1). LS1 had a significantly 
thinner cortex with a smaller, less dense cortical area than the other lines, but its mean moments of inertia (Imax, 
Imin, J) were similar to Controls. In contrast, Longshanks line 2 (hereafter LS2) had a significantly larger, denser 
cortex than LS1, as well as larger moments of inertia than the other lines.

Trabecular morphology.  There were marked differences among the lines in trabecular morphology at week 0. 
Overall, line C mice had significantly greater bone volume ratios (BV/TV), comprising thicker, closer, and more 
numerous trabeculae, when compared with both Longshanks lines (Figs 2, 4 and 5, Table 1). Reduced BV/TV in 
the Longshanks lines was due not only to 18–31% greater total endosteal volumes (TV) in their proximal tibiae, 
but also to a ~30% decreased bone volume (BV) relative to Controls (Fig. 2, Table 1). When comparing only 
Longshanks lines, LS2 had significantly fewer, more widely spaced trabeculae, but their baseline BV/TV and 
trabecular thickness did not differ (Table 1).

Longitudinal changes in bone morphology after ovariectomy.  Longitudinal changes in cortical 
morphology after surgery are shown in Fig. 3. Within lines, linear mixed models indicate that ovariectomy had 
little effect on changes in cortical morphology among Longshanks lines: only changes in cortical thickness and 
area over time were different between treatments in LS2, with both variables decreasing over time in the ovariec-
tomized group, while they increased in the sham operated group (Fig. 2). In Control mice, there was a greater 
decrease in cortical thickness in OVX mice compared to their sham-operated counterparts, such that by week 4 
post-surgery and continuing through week 6, the cortex in Control OVX mice was significantly thinner than in 

Figure 2.  Representative tibiae and cross-sections. Whole tibiae are shown on the left, with the location and 
size of the stacks used for µCT analyses of trabecular bone (A, red), proximal cortical bone (B, green), and distal 
diaphysis cortical bone (C, blue). The black dashed lines indicate the middle of each stack, where the transverse 
sections shown on the right were taken. Scale bar for A and B = 1 mm, for C = 250 µm. Abbreviations: Ctrl: 
Control, LS1: Longshanks 1, LS2: Longshanks 2.
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Sham (Fisher’s LSD post-hoc test at week 4, p = 0.003, Supplementary Table 1). Differences in cortical morphol-
ogy that were present among lines at baseline tended to remain present at 6 weeks, with the exception of cortical 
thickness and area in LS1, which increased over time and converged on the values in the other two lines, regard-
less of surgery type (Fig. 2). TMD increased linearly over time in both treatments across lines, suggesting that the 
mice had not yet achieved peak bone mineral density at 12 weeks of age28.

Longitudinal changes in trabecular morphology are shown in Fig. 4. We performed a two-way factorial 
ANOVA on trabecular variables at week 6, with line and treatment as categorical factors, to determine whether 
the lines had responded to OVX treatment differently six weeks after surgery29. ANOVAs revealed significant 
line-by-treatment interactions for BV/TV (F(2,33) = 5.34, p = 0.01) and Tb.N. (F(2,33) = 3.42, p = 0.04), and a 
non-significant trend was observed for Tb.Th. (F(2,33) = 2.95, p = 0.07). Post-hoc Tukey’s pairwise comparisons 
within lines show that the differences in response to treatment were greatest for Control mice (Fig. 6, see also 
Supplementary Table 2). Specifically, ovariectomy led to greater decreases in bone volume ratios, trabecular num-
ber and thickness over time, when compared to Sham Controls (Figs 3, 4 and 5, see also Supplementary Table 2). 
In contrast, in Longshanks, OVX surgery had little effect on trabecular changes over time, although by week 6 the 
mean trabecular thickness in LS1 OVX mice was significantly smaller than sham-operated mice (Supplementary 
Table 2).

These differences were confirmed by analysis of variance in the mean rates of change in trabecular variables, 
given by the slopes of ordinary least squares regressions of the trabecular variables vs time post-surgery in each 
individual30 (see Methods). (Table 2). ANOVAs revealed significant line-by-treatment interactions for the slopes 
of BV/TV (F(2,34) = 4.59, p = 0.02) and Tb.N. (F(2,34) = 3.7, p = 0.03), and Tb.Th. (F(2,34) = 7.7, p = 0.002), sug-
gesting differences among lines in the response to ovariectomy. Specifically, the rates of change in trabecular bone 
variables were generally greater in OVX mice, especially for Controls, but also in LS2 (Supplementary Table 2).

Differences in distal cortical microarchitecture at 6 weeks post-surgery.  There were no differences among lines 
(pooled by treatment, see Methods) in vascular canal thickness, cortical porosity, mean cortical cross-sectional 
area and thickness, or in the polar section modulus Zp, suggesting equal compressive and bending strengths, 
respectively (Table 2) of the tibial diaphysis. While the orientation of the vascular canals was similar in C and LS2, 
LS1 had canals that were oriented more parallel, by 6–10°, to the long axis of the bone than either of the other 
lines (ANOVA, Tukey’s tests, 0.001 < p < 0.02, Table 1).

Line C Line 1 Line 2

Morphometric Data

Body mass (g) 35.39 (1.07)LS1 39.57 (0.75)C,LS2 36.42 (0.81)LS1

Tibia length (mm) 18.38 (0.14)LS1,LS2 21.26 (0.12)C 21.17 (0.19)C

Baseline Cortical Morphology – Proximal Tibia

TMD (mgHA/cm3) 864.2 (10.8)LS1 810.97 (9.34)LS2,C 860.2 (7.4)LS1

Ct.Th (mm) 0.209 (0.003)LS1 0.171 (0.005)LS2,C 0.209 (0.005)LS1

Ct.Ar (mm2) 1.329 (0.028)LS1,LS2 1.167 (0.033)LS2,C 1.456 (0.036)LS1,C

Imax (mm4) 0.619 (0.023)LS2 0.639 (0.041)LS2 0.807 (0.039)LS1,C

Imin (mm4) 0.482 (0.023)LS2 0.474 (0.03)LS2 0.618 (0.03)LS1,C

J (mm4) 1.101 (0.044)LS2 1.113 (0.072)LS2 1.425 (0.066)LS1,C

Baseline Trabecular Morphology – Proximal Tibia

TV (mm3) 2.039 (0.071)LS1,LS2 2.443 (0.130)C 2.68 (0.087)C

BV (mm3) 0.785 (0.037)LS1,LS2 0.560 (0.047)C 0.535 (0.038)C

BV/TV (%) 38.9 (2.1)LS1, LS2 23.2 (1.9)C 20.2 (1.4)C

Tb.N (1/mm) 5.28 (0.25)LS1,LS2 4.15 (0.26)LS2, C 2.42 (0.13)LS1,C

Tb.Th (mm) 0.085 (0.002)LS1,LS2 0.072 (0.001)C 0.074 (0.001)C

Tb.Sp (mm) 0.186 (0.011)LS2 0.243 (0.020)LS2 0.454 (0.024)LS1,C

6-week Postoperative Cortical Morphology – Distal Tibia

Ct.Ar (mm2) 0.819 (0.023) 0.861 (0.025) 0.8 (0.025)

Ct.Th (mm) 0.231 (0.005) 0.244 (0.008) 0.234 (0.007)

Canal Thickness (mm) 0.019 (0.006) 0.013 (0.002) 0.012 (0.001)

Porosity (%) 0.605 (0.078) 0.608 (0.101) 0.514 (0.073)

Zp (mm3) 0.283 (0.015) 0.293 (0.012) 0.275 (0.012)

Canal Longit Angle (°) 33.8 (1.7)LS1 40.7 (1.7)LS2, C 31.9 (1.3)LS1

Canal Radial Angle (°) 40.8 (1.9) 40.3 (1.6) 40.6 (2.7)

Table 1.  Mean morphometric and metaphyseal bone structure data among lines at baseline (week 0, pooled 
by treatment), and mean diaphyseal cortical morphological indices at the end of the experiment (week 6). Data 
presented as means (SEM). Superscripts denote significant differences in means (p < 0.05) between a given 
group and: CLine C, LS1Line 1, LS2Line 2.
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Discussion
The biological and environmental determinants of limb bone cortical and trabecular morphology are numerous 
and complex, but surprisingly little is known regarding the impact of developmental factors, specifically rates of 
longitudinal skeletal growth, on bone microarchitecture at skeletal maturity and later in life. We compared tra-
becular and cortical morphology in the tibiae of Longshanks mice, which grow tibiae 15–20% faster, and longer, 
than age-matched, random-bred mice from the same genetic background (CD-1).

Our results show a clear association between accelerated rate of skeletal growth in two independently bred 
populations of Longshanks (LS1 and LS2) and changes in bone trabecular morphology at skeletal maturity. 
Specifically, both Longshanks lines had fewer, thinner and more widely spaced trabeculae. Coupled with an 
increased endosteal volume of their proximal tibia, the reduced bone volume significantly decreased bone volume 

Longshanks 2
Longshanks 1

Figure 3.  Longitudinal changes in proximal cortical morphology by line and treatment. X-axis represents time 
in weeks. Data are shown as means with vertical bars representing standard errors. Within line, treatments 
are shown as filled symbols with solid lines (OVX) or open symbols with dashed lines (SHAM). Treatments 
are offset for clarity. Control mice are in black squares, LS1 mice in red circles, LS2 mice in blue triangles. 
Larger open symbols on the left represent baseline means obtained from pooled samples by line at week 0. 
For significance tests of differences in baseline means among lines, see Table 1. For significance tests of mean 
differences between treatments within line, and mean differences relative to baseline within line and treatment, 
see Supplementary Table 1.
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ratios compared with Controls (Fig. 4). In contrast to trabecular morphology, rapid skeletal growth was not asso-
ciated with consistent changes in proximal cortical morphology in Longshanks. LS1 had less dense and thinner 
cortex than Controls, yet similar moments of inertia, which suggests that its cortical bone was distributed on 
average further from the neutral axis of the tibia, as would be expected from Longshanks having a larger endosteal 
volume (TV, Table 1, Fig. 2). Conversely, LS2’s endosteal volume is also larger, but its cortical thickness is identical 
to Controls, which leads to LS2 having a ~10% greater cortical area than the latter, and thus significantly greater 
moments of inertia (Table 1).

In the distal diaphyseal cortex, only the longitudinal orientation of the vascular canals in LS1 were different. 
The impact of vascular canal orientation on bone strength is poorly understood31–33. However, considering that 
all other diaphyseal indices of cross-sectional geometry were similar between the lines, including porosity and 
vascular canal thickness, we think it unlikely that the modest change in the average orientation of LS1’s vascular 
canals (6–10°) would have a significant impact on its inferred bone strength. The difference in orientation of LS1’s 
canals may be related to its altered cortical morphology in the proximal tibia (Table 1), but could also be due to 
mechanisms that occurred after skeletal maturity (e.g., remodeling).

All three lines experienced different rates of change in trabecular bone morphology in response to ovariectomy 
(Figs 3, 4 and 5). The primary cause of bone loss in all lines was a decrease in the number of trabeculae over time, 
and thus an increase in their separation, as opposed to trabecular thinning, which was only observed in the OVX 
Control mice (Fig. 3, Supplementary Table 2). These results are consistent with previous studies in mice29, 30, 34.  
Importantly, with the exception of trabecular separation, the rates of change in bone morphological variables 
were highest in ovariectomized Control mice, indicating that estrogen withdrawal had the greatest effect on bone 
loss in these mice compared with Longshanks.

While it is tempting to conclude from these results that Longshanks are resistant to estrogen-dependent bone 
loss, there is a strong correlation between the rate of loss and BV/TV at baseline in the pooled OVX mice, indicat-
ing that the greater rate of bone loss in OVX Control mice is due at least in part to their higher baseline BV/TV 
(Supplementary Figure 1, n = 21, R2 = 0.63, p < 0.001, see also Table 1). Similar relationships between baseline 
trabecular morphology and rates of estrogen-dependent bone loss have been noted in other common inbred 
mouse strains29, 30. These studies concluded that differences among strains in bone architecture were due in part 

Figure 4.  Longitudinal changes in trabecular metaphyseal morphology by line and treatment. X-axis represents 
time in weeks. Data are shown as means with vertical bars representing standard errors. Within line, treatments 
are shown as filled symbols with solid lines (OVX) or open symbols with dashed lines (SHAM). Treatments 
are offset for clarity. Control mice are in black squares, LS1 mice in red circles, LS2 mice in blue triangles. 
Larger open symbols on the left represent baseline means obtained from pooled samples by line at week 0. 
For significance tests of differences in baseline means among lines, see Table 1. For significance tests of mean 
differences between treatments within line, and mean differences relative to baseline within line and treatment, 
see Supplementary Table 2.
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to genetic factors. This is likely to be the case here as well, as the allelic frequency of relevant genes or their reg-
ulatory sequences - which we are currently investigating - must have changed as a result of artificial selection on 
tibia length in Longshanks.

One striking result from our analyses is the difference in bone morphology in the proximal tibia between 
the Longshanks lines. The three lines are housed and bred under identical conditions, for the same number of 
generations25. Moreover, LS1 and LS2, which have never been mated, have the same adult mass and tibia length at 
maturity, and virtually identical mass and bone elongation rates during postnatal ontogeny (even though in this 
sample LS1 females were slightly heavier). Despite these similar experimental conditions and life histories, LS1 
and LS2 show differences in cortical and trabecular morphology in the proximal tibia. Specifically, the direction 
of change in trabecular bone morphology in LS1 and LS2 was similar when compared with Controls (i.e., reduc-
tions in bone volume ratios, numbers and thicknesses of trabeculae and an increase in trabecular separation), 
yet the magnitude of change in LS1 and LS2 is different, with LS2 appearing to have lost more trabecular bone in 
relation to LS1 in response to selection. Conversely, however, the Longshanks lines are also different in cortical 
morphology of the proximal tibia, with LS1 having a significantly thinner, less dense cortex than both LS2 and 
Controls at baseline, and throughout the longitudinal study (Fig. 2, Table 1). The reasons for these differences 

Figure 5.  Representative transverse sections of the left proximal tibia in ovariectomized Control (C), 
Longshanks 1 (LS1) and Longshanks 2 (LS2) mice. The sections were taken from uCT scans at week 0 
(Wk 0) and week 6 (Wk 6) of the experiment, starting ~0.18 mm distal to the end of the growth plate, and 
extending 0.625 mm distally (50 slices). For orientation, the projection at the bottom left of each section is 
the tibial tuberosity, while the two rounded projections at the top right are the caudal aspects of the tibial 
condyles. Cortical bone is shown in gray, trabecular bone in green. Note the more sparse, thinner trabeculae 
in Longshanks mice compared with Control, the relatively greater loss of trabecular bone in ovariectomized 
Control mice, as well as the relatively thinner cortex in LS1. Not to scale.
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among Longshanks lines are unclear, but suggest that the cell and molecular pathways that were indirectly tar-
geted as a consequence of selective breeding for longer tibiae were different in the Longshanks lines, perhaps due 
to founder effects.

An important limitation of this study is that, while similar changes are observed in the trabecular morphology 
of LS1 and LS2 following selection for increased limb bone length and rapid growth, the data do not by them-
selves demonstrate a causal relationship between these variables. The observed changes in bone morphology 
could instead (or in addition) be due to other factors, such as systemic constraints on total bone volume due to the 
global increase in skeletal vs somatic size in Longshanks mice27, systemic changes in bone homeostasis (e.g., due 
to differences in osteoblast/osteoclast function), and/or interactions with other organs and tissues that may have 
changed as a by-product of selection on the tibia, such as the haematopoietic system of the long bones.

Nonetheless, assuming at least some causal linkages between accelerated longitudinal growth and the altered 
trabecular bone morphology of Longshanks, our findings raise questions regarding the specific cell and molec-
ular mechanisms of skeletal growth that contributed to these changes. We think it is unlikely that the observed 
changes in bone morphology are due to differences in systemic factors associated with somatic growth (e.g., 
growth hormone35), because Longshanks and Control mice have the same body growth rates and adult body 
masses (Fig. 1). Similarly, the largely unaltered diaphyseal morphology of Longshanks suggests that the decreased 
trabecular bone volume in Longshanks is not due to abnormal function of osteoblasts or osteoclasts. It is possible, 
however, that Longshanks’ accelerated longitudinal growth has altered the relative abundance of these cells, or 
the balance of their activity in the proximal tibia metaphysis, for example, by exceeding the ability of osteoblasts 
to produce calcified matrix24.

We believe our data, in particular the similar trabecular changes in both Longshanks lines, suggest a potential 
role for the growth plate in determining metaphyseal bone morphology in adulthood22. Longitudinal growth of 
the limb bones is governed by the activity of the growth plate chondrocytes, which undergo a tightly regulated life 
cycle of proliferation, hypertrophy and cell death at the chondro-osseous junction (COJ), adjacent to the metaph-
ysis36–39. During hypertrophy, near the COJ, chondrocytes produce and remodel an extracellular matrix (ECM) 
rich in Collagen X, which, following their death, serves as the primary substrate upon which invading osteoblasts 
deposit calcified matrix40, 41. In Longshanks, chondrocytes are likely cycling faster through the growth plate to 
sustain its faster skeletal growth (Marchini and Rolian., in prep). If true, then they may spend relatively less time 
in a hypertrophic state, and may not produce as much ECM as Controls. This may simply physically reduce the 
surface area available for mineralization, leading to a reduction in overall cancellous bone density42.

Figure 6.  Boxplots of the trabecular variables at week 6. Boxplots show the median (line), interquartile range 
(box), non-outlier range (whiskers) and outliers (circles) of each trabecular variable in OVX (solid) vs Sham 
(open) operated mice in Control (Ctrl, black), Longshanks 1 (LS1, red) and Longshanks 2 (LS2, blue). Statistical 
significance of the difference between treatment means within line is shown below the boxplots: p < 0.05 (*), 
p < 0.001 (**), p = not significant (n.s.). See also Fig. 4.
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Conclusion
Our data show that changes in trabecular bone morphology associated with accelerated longitudinal growth of 
the tibia were broadly similar in both Longshanks populations in relation to Controls, while changes in cortical 
morphology in Longshanks showed no consistent pattern over Controls. As these morphological indices have 
been shown to correlate with bone mechanical strength in several experimental systems, including mice and 
humans4, 43–47 our data imply changes in bone strength in Longshanks in response to selection for rapid skeletal 
growth. Overall, the reduction in trabecular bone volume in both Longshanks in principle reduces the ability of 
the trabecular bone to resist compressive loads43, 45. This is especially true in LS1, where the cortex is also smaller, 
thinner, and less dense. In contrast, the larger cortical area in the metaphysis of LS2 may compensate for this 
lower trabecular bone density. Compared with both LS1 and C, LS2’s significantly greater moments of inertia 
(Imin, Imax, J) also indicate potentially increased bending strength48 although again reduced trabecular bone vol-
ume in LS2 may mitigate this effect. In the diaphyseal cortex of the distal tibia, all three lines have similar indices 
of compressive and bending strength, the latter represented by the section modulus (Zp)48. However, bending 
strength is also a function of bone length, and as we have shown elsewhere26, the similar section modulus but 
greater length of the Longshanks, in principle makes it weaker in resisting bending loads. We are currently per-
forming mechanical testing on the long bones of the three lines to validate these predictions.

Taken together, our results point to an association between rates of longitudinal bone growth, limb length at 
skeletal maturity, and morphological correlates of bone strength, independently of body mass. In humans, an 
association between stature and the risk of fragility fractures has been demonstrated49–52, although the mecha-
nisms that modify this risk are not clear. Some studies have suggested that tall stature increases fall height and 
ground impact velocity49, and there is evidence that taller people have thinner, more porous cortices53. In con-
trast, the relationship between rates of skeletal vs. somatic growth and bone fragility in humans is poorly known24. 
We have shown that, in mice, homologous long bones that elongate more rapidly, and are relatively longer at skel-
etal maturity, have altered bone microstructure, specifically, an overall reduction in trabecular bone volume, and 
in both the number and thickness of the trabeculae. If this relationship holds for humans, then our data suggest 
that individuals who are taller relative to body mass (i.e., with a lower BMI driven by increased height), and/or for 
whom longitudinal skeletal growth outpaces somatic growth, may exhibit similar differences in cancellous bone 
morphology in their limbs in relation to individuals of average height or BMI. Such differences could place these 
individuals at an increased risk of bone fragility later in life.

Methods
Animal Samples.  All experimental procedures involving live animals were approved by the Health Sciences 
Animal Care Committee at the University of Calgary (protocol AC13-0077), and were conducted in accordance 
with best practices outlined by the Canadian Council on Animal Care. Female mice from generation F16 of the 
Longshanks selection experiment were used. All animals were originally derived from a CD-1 outbred stock: 
Longshanks 1 and 2, LS1 and LS2, respectively, have been selectively bred independently for increases in tibia 
length relative to body mass, while Control (line C) mice were random-bred for the same number of generations. 
Further details of the selective breeding protocol are provided elsewhere25. For this study, 14 female mice were 
sampled at random from each of the three experimental lines. All animals were raised under identical environ-
mental and nutritional conditions. Mice within each line were randomly assigned to one of two experimental 
groups: ovariectomy (OVX, n = 7) or sham surgery (Sham, n = 7). Sample size per group was determined based 
on previous studies with similar design (e.g., refs 29, 30, 34). Surgeries were performed on 12–13 week-old mice 
(mean age 88.5 +/− 2.1 days, range 85–92), when longitudinal skeletal growth is over 99.5% complete (Fig. 1).

Micro-CT Scans and Data Collection.  In vivo scans of metaphyseal region.  Baseline scans (week 0) were 
performed on the metaphysis of the left proximal tibia of all mice, two days prior to surgery. Subsequent scans 
were performed on the same region 1, 2, 4 and 6 weeks post-surgery to track longitudinal changes in metaphyseal 
bone morphology. Animals were weighed prior to each scan and anesthetized by isoflurane inhalation (induction 
concentration 3%, 2% maintenance concentration). Mice were placed in an in vivo micro-CT scanner (vivaCT 40; 
Scanco Medical, Brütisellen, Switzerland), secured using a custom-built leg holder. Each scan lasted ~10 minutes 
and captured 212 slices, equivalent to 2.65 mm in the transverse plane of the proximal tibia at an isotropic voxel 
size of 12.5 µm (55 keV, 145 µA, integration time = 200 ms). After each scan, animals were placed in heated cages 
until recovery from anesthesia.

BV/TV (%)/week Tb.N. (mm−1/week) Tb.Th. (mm/week) Tb.Sep. (mm/week)

OVX Sham OVX Sham OVX Sham OVX Sham

Line C −4.4LS1 (0.34) −2.3 (0.52) −0.49LS2 (0.03) −0.30LS2 (0.06) −0.002 LS1 (0.0004) 0LS1,LS2 (0.0005) 0.031 (0.004) 0.020 (0.0069)

Line 1 −1.9C (0.72) −1.4 (0.35) −0.33 (0.08) −0.36LS2 (0.06) 0.001C, LS2 (0.0006) 0.002C (0.0003) 0.031 (0.0081) 0.033 (0.0069)

Line 2 −2.7 (0.38) −1.2 (0.21) −0.21C (0.03) −0.09C,LS1 (0.03) −0.001C, LS1 (0.0004) 0.002C (0.0002) 0.040 (0.0082) 0.024 (0.0111)

Table 2.  Rates of change in trabecular morphological indices between 0 and 4 weeks following surgery in OVX 
and Sham mice, by group. Data expressed as change in variable means per week post-surgery (SEM). Within 
treatments (columns, OVX vs Sham), superscripts denote significant differences in means (p < 0.05) between 
a given group and: CLine C, LS1Line 1, LS2Line 2. Within lines (rows), italicized values indicate significant 
differences in mean rates (p < 0.05) between treatments.
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Image processing for the in vivo scans was performed using Image Processing Language (v5.00c, Scanco 
Medical). User-defined contours were used to outline the metaphysis of the left proximal tibia. Grayscale 
micro-CT images were segmented using a constrained Gaussian filter (support = 2, sigma = 1.2), and a fixed 
threshold (300 mgHA/cm3) was used to identify mineralized tissues. Density calibration and quality control was 
performed by weekly scanning of a phantom with densities equivalent to 0 to 800 mg HA/cm3. The mean bone 
mineral density of the densest rod (800 mg HA/cm3) deviated less than 2% from the calibrated value over the 
course of the study. The cortical and trabecular regions were defined using a semi-automated algorithm54. One 
LS1 sham individual’s image files were inadvertently deleted prior to analysis, and a small number of individual 
scans (n = 6) were excluded due to excessive motion artifacts and/or image processing errors.

The trabecular analysis was performed on a region starting 10 slices from the end of the growth plate and 
extending 80 slices, or 1 mm, towards the distal tibia. Trabecular bone morphological variables of interest col-
lected at each time point for each individual were the bone volume (BV, in mm3), the total endosteal volume (TV, 
in mm3), and the bone volume ratio (BV/TV, in %), trabecular number (Tb.N, in mm−1), thickness (Tb.Th, in 
mm) and separation, i.e., the average distance between trabeculae (Tb.Sp, in mm)30, 55.

The cortical analysis of the metaphysis (in vivo) was performed on a region starting 2.15 mm from the end of 
the growth plate, and extending 40 slices, or 0.5 mm, towards the distal tibia. Cortical bone morphological varia-
bles of interest collected at each time point for each individual were determined for each slice and averaged over 
the 40 slices. The following cortical variables were collected: cortical thickness (Ct.Th, mm), cortical area (Ct.Ar, 
mm2), the moment of inertia about the principal axes (Imax, mm4, Imin, mm4), and the polar moment of inertia (J, 
mm4). The total bone mineral density (TMD, mgHA/cm3) including both the cortical and trabecular bone, was 
also calculated in this region.

Ex-vivo whole body scans.  Following the final in vivo scan at week 6, animals were euthanized and a full body 
scan was obtained using a Skyscan 1173 μCT scanner (Bruker, Kontich, Belgium), at a resolution of 45 µm (90 kV, 
83 uA), and converted to image stacks using CT Analyzer v.1.14.4 (Skyscan, Kontich, Belgium). 3D landmarks 
were placed using Amira v.5.4.2 (Visage Imaging, Berlin, Germany) on the lateral condyle of the proximal epiph-
ysis, and on the distal tip of the medial malleolus of the left tibia. The scaled distance between these landmarks 
was used to determine tibia length in all samples.

Ex-vivo scans of diaphyseal region.  Following the whole body scan, the left tibia was dissected at the knee joint, 
soft tissues were removed, and the bone was scanned on an Xradia Versa 520 μCT scanner (Carl Zeiss Inc., 
Thornwood, NY) at an isotropic voxel size of 1.9 μm (voltage: 80 kV, power: 7 W, exposure time: 0.95 s). Three 
individuals (1× LS1, 2× LS2), were not recovered following the SkyScan whole body scan. A total of 994 slices 
were captured from each scan beginning at the tibia-fibula junction and proceeding distally. Scans were then 
converted to image stacks using XMReconstructor (Xradia; Carl Zeiss Inc., Thornwood, NY).

For each sample, a sub-region equivalent to 1 mm (526 slices) of cortical bone, starting 0.5 mm distal to the 
tibia-fibula junction, was imported into Fiji (ImageJ v1.50 e)56 for processing using a custom-written macro, as 
follows: Stacks were first converted to binary images using a global threshold. Next, the “Analyze Particles” func-
tion in Fiji was used to digitally fill open spaces in the bone under 1000 μm3 (~145 voxels), representing osteocyte 
lacunae and other noise, leaving a stack containing larger spaces representing canals32, 57. This stack was dupli-
cated, and the function was run once more to fill the canals, leaving a solid block in which all spaces within the 
cortex had been filled. Bone volumes of the two stacks were computed, and the ratio of the smaller (with canals) 
to larger (filled canals) volume was used to calculate cortical porosity in %, i.e., as (1-volume with canals/volume 
without canals) * 100%.

Canal thickness (in mm) was derived from the stack with the canals present, by first removing the cortex 
and the background, leaving only the canals as 3D objects, and running the “Thickness” function in the BoneJ 
plugin58. To obtain canal orientation, the 3D canal stack was processed using the “Skeletonize (2D/3D)” func-
tion, followed by the “AnalyzeSkeleton” plugin in Fiji59. The output of these functions comprises canal branch 
information with lengths and 3D coordinates of the ends of the branch. These data were exported to Matlab 2016 
(Mathworks, Natick, MA), where a custom script was used to remove branches under 100 μm in length33. We 
calculated the orientation of the canals relative to the longitudinal axis passing through the centroids of each slice, 
as described32, 33.

Finally, cortical cross-sectional geometry variables were obtained from the transverse section at the middle 
of the filled stack (i.e., from a single slice 1 mm distal to the tibia-fibula junction), using the “Slice Geometry” 
function in the BoneJ plugin. We obtained cortical area (Ct.Ar, in mm2), mean cortical thickness (Ct.Th, in mm), 
the moment of inertia about the principal axes (Imax, mm4, Imin, mm4), and the polar section modulus (i.e. ZP , 
in mm3). ZP is frequently used as a measure of long bone bending strength at the midshaft of long bones26, 60, 61.

Statistical Analyses.  Differences in bone morphology between lines at baseline.  Baseline metaphyseal bone 
morphology (week 0) in each line (treatments pooled within line, n = 13–14 each line) was compared using 
one-way ANOVA, with mouse lines as the categorical factor, followed by Tukey’s post-hoc tests to test for statis-
tical significance of pairwise differences in means among lines. For post-mortem analyses (week 6: body mass, 
tibia length, and diaphyseal cortical morphology), we first tested for differences between treatments within lines. 
We found no effect of treatment on these variables within line, hence we pooled individuals within lines and 
compared variable means using one-way ANOVA and Tukey’s post-hoc tests, as above. In these and all following 
analyses, a p-value of less than 0.05 indicated significant differences in means.
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Longitudinal changes in bone morphology within lines.  Linear mixed models were used to analyse 
time-dependent changes in bone indices (i.e., repeated measures) within the lines and treatment groups. We used 
a factorial model in which individual was treated as a random factor, while time and treatment (OVX vs Sham 
surgery) were considered fixed factors (Statistica, v12.0, StatSoft Inc. Tulsa, OK). Statistical significance of differ-
ences between the treatments within a line at each time point, and within treatments over time, was determined 
using a Fisher’s least square difference (LSD) post-hoc test.

Differences in response to ovariectomy and rates of estrogen-dependent bone loss.  To determine whether 
Longshanks and Control mice responded to OVX surgery differently, we used two complementary approaches. 
We analyzed trabecular bone only, as previous studies have shown that the effect of ovariectomy among mice 
tends to be greatest in cancellous bone29, 62, 63. In the first approach29, we compared trabecular bone variables 
among lines and treatments at the end of the experiment (i.e, week 6). If the ovariectomy had an effect on lon-
gitudinal changes in trabecular bone morphology, then these morphological indices should differ between the 
treatments within lines. We used a two-way ANOVA, with mouse line and treatment as grouping factors. We used 
a full factorial model which included the line-by-treatment interaction term, to determine whether the response 
to treatment differed among lines. Statistical significance of pairwise differences within lines at week 6, and within 
treatments between lines (OVX vs. Sham) was assessed using post-hoc Tukey’s tests.

In the second approach, we sought to determine whether the rates of change in trabecular bone variables 
differed among lines and treatments30. This complementary approach can be used to assess whether the values 
observed at week 6 in the previous analysis were influenced by baseline trabecular morphology. We obtained the 
rate of change in the skeletal variables for each individual, given by the slope of an ordinary least squares regres-
sion of trabecular bone variables vs. time up to 4 weeks post-surgery. Week 6 was excluded because the variables 
for some groups plateaued (see Results, and ref. 30). In one individual (Line C sham), the scan at baseline was 
excluded due to motion artifacts, hence its regression slope could not be accurately determined and was excluded 
from the analysis. One LS1 OVX individual was missing its 4-week scan, its regression slope was calculated using 
week 6 as the fourth time point instead29, 62, 63. Mean rates of change in BV/TV (i.e., regression slopes) among the 
groups were then compared using two-way ANOVA, as above, with mouse line and treatment (OVX vs Sham) as 
grouping factors, including the line-by-treatment interaction term. Statistical significance of pairwise differences 
within lines, and within treatments between lines (OVX vs. Sham) was assessed using post-hoc Tukey’s tests.

Data Availability.  All raw data used in the statistical analyses are available as a supplementary data file.
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